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Dynamic universality class of Model C from the functional renormalization group
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We establish new scaling properties for the universality class of Model C, which describes relaxational critical
dynamics of a nonconserved order parameter coupled to a conserved scalar density. We find an anomalous
diffusion phase, which satisfies weak dynamic scaling while the conserved density diffuses only asymptotically.
The properties of the phase diagram for the dynamic critical behavior include a significantly extended weak
scaling region, together with a strong and a decoupled scaling regime. These calculations are done directly in
2 � d � 4 space dimensions within the framework of the nonperturbative functional renormalization group. The
scaling exponents characterizing the different phases are determined along with subleading indices featuring the
stability properties.
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Dynamic properties such as transport coefficients or re-
laxation rates play a crucial role for a wide variety of
physical systems. Irrespective of the details of the underlying
microscopic dynamics, they can be grouped into dynamic
universality classes close to a critical point. Following the
standard classification scheme,1 the universality class of
Model C is characterized in terms of an N -component order
parameter with relaxational dynamics coupled to a diffusive
field. Apart from being a model for the coupling of the
energy density for Ising-like systems close to criticality, it
is applied to the critical dynamics of mobile impurities,2

structural phase transitions,3 long-wavelength fluctuations
near the QCD critical point,4 and out-of-equilibrium
dynamics.5

Despite its importance and a long history of discussions,6–10

parts of the phase diagram for the dynamic critical behavior of
Model C are still controversial. The reason for this uncertainty
is that the physics is nonperturbative and only a few theoretical
approaches apply. Previous calculations have mainly relied
on the ε expansion in d = 4 − ε dimensions, while direct
numerical simulations11 still represent an exception. While the
existence of the so-called weak, strong, and decoupled scaling
regions is undebated, there have been conflicting claims on
important quantitative properties and even on the possible
existence of another distinctive region in the phase diagram
of Model C as a function of N and d. Earlier results6–9 found
evidence for such a region, however, it was unclear whether it
persists to higher orders in the ε expansion. Other results to
second order showed that for the ratio of kinetic coefficients an
essential singularity occurs in this region.8 It was speculated
that this property might even restore critical behavior with
a dynamic scaling exponent identical to the strong scaling
exponent. In more recent work10 this region was discarded as
an artifact of the ε expansion, which was argued to break down
for 2 < N < 4 close to d = 4.

In this paper we compute the (N,d) phase diagram for the
dynamic critical behavior of Model C using the functional
renormalization group, which is a nonperturbative approach
that does not rely on the ε expansion. We establish an
anomalous diffusion phase with new scaling properties: It
satisfies weak scaling for 2 < N < 4 close to d = 4, however,
the conserved density diffuses only on asymptotic times.

The properties of the phase diagram include a significantly
extended weak scaling region to the whole range of 2 � d � 4
for small N . These results show that the scaling solution at
N = 0 and d = 4 belongs to a continuous phase boundary
connecting to N = 4 between the weak and strong scaling
regimes.

The functional renormalization group has been success-
fully applied to the calculation of static equilibrium critical
properties,12 to the dynamic critical scaling for purely relax-
ational models,13 to field theories driven to a nonequilibrium
steady state,14,15 as well as to stationary transport solutions
described by nonthermal fixed points.16 This paper presents
the first determination of the dynamic critical properties
of relaxational models in the framework of the functional
renormalization group including the dynamics of conserved
quantities. Such an analysis can be extended to also investigate
other dynamic universality classes, or even to connect the
dynamic low-energy properties with the microscopic physics
of relativistic theories such as QCD.

The effective dynamics for Model C is given by1

∂

∂t
ϕa(t) = −�

δH[ϕ,ε]

δϕa(x,t)
+ ηa(x,t), (1)

∂

∂t
ε(t) = �ε∇2 δH[ϕ,ε]

δε(x,t)
+ ζ (x,t), (2)

with the stochastic driving terms ηa and ζ and the equilibrium
functional

H =
∫

ddx

{
1

2
(∇ϕ)2 + r̄

2
ϕ2 + ḡ

4!
(ϕ2)2 + 1

2
ε2 + γ̄

2
εϕ2

}
.

(3)
Here, ϕa , a = 1, . . . ,N , is the order parameter (ϕ2 = ϕaϕa)
and ε the conserved density, while � and �ε denote the
relaxation and diffusion rate, respectively.

The functional renormalization group is formulated in
terms of a flow equation for the scale-dependent effective
action �k , which is the generating functional of one-particle
irreducible correlation functions.17 In our case it depends on
the field expectation values φa = 〈ϕa〉, E = 〈ε〉, as well as
their corresponding response fields φ̃a and Ẽ .18 The exact flow
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equation in Fourier space is given by17

∂�k

∂s
= 1

2
Tr

∫
ddq

(2π )d
dω

2π

∂Rk

∂s
(q,ω)

(
�

(2)
k + Rk

)−1
(q,ω), (4)

where the logarithmic scale derivative is written in terms of
s = ln(k/�) with some ultraviolet reference scale �, and the
trace denotes a summation over fields. The second functional
derivative of the scale-dependent effective action is given by
�

(2)
k (q,ω) ≡ δ2�k/δχ

T (−q, − ω)δχ (q,ω), where χ denotes
the complete field content of our model. The regulator function
Rk implements a masslike cutoff and regulates the infrared
modes. For Rk � 0 the full generating functional of the theory
� = �k→0 is obtained. We use the regulator function Rk(q) =
Zk(k2 − q2)θ (k2 − q2) for spatial momenta,19 which allows
us to obtain fully analytic expressions for the nonperturbative
β functions.

To approximately solve the renormalization group equation
(4), we consider a truncation for �k to leading order in the
derivative expansion,

�k =
∫

ddx dt

{
φ̃a

(
�−1

k

∂

∂t
− Zk∇2 + γ̄kE

)
φa + φ̃a

∂Uk

∂φa

−�−1
k φ̃2 + Ẽ

(
∂

∂t
− ZE,k∇2

)
E − γ̄k

2
Ẽ∇2φ2

+ Ẽ∇2Ẽ
}
. (5)

This defines the effective theory at the scale k in terms of
the scale-dependent kinetic coefficient �k , the wave function
renormalizations Zk and ZE,k in the two sectors, the derivative
of the effective potential ∂Uk/∂φa , and the coupling γ̄k

between the sectors. The dynamic coefficient in the E sector
is not renormalized, and we have set �E,k = 1 since only the
ratio of the kinetic coefficients in the two sectors is relevant for
the critical dynamics. Inserting Eq. (5) into Eq. (4), we obtain
the flow equations for the scale-dependent parameters.

To investigate the critical properties, we introduce the
dimensionless renormalized field squared ρ = k2−dZ φ2/2
and potential u(ρ) = k−dU (ρ), where we drop the labels
referencing the scale k in order to ease the notation. The dimen-
sionless renormalized coupling between the sectors is given
by γ = kd/2−2Z−1Z

−1/2
E γ̄ . To characterize the behavior of the

renormalized kinetic coefficient �−1Z−1ZE , it is convenient
to introduce the kinetic parameter κ = 1/(1 + �−1Z−1ZE ). In
the scaling regime we need the flow equations for the case of
a nonvanishing rescaled field expectation value or potential
minimum, ρ0 �= 0, defined by u′(ρ0) = 0 with u′ ≡ ∂u/∂ρ. At
a fixed point, ρ0 is constant and limk→0 kd−2ρ0/Z denotes
the order parameter.12 Using a polynomial expansion for
the potential to fourth order in the fields around ρ0, we
obtain the flow equations for ρ0 and the effective coupling
λ = u′′(ρ0) − γ 2:

∂ρ0

∂s
= (2 − d − η)ρ0

+ 2vd{(N − 1)l1(0; η) + 3l1(2ρ0λ; η)}, (6)

∂λ

∂s
= (d − 4 + 2η)λ

+ 2vdλ
2{(N − 1)l2(0; η) + 9l2(2ρ0λ; η)}. (7)

Here vd = (2d+1πd/2�(d/2))−1 and the scalar anomalous
dimension is defined as η = −∂ ln Z/∂s. The functions
ln(w; η) = (2n/d)(1 − η/(2 + d))(1 + w)−n−1 parametrize
the integral appearing from Eq. (4) for the potential flow
and describe the net decoupling of heavy modes.12 The flow
equation for the coupling γ reads

∂γ

∂s
= (d/2 − 2 + η + ηE/2)γ

+ 2vdγ (λ + γ 2){(N − 1)l2(0; η) + 3l2(2ρ0λ; η)},
(8)

which has an explicit dependence on the anomalous dimen-
sion ηE = −∂ ln ZE/∂s. The scale dependence of the kinetic
parameter takes the form

∂κ

∂s
= κ(1 − κ){η�(κ) − η + ηE }, (9)

which depends also on the scaling contribution to the renormal-
ized kinetic coefficient, η� = −∂ ln �−1/∂s. The anomalous
dimensions are given by

η = 16
vd

d
ρ0λ

2m2,2(0,2ρ0λ; η), (10)

ηE = −2vdγ
2{(N − 1)l2(0; η) + l2(2ρ0λ; η)}, (11)

η� = 2vd

ρ0
{l1(0; η) + l1(2ρ0λ; η) − 2 h1((λ + γ 2)ρ0,γ

2ρ0

× (1 − κ)/κ,(1 − κ)/κ; η)}. (12)

Here m2,2(w1,w2; η) = (1 + w1)−2(1 + w2)−2 is η indepen-
dent in our case and h1 is a similar threshold function. In the
limit κ → 1, we have h1(w,0,0; η) = l1(w; η), and for general
κ the expression can be given in terms of hypergeometric
functions.

Equations (6)–(12) constitute the full set of flow equations
for this model, whose fixed point solutions with vanishing scale
derivative are computed numerically. At a fixed point Z ∼ k−η,
ZE ∼ k−ηE , and �−1 ∼ k−η� assume their scaling form while
the anomalous dimensions η, ηE , and η� take on their scale-
independent critical values. From these the dynamic critical
exponents are defined as z = 2 − η + η� and zE = 2 − ηE ,
respectively. The static critical behavior is encoded in the flow
equations (6) and (7) characterizing the potential flow with
the anomalous dimension [Eq. (10)]. They form a closed set of
equations and only depend on N and d for the O(N ) symmetric
potential, which reflects the fact that the static universality
class does not depend on the dynamic properties.

In addition to the static properties, the dynamic universality
class is further characterized in terms of the fixed point values
of γ and κ along with the scaling exponents z and zE . Our
results for the (N,d) phase diagram for the dynamic critical
behavior are shown in Fig. 1, where we find the following
distinct scaling regions:

I. Weak scaling region: For κ = 0 and γ �= 0 at the
fixed point, we obtain two independent dynamic scaling
exponents z and zE , where z > zE . Since the ratio of the
renormalized relaxation rate and the diffusion rate vanishes,
the order parameter relaxes only asymptotically compared to
the diffusion timescale in this regime.
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FIG. 1. (Color online) Phase diagram for Model C as a function
of dimension d and the number of field components N from the
functional renormalization group. For comparison to the ε expansion,
thick lines near d = 4 denote O(ε) results;7 thin/dashed lines denote
the O(ε2) results according to Ref. 10.

II. Strong scaling region: For 0 < κ < 1 and γ �= 0, we
find from Eq. (9) with ∂κ/∂s = 0 at the fixed point that η� −
η + ηE = 0. This leads to a locking of the dynamic critical
exponents in both sectors, with z = 2 − ηE = zE . This strong
scaling holds when the fluctuations of the conserved density
dictate the dynamic critical scaling for the order parameter. It
is this region that is commonly referred to as Model C.

III. Anomalous diffusion region: For critical κ = 1 and
γ �= 0, we find another weak scaling solution with independent
values for the scaling exponents, i.e., z < zE , in contrast to
region I. Here, the ratio of the renormalized diffusion rate
and the relaxation rate vanishes, which describes the peculiar
situation of a purely diffusive process in the presence of a
homogeneous order-parameter field.

IV. Decoupled scaling region: If the two sectors decouple,
i.e., γ = 0, then ηE = 0 according to Eq. (11). In this case,
the conserved density displays dimensional scaling with
zE = 2. In this region, the physical field shows a dynamic
critical scaling with leading exponent z in the Model A
universality class. However, there can be nontrivial subleading
corrections to the dynamic scaling even if the mode coupling is
zero.7

The subleading exponents also give information about
the stability of the fixed point solutions. The eigenvalues
of the stability matrix ∂βi/∂gj , which we write in terms
of the generalized couplings gi ∈ {λ, . . .} with βλ ≡ ∂λ/∂s

etc., define the critical exponents. There are two independent
static exponents, and our results for the correlation length
exponent ν and for η accurately agree with those documented
for functional renormalization group studies on the static
universality class at this truncation level.12 For our analysis it
is important that we can extract subleading exponents from the
stability matrix. The characteristic behavior of the eigenvalues
θκ = ∂βκ/∂κ and θγ = ∂βγ /∂γ is exemplified in Fig. 2. These
eigenvalues are negative except at the boundaries between the
phases I–IV, where the different fixed point solutions exchange
their stability properties and either θκ or θγ changes sign
if evaluated beyond the stable regime. Figure 3 shows the

FIG. 2. (Color online) (Top) Dynamic critical exponents z and zE
as a function of N at fixed dimension d = 3.75. The different regions
I–IV are clearly visible, along with the locking phenomenon (z = zE )
in II and the distinct values in the independent scaling regimes I
and III. (Bottom) The subleading exponents θκ and θγ indicate the
stability of the fixed point solutions.

corresponding fixed point values of γ and κ that define the
scaling regions I–IV.

Using more sophisticated truncations to higher orders in the
derivative expansion and extending the basis of field operators
would be required to obtain an error estimate for our results,
which goes beyond this work. However, we observe that our
phase diagram is compatible with known data for both critical
dynamics and statics. Model C is special compared to the other
relaxational universality classes, as it relates the dynamic to the
static scaling properties close to criticality. In particular, at a
fixed point the two-point correlation function for the conserved
density assumes a scaling form 〈εε〉k ∼ kηE , and we have ηE =
−α/ν when α > 0, while such a relation is absent for α < 0,
when the coupling to the conserved density renormalizes to
zero (γ = 0).7 Since the boundary between regions I and IV
is characterized by the vanishing of the coupling γ , one may
deduce its location from static equilibrium properties where

FIG. 3. (Color online) Fixed point values for the mode coupling γ

and kinetic parameter κ as a function N at d = 3.75. The asymptotic
result for κ in the limit d → 4− is shown for comparison. In that case
region III extends over the range 2 < N < 4.
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α = 0. Even for the two-dimensional Ising model, where
α = 0 is known exactly from the Onsager solution, our result
for the phase boundary in Fig. 1 still occurs remarkably close to
the exact result in comparison to the ε expansion. Furthermore,
in the strong scaling region, we can directly compare our
results for the dynamic critical exponent to the value obtained
from the corresponding scaling relation z = 2 + α/ν. Using
most accurate high-temperature expansion data for N = 1 in
d = 3 from Ref. 20, we obtain from this relation z = 2.176(3)
and compare to our result z = 2.059, which is reasonable for
a lowest-order derivative expansion in the presence of sizable
anomalous dimensions.

In the weak and decoupled scaling regions (I and IV),
where κ = 0, the leading dynamic scaling behavior of the
physical field features a dynamic exponent in the universality
class of Model A. In fact, we may compare the contributions
to z − 2 directly to the flow equations for Model A13 and
find η� − η = cη in this region using the standard notation.1

Knowledge about the values of cη allows us to deduce the
shape of the transition between the weak and strong scaling
regions (I and II), which is characterized by the locking of
dynamic critical exponents z = zE . In particular, the boundary
is defined by the relation α/ν = cη. Using available data on
the quantity cη from the critical dynamics of Model A21,22

and the static critical exponents α and ν,20 we find that the
phase boundary for N = 1 should pass between 2 < d < 3,
which is in very good agreement with our results. However, in
the limit N → 0 the situation is less clear; this applies to the
bending down of the boundary between regions I and II. Data
from self-avoiding random walk (SAW) models23 for the case

N = 0 and field-theoretic results20 indicate that α/ν is positive
between the upper and lower critical dimension 1 < d < 4,
while we find a small negative contribution to the dynamic
critical exponent of the conserved density, i.e., zE − 2 < 0 (as
seen also in Fig. 2). The dynamic critical exponent z, however,
receives a positive contribution in this regime and is compatible
with a lower bound derived for the relaxational models.24

Monte Carlo simulations for SAW models in fractal dimension
within the Model C dynamic universality class could clarify
the situation and pin down the structure of the phase diagram
in the N → 0 region.

It would be striking if one could establish the scaling
properties of region III experimentally. This region describes
a diffusion process in the presence of a homogeneous scalar
field configuration. Nevertheless, fluctuations of the order
parameter are important and the nonzero coupling γ �= 0
strongly affects the scaling properties of the conserved density,
i.e., zE = 2 − ηE > 2, which leads to subdiffusion without
disorder. It would be interesting to see if this region of the
phase diagram is accessible with Monte Carlo simulations for
fractal dimensions 3 < d < 4 if the real-time dynamic critical
behavior is identified with the dynamic properties of the Monte
Carlo sampling process.25,26 Also, diluted scalar models might
yield an indication for such a phase.
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V. K. Akkineni and U. C. Täuber, ibid. 69, 036113 (2004).

6B. I. Halperin, P. C. Hohenberg, and S.-k. Ma, Phys. Rev. B 10, 139
(1974); 13, 4119 (1976).
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