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We have performed electron spin resonance (ESR) studies of K3+
4 and (K3Rb)3+ nanoclusters incorporated in

powder specimens of aluminosilicate sodalite at several microwave frequencies between 9 and 34 GHz. The K3+
4

and (K3Rb)3+ clusters are arrayed in a bcc structure and are known to show antiferromagnetic ordering below
the Néel temperatures of TN � 72 and �80 K, respectively, due to the exchange coupling between s electrons
confined in the clusters. We have found sudden broadenings of ESR spectra in both samples below TN. The
line shape of the spectra below TN is analyzed by powder pattern simulations of antiferromagnetic resonance
(AFMR) spectra. The calculated line shapes well reproduce the experimental ones at all the frequencies by
assuming a biaxial magnetic anisotropy. We have evaluated extremely small anisotropy fields of approximately
1 Oe indicating that these materials are ideal Heisenberg antiferromagnets. We have also found that the magnetic
anisotropy changes from easy-plane type to uniaxial type by changing into a heavier alkali-metal cluster and that
the g value shifts to a large value beyond two below TN for K3+

4 and (K3Rb)3+ nanoclusters. These novel features
of K3+

4 and (K3Rb)3+ nanoclusters incorporated in sodalite are discussed.
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I. INTRODUCTION

Zeolites are porous aluminosilicate crystals possessing
regularly arrayed nanospaces, such as “cages,” with rich
varieties of structure. Alkali-metal clusters can be formed
in the nanospaces by loading guest alkali atoms, where s

electrons are shared by several cations and confined in the
cage. Exchange coupling between the s electrons in arrayed
clusters realizes various kinds of magnetic orderings when
the clusters have magnetic moments, such as ferromagnetism,
antiferromagnetism, and ferrimagnetism, depending on the
zeolite structure as well as the species of alkali element.1–6

These materials are in a new class of magnet because the
magnetic orderings are realized by s electrons without any
magnetic elements such as transition metals. In the present
work, we aimed at one of the simplest systems among
these materials, which are alkali-metal clusters incorporated
in sodalite crystal. We have investigated the alkali-element
dependence of the antiferromagnetic (AFM) properties in
detail, especially on the magnetic anisotropy, of this material
by multifrequency electron spin resonance (ESR) technique.

Sodalite is a kind of aluminosilicate zeolites possessing the
simplest structure among zeolite family. The framework is built
of oxygen-sharing AlO4 and SiO4 tetrahedra, and β cages with
a truncated octahedron shape are arrayed in a bcc structure as
shown in Fig. 1(a). This framework structure is classified as
SOD type by IUPAC. The lattice constant is approximately 9 Å,
which slightly varies depending on the species of alkali cations
distributed in the cage. The β cage has an inside diameter of
approximately 7 Å. The framework (Al3Si3O12) is negatively
charged, and four Na+ cations, one monovalent anion X−, e.g.,
Cl−, OH− and so on, and water molecules are accommodated
in the β cage in an as-synthesized sodalite, resulting in a
chemical formula of Na4XAl3Si3O12 · xH2O. After removing
the NaX salt and the water molecules, and expose it to sodium
vapor, one Na atom can be adsorbed in the β cage and a

paramagnetic Na3+
4 cluster is formed.7 In this cluster, one s

electron provided by the guest Na atom is shared by four Na+
cations and confined in the β cage as schematically shown
in Fig. 1(b). Srdanov and coworkers succeeded in preparing
Na3+

4 clusters in almost all the β cages with a chemical formula
of Na4Al3Si3O12 and found an AFM order below the Néel
temperature TN � 48 K.3 The AFM phase transition has been
confirmed by several techniques such as NMR,8 muon spin
rotation (μSR),9 antiferromagnetic resonance (AFMR),10,11

and neutron diffraction.12 In the AFM state, the s-electron
spins in the body centers are aligned antiparallel to those in
the corners in the bcc lattice12 The temperature dependence
of a local field detected by μSR was well explained by a
three-dimensional Heisenberg model with a cubic symmetry.9

AFMR studies also confirmed that this system is an ideal
Heisenberg-type antiferromagnet, but a very weak magnetic
anisotropy with the order of 1 Oe was found.10,11 Other alkali
cations can be substituted for the Na+ ions. K3+

4 clusters were
also found to show AFM order at TN � 72 K.13–16 K-Rb alloy
clusters of (K3Rb)3+ were also prepared and TN was found to
be �80 K.15,17 These materials are assigned to Mott insulators
under a just-half-filled condition of s-like band of cluster
array,18–22 where each cage accommodates one unpaired s

electron. The systematic increase in TN with increasing atomic
weight of the alkali element has been well explained in
the framework of Mott-Hubbard model as follows.15,21,22

Since the heavier alkali atom have a larger ion size and
a shallower potential for electrons, the size of s-electron
wave function of the cluster is expected to increase with
increasing the atomic weight of alkali element. This leads to a
decrease in U/t , where U is the on-site (on-cluster) Coulomb
repulsion energy and t the electron transfer energy between
adjacent clusters. Then, TN increases as generally predicted
in the Mott-Hubbard insulating phase.23 Therefore the alkali-
metal clusters in sodalite can be assigned to a prototype of
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FIG. 1. (Color online) Schematic illustrations of (a) crystal
structure of sodalite and (b) A3+

4 cluster formed in the β cage, where
A is an alkali atom. The framework has the SOD-type structure with
a bcc arrangement of the β cages.

Mott-Hubbard system in a cubic lattice. However, the origin
of the weak magnetic anisotropy observed in Na3+

4 clusters
has not been clarified.10,11 It is worth revealing much detailed
properties of magnetism in these new materials, because it
leads to a general and profound understanding of magnetism
of the s-electron systems. In the present work, we performed
ESR studies of K3+

4 and (K3Rb)3+ clusters in sodalite in order
to investigate in detail the alkali-element dependence of the
magnetic anisotropy in the AFM ordered phase.

II. EXPERIMENTAL PROCEDURE

The sample preparation method in the literatures13,15 was
adopted in the present study. We used a powder specimen
of Na-type sodalite crystal with a few micrometer size
synthesized by Tosoh Corporation. We prepared a salt-free
sodalite with a chemical formula of Na3Al3Si3O12 per β cage
by washing with distilled water by means of the Soxhlet
extraction method. A K-type sodalite with a chemical formula
of K3Al3Si3O12 was prepared by the ion-exchange of the
salt-free Na-type one in a KNO3 aqueous solution. The K-type
sodalite powder was then heated to 500 ◦C in a vacuum for
24 hours and fully dehydrated. Pure K and Rb metals were
adsorbed into the dehydrated K-type sodalites with sealed in
quartz glass tubes at 150 ◦C. In these samples, the chemical
formulas are given by K4Al3Si3O12 and K3RbAl3Si3O12, re-
spectively, and K3+

4 and (K3Rb)3+ clusters are generated in the
respective β cages. The magnetic susceptibility was measured
by a superconducting quantum interference device magne-
tometer (MPMS-XL, Quantum Design). We confirmed that
the temperature dependence of the magnetic susceptibility was
consistent with that in some reported works.14,15 We performed
ESR measurements at frequencies between 9 and 34 GHz. At
the X-band frequency (9 GHz), we used a conventional ESR
apparatus (Bruker, EMX) and the temperature was controlled
by a helium gas flow cryostat (Oxford Instruments). ESR
signal was taken by sweeping a 100 kHz modulated external
magnetic field with an amplitude of 1 Oe. The field-derivative
spectra were integrated to obtain the absorption signals. At
higher frequencies (20—34 GHz), we utilized a vector network
analyzer MVNA (ABmm), a superconducting magnet (Oxford
Instruments) and home-made ESR cylindrical resonators. The
temperature was controlled by using a variable temperature
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FIG. 2. (Color online) Temperature dependence of ESR spectra of
K3+

4 clusters in sodalite measured at an X-band frequency, 9.31 GHz.

insert in the superconducting magnet and a manganine wire
heater that was wound around the ESR resonators.

III. EXPERIMENTAL RESULTS

Figure 2 shows the temperature dependence of ESR spectra
of K3+

4 clusters in sodalite measured at an X-band frequency,
9.31 GHz. At high temperatures, a signal with a Lorentzian line
shape is observed. This is assigned to an exchange-narrowed
paramagnetic resonance signal. The g-value is evaluated to be
g = 1.999 at 300 K. Upon cooling, the linewidth increases and
the spectral centroid systematically shifts to the low-field side.
The line shape also significantly changes especially for the data
below 65 K. As seen clearly in the lowest-temperature data, the
spectral shape is asymmetric with a long tail on the low-field
side. A sharp peak is also observed at 3.33 kOe. The integrated
intensity of this sharp component is evaluated to be only 4% of
the total integrated intensity. Figure 3 shows the temperature
dependence of ESR spectra of (K3Rb)3+ clusters measured at
9.29 GHz. Overall features of the spectra seem similar to those
in K3+

4 clusters, but there are discernible differences between
two samples. In a paramagnetic state at high temperature, e.g.,
300 K, the linewidth in (K3Rb)3+ clusters is much wider
than that in K3+

4 clusters. The g value is evaluated to be
g = 1.994, which is lower than that in K3+

4 clusters. Moreover,
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FIG. 3. (Color online) Temperature dependence of ESR spectra
of (K3Rb)3+ clusters in sodalite measured at X-band frequency,
9.29 GHz.

the spectral shape at low temperature is different from that in
K3+

4 . The spectrum of (K3Rb)3+ clusters is more symmetric
and the centroid is at lower field than that in K3+

4 clusters.
The low-temperature spectra of (K3Rb)3+ also contain a small
sharp peak at 3.32 kOe. The integrated intensity of this sharp
component is only 2% of the total integrated intensity.

We estimated the full width at the half maximum (FWHM)
of the spectra with neglecting the small sharp peak observed at
low temperatures. They are plotted as a function of temperature
in Fig. 4 together with that of Na3+

4 clusters.10 As reported in
Ref. 10, the ESR linewidth of Na3+

4 clusters suddenly increases
below TN � 50 K. The broad signal at low temperature
was well explained by a powder pattern of AFMR signal.
The FWHM of K3+

4 clusters shows similar behavior. In the
high-temperature region, namely, in the paramagnetic state,
the FWHM is slightly wider than that of Na3+

4 clusters. Upon
cooling, the FWHM gradually increases, and then, rapidly
increases below approximately 70 K, which coincides well
with TN. At the lowest temperature, the FWHM of K3+

4 clusters
is more than twice as wide as that of Na3+

4 ones. On the other
hand, in (K3Rb)3+ clusters, the FWHM is approximately four
times wider than that in K3+

4 clusters at high temperature.
The FWHM shows a slight dip at about 75–80 K, and then,
suddenly increases at low temperature. This also coincides
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FIG. 4. (Color online) Temperature dependence of the ESR
linewidth (FWHM) for Na3+

4 , K3+
4 and (K3Rb)3+ clusters in sodalite

measured at X-band frequency. The width is plotted on a logarithmic
scale. The data for Na3+

4 clusters are taken from Ref. 10.

with TN. The FWHM at the lowest temperature is nearly the
same as that of K3+

4 clusters. These results clearly indicate
that the line broadening arises from AFM ordering, because
the broadening starts at the respective TN both in K3+

4 and
(K3Rb)3+ clusters. Therefore the observed broad spectra at
low temperature can be assigned to the powder patterns
of AFMR signals on the analogy of Na3+

4 clusters.10 On
the other hand, the sharp peaks at �3.3 kOe may be due
to a paramagnetic signal from the isolated electrons in an
incompletely loaded part of the sample or some magnetic
impurities, because this component has a very weak intensity
and behaves independently from the AFM phase transition.
Such a tiny paramagnetic component was observed also in the
magnetic susceptibility.3,9,10,15

In order to compare the spectral shape in the antifferomag-
netically ordered state in detail, the lowest-temperature data
for all the samples are plotted in Fig. 5. The short vertical bars
indicate a resonance field for g = 2 at each frequency. It is
clear that the spectral shape systematically changes depending
on the species of the alkali element. In Na3+

4 clusters, the
spectrum has a long tail on the low-field side but drops sharply
on the high-field side near the g = 2 position.10 In K3+

4 clusters,
the spectrum is broaden and the peak position of the broad
component significantly shifts to the low-field side. The shape
is still asymmetric. In (K3Rb)3+ clusters, the linewidth is
similar to that of K3+

4 , but the peak position shifts to much
lower field, resulting in the nearly symmetric shape.

We performed ESR measurements also at several frequen-
cies up to 34 GHz at liquid helium temperatures. The results for
K3+

4 and (K3Rb)3+ clusters are shown in the upper and lower
panels in Fig. 6, respectively. The black open circles with a
solid line indicate the experimental data. The red solid curves
and the blue dashed curves are the results of simulations as
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FIG. 5. (Color online) ESR spectra for Na3+
4 , K3+

4 and (K3Rb)3+

clusters in sodalite measured at designated temperatures and at
X-band frequencies. The data for Na3+

4 clusters are from Ref. 10.
The short vertical bars indicate resonance fields at g = 2 for each
frequency.

described later. In both samples, the spectrum is systematically
shifted to a higher field and narrowed with increasing the
microwave frequency. These are typical features in a powder
pattern of AFMR signal. At the high frequency limit, all
the AFMR branches converge to the electron paramagnetic
resonance (EPR) branch as described in the next section. Thus,
in the AFMR powder pattern at a high frequency, the peak
position of the spectrum almost coincides with the EPR line.
We evaluated the g values directly from the peak position of the
spectra. The obtained values are g = 2.048 for K3+

4 clusters at
34.0 GHz and g = 2.061 for (K3Rb)3+ clusters at 33.8 GHz.
The values are significantly larger than those obtained at room
temperatures. The large positive g shifts at low temperatures
are obtained also in detailed analysis of the spectra as described
in the next section.

IV. ANALYSIS

Generally, the frequency dependence of AFMR fields
depends on the type of magnetic anisotropy, and several
branches of the resonance modes appear. A powder pattern
of AFMR signal is given by integrating the resonance lines
over whole field directions to the crystal. Therefore the
shape of the powder pattern strongly depends on the type
of magnetic anisotropy. In the case of Na3+

4 clusters in
sodalite, the observed ESR signal was well reproduced by
an AFMR powder pattern with an easy-plane-type anisotropy
as reported in the previous works including a multi-frequency
ESR study.10,11 In the case of easy-plane-type anisotropy, there
are two modes with the resonance conditions of ω‖/γ = H
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FIG. 6. (Color online) ESR spectra for K3+
4 and (K3Rb)3+

clusters in sodalite measured at liquid helium temperatures at several
frequencies. The black open circles with a solid line show the
experimental data. The red solid curves and the blue dashed curves
are the simulation results of the AFMR powder pattern by assuming
an isotropic and an anisotropic relaxation processes, respectively.

and ω⊥/γ =
√

H 2 + 2HEHA under an applied external mag-
netic field H parallel and perpendicular to the easy plane,
respectively. ω‖ and ω⊥ are the resonant angular frequencies, γ
the gyromagnetic ratio of electron spin, HE the exchange field,
and HA the anisotropy field. The exchange field is given by

HE = 2z1|J1|s/gμB, (1)

where J1 indicates the exchange coupling constant between the
nearest neighbors (NNs) in the Heisenberg Hamiltonian H =
2J1

∑
NN Si · Sj , and z1 the number of NNs. Since there is no

resonance mode at fields higher than the doubly degenerated
ω‖/γ = H mode, the powder pattern exhibits an asymmetric
shape with a long tail on the low-field side and a sharp drop on
the high-field side. This feature of the line shape coincides well
with the spectrum of Na3+

4 clusters in sodalite.10,11 On the other
hand, the observed spectra of K3+

4 and (K3Rb)3+ clusters have
a fairly long tail also on the high-field side as seen in Fig. 5.
Thus we could not reproduce the spectra by assuming an easy-
plane-type anisotropy. Then, we tried to reproduce the spectra
by assuming a uniaxial and a biaxial magnetic anisotropies, and
the latter of which was found to give the best fit. The powder
pattern simulation was performed in the following manner.
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FIG. 7. (Color online) Resonance modes of a biaxial antifer-
romagnet at absolute zero. The red solid, green broken, and blue
dotted curves are those for magnetic fields along the hard axis, the
second-easy axis and the easy axis, respectively. The dashed-and-
dotted line shows a paramagnetic resonance mode with ω/γ = H .
The zero-field gaps ν1 and ν2 are given by 2πν1/γ = √

2HEHA1 and
2πν2/γ = √

2HEHA2, respectively. The spin-flop field Hsf is given
by Hsf = √

2HEHA1.

Figure 7 shows a general resonance modes of a biaxial
antiferromagnet possessing two magnetic sublattices. The red
solid, green broken, and blue dotted curves correspond to the
modes for magnetic fields along the hard axis, the second-easy
axis and the easy axis, respectively. In our ESR experiments,
the microwave frequency was fixed by using resonators and the
signal was detected by sweeping the external magnetic field.
Hence, the field-independent modes with constant resonance
frequencies are undetectable. Furthermore, we ignored the
easy-axis modes below the spin-flop filed, Hsf , by assuming
that the zero-field gaps, ν1 and ν2 in Fig. 7, are well below
used microwave frequencies. Consequently, three resonance
modes, which are indicated by (a)–(c) in Fig. 7, are expected
to be relevant to the experimental data in the case of biaxial
anisotropy. According to an analytical calculation,24 the
respective resonance conditions of these modes are given by

(ωa/γ )2 = H 2 + 2HEHA2, (2)

(ωb/γ )2 = H 2 + 2HEHA1, (3)

(ωc/γ )2 = H 2 − 2HEHA1, (4)

where HA1 and HA2 are the anisotropy fields related to
the second-easy axis and the hard axis, respectively. The
resonance modes in Eqs. (2) and (3) possess zero-field gaps
given by 2πν2/γ = √

2HEHA2 and 2πν1/γ = √
2HEHA1,

respectively, on the condition of HE � HA. On the other
hand, the mode in Eq. (4) appears above the spin-flop field
Hsf = √

2HEHA1. In order to calculate a powder pattern
spectrum, the resonance condition should be derived for a
certain external field direction. Here, we define the direction
of H by the polar angle θ and the azimuthal angle φ. θ is the

angle between the hard axis and the direction of H. φ is the
angle between the easy axis and the direction of H projected
to the plane involving both the easy axis and the second-easy
axis. Based on Eqs. (2)–(4), the resonance condition under H
with (θ , φ) direction is given by

(H sin θ cos φ)2

(ω/γ )2 + 2HEHA1
+ (H sin θ sin φ)2

(ω/γ )2 − 2HEHA1

+ (H cos θ )2

(ω/γ )2 − 2HEHA2
= 1. (5)

This equation can be easily solved for H as a function of θ

and φ to be

H (θ,φ) =
[

sin2 θ cos2 φ

(ω/γ )2 + 2HEHA1
+ sin2 θ sin2 φ

(ω/γ )2 − 2HEHA1

+ cos2 θ

(ω/γ )2 − 2HEHA2

]− 1
2

. (6)

The angular frequency ω is given by the microwave frequency
ν (=ω/2π ) used in each measurement. Therefore, when the
material parameters γ (=gμB/h̄), HE, HA1, and HA2 are
given, we can obtain the resonance field at a certain direction
of H to the crystal. Then, the AFMR powder pattern can be
calculated by making a histogram of the resonance field with
changing θ and φ over all the directions.

The exchange field HE was evaluated from the magnetic
susceptibility data. According to the molecular field theory,
the Néel temperature TN and the Weiss temperature 	 are
given by

TN = −2(z1J1 − z2J2)
s(s + 1)

3kB
, (7)

	 = 2(z1J1 + z2J2)
s(s + 1)

3kB
, (8)

with considering the exchange coupling constant also between
the second NNs, J2. z2 indicates the number of the second NNs.
The values of z1 and z2 are eight and six, respectively, in the
bcc lattice. The spin quantum number s is 1/2 according to the
magnetic susceptibility data.15 By using the values of TN and
	 for K3+

4 and (K3Rb)3+ clusters in sodalite reported in the
previous work,15 J1 and J2 were evaluated. Then, we obtained
the values of HE by using Eq. (1). They are summarized in
Table I. The residual parameters in Eq. (6) are γ (=gμB/h̄),
HA1 and HA2. They were treated as variable parameters in our
simulation to fit the experimental data. We assumed isotropic
g values for simplicity.

We also took into account the linewidth of each resonance
mode mainly originating from relaxation processes with
adopting two different methods as follows. The sodalite
crystal has a cubic symmetry. Therefore we firstly assumed an
isotropic width. The powder pattern histogram was convoluted
by a Lorenztian function with a width of 
H . Furthermore,
as discussed in Ref. 10, we considered the inhomogeneous
distribution of the zero-field gaps

√
2HEHA1 and

√
2HEHA2

and the spin-flop field Hsf because there might be some
inhomogeneities in HA1, HA2, and HE in the sample due to the
imperfection of the alkali-metal loading and for other reasons.
We assumed the distribution to be a Gaussian function. As an
alternative possibility, we also tried to represent the spectra

174401-5



TAKEHITO NAKANO et al. PHYSICAL REVIEW B 88, 174401 (2013)

TABLE I. Néel temperature TN, Weiss temperature 	, exchange coupling constants J1 and J2, exchange field HE and anisotropy fields HA1

and HA2, and g value for Na3+
4 , K3+

4 , and (K3Rb)3+ clusters in sodalite. HA1, HA2, and g were obtained from AFMR powder pattern analysis
for the data at liquid helium temperature. The g values evaluated at room temperature (RT) are also shown.

TN (K) 	 (K) J1/kB (K) J2/kB (K) HE (kOe) HA1 (Oe) HA2 (Oe) g at liq. He T g at RT

Na3+
4

a 48 −180 ± 5 −29 −22 1.7 × 103 0 1.7 2.00 2.001
K3+

4 72 ± 1b −320 ± 22b −49 −41 2.9 × 103 0.26 1.3 2.05 1.999
(K3Rb)3+ 80 ± 1b −406 ± 41b −61 −54 3.6 × 103 0.48 0.95/0.96 2.06/2.07 1.994

aFrom Refs. 10 and 11.
bFrom Ref. 15.

by assuming anisotropic relaxation processes. Three different
Lorentzian widths, 
Hh, 
He1, and 
He2, were prepared for
the hard-axis, the easy-axis, and the second-easy-axis modes,
respectively. The (θ,φ) dependence of the linewidth was given
by


H (θ,φ) = 
Hh cos2 θ + 
He1 sin2 θ cos2 φ

+
He2 sin2 θ sin2 φ. (9)

Then, the powder pattern histogram was convoluted by
Lorenztian functions with the width of 
H (θ,φ). In this
case, we did not assume the inhomogeneous distribution of
the zero-field gaps and the spin-flop field.

In accordance with the above methods, we tried to repro-
duce the observed AFMR signal at low temperatures at several
frequencies. The red solid curves and the blue dashed curves
in Fig. 6 show the simulation results of the AFMR powder
pattern by assuming the isotropic and the anisotropic relaxation
processes, respectively. In both cases, one can see that the
spectral shapes are fairly well reproduced by the simulations
at all the frequencies simultaneously, although some tail parts
of the simulated spectra slightly deviate from the experimental
data. It is hard to say which of the two models is better. In
the isotropic width model, we used the Lorentzian linewidth
of 
H = 150 Oe and the zero-field-gap distribution with a
10% standard deviation for both samples. These values are
almost the same as those used in the simulation for Na3+

4

clusters.10,11 For K3+
4 clusters, the anisotropy fields HA1 =

0.26 Oe and HA2 = 1.3 Oe, and g = 2.05 were obtained. The
zero-field gaps are calculated to be

√
2HEHA1 = 1.2 kOe

(ν1 = 3.5 GHz) and
√

2HEHA2 = 2.7 kOe (ν2 = 7.9 GHz).
For (K3Rb)3+ clusters, the anisotropy fields HA1 = 0.48 Oe
and HA2 = 0.95 Oe, and g = 2.06 were obtained. The zero-
field gaps are calculated to be

√
2HEHA1 = 1.9 kOe (ν1 =

5.3 GHz) and
√

2HEHA2 = 2.6 kOe (ν2 = 7.6 GHz). The
anisotropic width model also can reproduce the experimental
data with using very similar values of the parameters. Slightly
different values were used only for (K3Rb)3+ clusters, namely,
HA2 = 0.96 Oe and g = 2.07. However, it was necessary to
use highly anisotropic linewidths, such as 
Hh = 620 Oe,

He1 = 70 Oe, and 
He2 = 270 Oe for K3+

4 , and 
Hh =
500 Oe, 
He1 = 100 Oe, and 
He2 = 220 Oe for (K3Rb)3+
in this model. The evaluated values of HA1, HA2, and g are
summarized in Table I. They systematically vary depending
on the species of alkali metal as described in the following
section in detail.

We also applied the same simulation of the isotropic width
model to the spectra taken at various temperatures below TN.
For a simplicity, we fixed the ratio HA1/HA2 at the value

obtained at the lowest temperature. This treatment corresponds
to an assumption of which the geometry of the magnetic
anisotropy does not depend on the temperature. Then, the
parameters of simulation are HA2 (or HA1) and g value. The
obtained values are plotted in Fig. 8. For the anisotropy field,√

HA2 is plotted. The g values above TN were evaluated from
the peak position of the spectra.

V. DISCUSSION

A. Magnetic anisotropy

As summarized in Table I, the magnetic anisotropy is
extremely weak with the order of 1 Oe in all the samples

2.10

2.05

2.00

1.95

g 
va

lu
e

300250200150100500

Temperature (K)

Na4
3+

K4
3+

(K3Rb)3+

1.5

1.0

0.5

0.0

A
21/

2    
(O

e1/
2  )

Na4
3+

K4
3+

(K3Rb)3+

FIG. 8. (Color online) Temperature dependencies of anisotropy
field and g value for Na3+

4 , K3+
4 and (K3Rb)3+ clusters in sodalite. For

the anisotropy field,
√

HA2 is plotted. The data for Na3+
4 clusters are

taken from Ref. 10.

174401-6



ANTIFERROMAGNETIC RESONANCE IN ALKALI-METAL . . . PHYSICAL REVIEW B 88, 174401 (2013)

whereas the exchange field is the order of 106 Oe. This result
indicates that these materials are quite ideal Heisenberg-type
antiferromagnets. This is one of the significant features of these
materials. As mentioned above, each cluster has one unpaired
electron, thus the magnetic moment with s = 1/2. Hence,
the single-ion-type anisotropy is not necessary to take into
account. For the classical dipolar magnetic field, the magnetic
anisotropy cannot be produced as long as the cubic symmetry
of sodalite crystal is maintained down to the liquid helium
temperature. Therefore, it is reasonable that these materials
possess almost no magnetic anisotropy. Although the observed
anisotropies are extremely weak, they do not seem to have
some extrinsic origins because they show a systematic change
depending on the alkali element. When we change from Na
to K and to K-Rb alloy clusters, HA1 (HA2) systematically
increases (decreases) as seen in Table I and also plotted in the
upper panel in Fig. 9. Note that the condition with HA1 = 0
corresponds to an easy-plane-type anisotropy and that with
HA1 = HA2 to a uniaxial-type one. Therefore the systematic
change in HA1 and HA2 from Na to K-Rb clusters seems to
be a variation of the type of anisotropy from easy-plane to
uniaxial. A possible origin of the weak magnetic anisotropy
is a slight distortion of the crystal structure from its cubic
symmetry. We calculated the dipolar field by assuming a
lattice distortion from cubic symmetry to tetragonal one as an
example. The results show that the lattice distortion with 0.2%
change in the length of c-axis can produce the dipolar field of
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dotted line in the lower panel indicates the free electron g value
(ge = 2.0023).

�1 Oe. According to the structural analysis by synchrotron
radiation x-ray diffraction, the cubic symmetry is kept at
the temperature down to 20 K.19,21 However, it is difficult
to detect such a tiny distortion by using a typical setup of
the diffractometer even if we use a synchrotron radiation
light source, because the distortion gives less than 0.01 Å
of the splitting of the Bragg peak in d spacing. Therefore the
issue whether the alkali-element dependence of the magnetic
anisotropy is caused by a tiny lattice distortions or not is still
unclear. Very high-resolution x-ray diffraction measurements
are required in order to clarify this issue.

As seen in the upper panel in Fig. 8, the anisotropy
field decreases with increasing temperature and goes down
to zero around TN. If we assume the dipolar anisotropy, the
relation

√
HAHE ∝ M(T ) is expected. Here, M(T ) indicates

the sublattice magnetization and is nothing other than the order
parameter of antiferromagnet. In our analysis, the value of HE

was fixed and thus
√

HA ∝ M(T ) is expected. Therefore it is
reasonable that the temperature dependence of

√
HA behaves

like as the order parameter as seen in the upper panel in Fig. 8.
Generally, the hyperfine interaction between electronic

and nuclear spins also can be an origin of weak magnetic
anisotropy, which is known, for example, in cubic Mn2+
compounds such as KMnF3 and RbMnF3.25–27 However, as
discussed in the previous paper,10 the hyperfine field is too
small to explain the observed anisotropy field in the case of
Na3+

4 clusters in sodalite. Here, we calculate the hyperfine
field in the case of K clusters in accordance with the same
manner described in Ref. 10. Although the hyperfine coupling
constant in K3+

4 cluster in sodalite is not known, an EPR study
on almost the same K3+

4 clusters in the β cage in zeolite Y is
reported.28 From the EPR data, the hyperfine coupling constant
is evaluated to be A/gμB = 16.4 Oe. By using this value and
the 39K nuclear spin I = 3/2, the temperature T dependence
of the hyperfine field is evaluated to be H hf

A = 0.090/T (Oe),
which gives only �0.02 Oe at the liquid helium temperature.
Hence, the hyperfine interaction cannot be the origin of the
observed anisotropy also in the K3+

4 clusters.

B. g value

In the paramagnetic temperature region above TN, the g

values are temperature independent as seen in the lower panel
in Fig. 8. It is clear that the heavier alkali-metal cluster has
a smaller g value at room temperature as shown in Table I
and also plotted in the lower panel in Fig. 9. The systematic
decrease in g value in heavier alkali-metal has been commonly
observed in other systems. For instance, bulk alkali metals
Na, K, and Rb show g values of 2.0015, 1.9997, and 1.9984,
respectively.29 The ESR signal comes from the conduction
electrons. The systematic increase in the g shift from the
free electron g value (ge = 2.0023) is well explained by
the increase in spin-orbit interaction in the heavier alkali
metals.30,31 Paramagnetic color centers (F centers) in alkali
halides are also known to show a similar tendency in their g

values. In the F center, an unpaired electron is trapped at a
halogen vacancy and shared among the alkali cations which
bound the vacancy. Thus the spin-orbit interaction of the alkali
element affects the g value of the s-like electronic state in the F
center. Indeed, the F-centers in NaCl, KCl and RbCl show the
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g-values of 1.9978, 1.9958, and 1.9804, respectively.32 It was
pointed out that the mixing the atomic p orbital on the alkali
cation with the envelope s-like wave function is most important
to explain quantitatively the g shift.33 The situation in A3+

4
clusters in sodalite is quite similar to that in the F centers.
The tail part of the s-like wave function of the cluster overlaps
the alkali cations as schematically illustrated in Fig. 1(b). The
systematic increase in the g shift can be well understood by
the heavy atom effect of the spin-orbit interaction as described
in F centers. As seen in Fig. 4, the EPR line is broader in the
heavier alkali-metal clusters in the paramagnetic temperature
region. The systematic increase in the linewidth also can
be explained by the enhancement of spin-orbit interaction. In
the exchange-narrowed Lorentzian spectra, the width is mainly
determined by the relaxation rate. The spin-lattice relaxation
is mediated by the spin-orbit coupling. Therefore the stronger
spin-orbit coupling in the heavier alkali-metal cluster provides
a shorter spin-lattice relaxation time, resulting in the broader
EPR line.

In contrast to the paramagnetic temperature region, the g

value shows an anomalous temperature dependence below TN.
The g value suddenly increases just below TN and shows a
peak at �30 K, and then decreases again at lower temperature
both in the K3+

4 and (K3Rb)3+ clusters as seen in the lower
panel in Fig. 8. The maximum g value is approximately
2.1 at 30 K. Generally speaking, this value is too large to
be attributed to the true g value in alkali metals. In the case
of ordinary weak anisotropy, the g value under the AFMR
condition is basically same as the paramagnetic g value. This
has been implicitly assumed also in the theoretical treatment
of AFMR24 and well explained the most of experimental
results. Exceptional case was found in strongly anisotropic
antiferromagnet such as CoCl2·6H2O.34 In this material, the
slope of the AFMR modes at high-field limit deviates from
that of the EPR line. This means that the g value in the AFM
ordered state is much different from the paramagnetic g value.
This phenomenon was well explained by taking into account an
anisotropic exchange interaction of symmetric tensor form.34

We tried to reproduce the experimental results in K3+
4 and

(K3Rb)3+ clusters in sodalite by utilizing the AFMR modes
with the anisotropic exchange interaction. However, we could
not find any suitable parameters that satisfy both the very weak
anisotropy and the large g shift simultaneously.

Large g shifts at low temperature have been often observed
also in low-dimensional systems,35–37 spin glasses,38–40 and
geometrically frustrated antiferromagnets such as kagomé41,42

or spinel43 lattice systems. Some of them clearly show that
the resonance field shifts to the lower-field side, namely, the
higher-g value side, with lowering the temperature similar
to the results in the present materials. In those systems, the
development of short-range-magnetic ordering is believed to
be the origin of large g shift at low temperature. In contrast
to them, the long-range ordering and the three dimensionality
were confirmed by neutron diffraction12 and μSR9,15 in the
sodalite systems. However, one can notice that the magnetic
frustration is immanent also in these systems. As shown in
Table I, 	 has large negative values and the frustration index,
|	|/TN, reaches approximately 5 in (K3Rb)3+ clusters, which
is rather high in the nonfrustrated lattice.44 This is originated

from the fact that the exchange coupling between the second
NNs, J2, namely, the intrasublattice coupling, is also strongly
antiferromagnetic. In the ordinary theories, AFMR modes are
derived within a mean-field approximation, where rigid sublat-
tice moments are assumed and the intrasublattice interaction,
J2, is not considered. However, here we propose a possibility of
that the frustration in the AFM exchange couplings affects the
resonance field at the intermediate temperature region below
TN. Since this proposal is highly speculative, theoretical studies
of AFMR beyond the mean-field theory considering the effect
of the frustration are required in order to clarify the origin of
the large g shift in alkali-metal clusters in sodalite.

VI. SUMMARY

We reported ESR studies of K3+
4 and (K3Rb)3+ clusters

incorporated in powder specimens of aluminosilicate sodalite
at several frequencies with varying temperature. We found
sudden increases in the line width at temperatures below TN

in both materials. The spectral shapes at low temperatures
were well reproduced by powder patterns of AFMR at all the
frequencies by assuming a biaxial anisotropy. The evaluated
anisotropy fields were extremely small as approximately
1 Oe, while the exchange coupling field was in the order of
106 Oe. This result clearly indicates that the systems are ideal
Heisenberg-type antiferromagnets. This is a significant feature
of the s-electron magnetic systems in the cubic lattice. Even
in such a weak magnetic anisotropy, we found a systematic
change depending on the species of alkali element. From Na3+

4

clusters to K3+
4 ones and to (K3Rb)3+ ones, the anisotropy

type gradually changed from easy-plane type to biaxial one
and closed to uniaxial one. The origins of the weak anisotropy
and its change is not clarified, but the systematic change is
indicative that the anisotropy is intrinsic. In the paramagnetic
temperature region, a systematic decrease in g value as well
as an increase in the spectral width was observed when
we changed the alkali element from Na to K and to K-Rb
alloy. This result was explained by the increase in the spin-
orbit interaction and resultant enhancement of the spin-lattice
relaxation in the heavier alkali atoms. On the other hand, below
TN, g value was found to show an anomalous temperature
dependence accompanying with a large positive g shift. The
origin of the large g shift is not known at the present stage.
Some discussions were conducted by comparing with other
materials such as geometrically frustrated antiferromagnets.
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