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Ab initio investigation of the elastic properties of Ni3Fe
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Ab initio alloy theory, formulated within the exact muffin-tin orbitals method in combination with the coherent-
potential approximation, is used to determine the elastic properties of Ni-Fe alloys with Fe:Ni ratio 1:3. The
interplay between magnetic and chemical effects is investigated by computing the lattice parameters and the
single- and polycrystal elastic moduli for different partially ordered structures in the ferro- and paramagnetic
states. It is found that the influence of long-range chemical order on the bulk properties strongly depends on
the magnetic state. The largest magnetic-order-induced changes are obtained for the chemically ordered L12

phase. The ferromagnetic L12 system possesses ∼5.4% larger elastic Debye temperature than the paramagnetic
L12 phase, which in turn has a similar �D as the chemically disordered face-centered cubic phase in either the
ferro- or paramagnetic state. It is concluded that magnetic ordering has a substantially larger impact on the bulk
parameters of Ni3Fe than chemical ordering. The calculated trends are explained based on the electronic structure
of nonmagnetic, ferromagnetic, and paramagnetic ordered and disordered phases.
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I. INTRODUCTION

Due to its high permeability, the nickel-rich Fe-Ni Permal-
loy finds applications in a number of magnetic devices.
When the concentration of Ni is close to 75 at.%, the
Fe-Ni system tends to order at low temperatures, which
produces perceptible changes in the elastic properties,1,2 lattice
parameters,3 specific-heat capacity,4 resistivity,5,6 and not least
in permeability and magnetostriction.7 In order to retain
favorable magnetic properties, alloying with other elements
was considered with the aim of suppressing the precipitation
of the ordered phase.7

The stoichiometric Ni3Fe undergoes a second-order
paramagnetic-ferromagnetic transition at TC = 870 K and a
first-order transition from a disordered face-centered cubic
to an ordered L12 phase at To = 780 K. The fact that the two
transition temperatures are close to each other suggests a strong
interplay between the chemical and magnetic terms. Himuro
et al.5 reported that the magnetic ordering increases the
stability of the L12 phase, and the chemical ordering stabilizes
the ferromagnetic state. The complex magnetochemical effects
make the exploration of the physical properties of the Ni3Fe al-
loy difficult for both experiment and theory. The ordering tran-
sition in Ni3Fe is very slow even when the temperature is far be-
low the critical point, which limits the available experimental
data for the perfectly ordered Ni3Fe system. Recently, the ef-
fect of chemical ordering on the lattice parameter of Ni3Fe was
studied using the ball milling method. It was found that the lat-
tice parameter changes from ∼3.564 to ∼3.585 Å upon chemi-
cal disordering.8 This change is, however, much larger than that
from earlier measurements.6,9,10 The specific heat of Ni3Fe was
measured in the temperature range 1.2–4.4 K,4 and the results
showed that the heat capacity decreases by ∼30% and the
Debye temperature increases by ∼1.7% (∼7.8 K) on ordering.

Understanding and describing the Permalloy requires
careful investigations which can properly account for both
chemical and magnetic effects. In spite of the large number
of works, the impact of magnetochemical ordering on the
elastic parameters of Ni3Fe has rarely been reported. The
aim of our work is to fill this gap. To this end, we adopt
first-principles tools well suited to study the elastic properties
of ferromagnetic and paramagnetic Ni3Fe alloys with various
degrees of chemical order. In particular, we employ the
exact muffin-tin orbitals method11–14 in combination with the
coherent-potential approximation15,16 to model the partially
ordered and disordered phases of Ni3Fe. This theoretical
approach has been proven to be an appropriate tool to reveal
small ordering-induced changes in the elastic parameters.17,18

From the present results obtained for the Ni-Fe system, we
conclude that, although the chemical long-range order has a
measurable impact on the elastic parameters, the magnetic
ordering produces significantly larger changes in the bulk
parameters especially in the chemically ordered L12 phase.

The rest of the paper is divided into three main sections
and the conclusions. Section II gives a brief overview of the
theoretical methodology, the basics of the elastic constant
calculations, and the numerical details. The results are pre-
sented in Sec. III. Here, using the limited number of available
theoretical and experimental data on the Ni3Fe system, we also
assess the accuracy of the present theoretical approach. The
trends obtained are discussed and explained in Sec. IV.

II. THEORETICAL TOOLS

A. Total energy method

All total energy calculations were performed using the
exact muffin-tin orbitals (EMTO) method.11–14 This density
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functional solver is an improved screened Korringa-Kohn-
Rostocker method, where the exact Kohn-Sham potential is
represented by large overlapping potential spheres. Inside
these spheres the potential is spherically symmetric and
constant between the spheres. It was shown19,20 that using
overlapping spheres gives a better representation of the
full potential as compared to the traditional muffin-tin or
atomic-sphere approximations. Within the EMTO method,
the compositional and magnetic disorder is treated using
the coherent-potential approximation15,16 (CPA) and the total
energy is computed via the full charge-density technique.21–23

The EMTO-CPA method has been involved in many successful
applications focusing on the thermophysical properties of
alloys and compounds.11–14,17,18,24–27

B. Elastic properties

The elastic properties of a single crystal are described by
the elements of the elasticity tensor. In a cubic lattice, there
are three independent elastic constants: C11, C12, and C44. The
tetragonal shear elastic constant (C ′) and the bulk modulus (B)
are connected to the single-crystal elastic constants as B =
1
3 (C11 + 2C12) and C ′ = 1

2 (C11 − C12). The adiabatic elastic
constants are defined as the second-order derivatives of the
energy (E) with respect to the strain tensor. Accordingly, the
most straightforward way to obtain the elastic parameters is
to strain the lattice and evaluate the total energy change as
a function of lattice distortion. In practice, the bulk modulus
and the equilibrium volume (V ) are derived from the equation
of state, obtained by fitting the total energy data calculated
for seven different cubic lattice constants (a) by a Morse type
of function.28 Since the total energy depends on volume much
more strongly than on small lattice strains, volume-conserving
distortions are usually more appropriate to calculate C ′ and
C44. Here, we employ the following orthorhombic (Do) and
monoclinic (Dm) deformations:

Do =

⎛
⎜⎝

1 + δo 0 0

0 1 − δo 0

0 0 1
1−δ2

o

⎞
⎟⎠ and

Dm =

⎛
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1 δm 0

δm 1 0

0 0 1
1−δ2

m

⎞
⎟⎠ , (1)

respectively, applied on the unstrained conventional cu-
bic unit cell. These deformations lead to total en-
ergy changes �E(δo) = 2V C ′δ2

o + O(δ4
o) and �E(δm) =

2V C44δ
2
m + O(δ4

m), respectively, where O stands for the
neglected terms.

The polycrystalline shear modulus (G) is obtained from the
single-crystal data according to the Hill averaging G = (GV +
GR)/2 of the Voigt, GV = (C11 − C12 + 3C44)/5, and Reuss,
GR = 5(C11 − C12)C44/[4C44 + 3(C11 − C12)], bounds.
Finally, the elastic Debye temperature

�D = h̄

kB

(
18π2

V

)1/3( 1

v3
L

+ 2

v3
T

)−1/3

(2)

(h̄ and kB are the reduced Planck constant and the Boltzmann
constant, respectively) is derived from the longitudinal (vL)

and the transverse (vT ) sound velocities obtained from the
polycrystalline elastic moduli and density (ρ), viz., vL =√

(B + 4G/3)/ρ and vT = √
G/ρ.

C. Transition temperature

In the completely disordered Ni3Fe system, the fcc sites
are occupied by Ni and Fe atoms with probabilities 3/4 and
1/4 respectively; in the ordered L12 structure, the corner sites
are occupied by Fe and the face-center sites by Ni. The order-
disorder transition temperature (To) can be estimated using the
Bragg-Williams-Gorsky approximation.29 According to that,
the degree of order S ≡ (p − r)/(1 − r) may be expressed as

S(U,T ) = 1 − [4r(1 − r)(ex − 1) + 1]1/2 − 1

2r[1 − r(ex − 1)]
,

x = U/kBT , (3)

where r is the concentration of Fe atoms in the system, p

is the probability of finding an Fe atom on the corner site,
T is the temperature, and U is an average increment in the
potential energy when one Fe atom is interchanged with a
Ni atom. Assuming a linear relationship between the order
parameter and the energy cost U , viz., U = U0S, where U0 is
the maximum interchange energy corresponding to S = 1, one
can solve Eq. (3) for a given T . For the critical temperature
of the order-disorder transition (where S vanishes) we get
To ≈ 0.21U0/kB .

We should mention that U0 describes the completely
ordered L12 structure. This energy is obtained by interchanging
a small fraction (typically around 0.1 at. %) of Fe atoms from
the corner site with the Ni atoms at the face-centered sites.
Since in the present approach the noninteger site occupations
are treated within the single-site mean-field coherent-potential
approximation, the above interchange energy is unambigu-
ously defined. In other words, U0 does not contain any local
environment (short-range-order) effects.

D. Details of numerical calculations

Previous studies show that usually the effect of chemical
long-range order on the elastic constants is very small.17,18 In
order to be able to resolve such small differences and obtain
curves with the proper tendency, one needs to pay special
attention to the numerical accuracy of the calculations. In the
present electronic structure and total energy calculations, the
one-electron equations were solved within the all-electron soft-
core scheme and using the scalar-relativistic approximation
(taking into account the mass-velocity and Darwin terms). The
Green’s function was calculated for 16 complex energy points
distributed exponentially on a semicircular contour including
states within 1 Ry below the Fermi level. In the basis set, we in-
cluded s, p, d, and f orbitals and in the one-center expansion of
the full charge density lmax = 8 was used. The total energy was
evaluated by the shape function technique with l

shape
max = 30.14

For the undistorted L12 structure, we found that a homoge-
neous k mesh of 29 × 29 × 29 ensured the required accuracy.
For the orthorhombic and monoclinic structures, the k mesh
was set to 15 × 15 × 15 and 15 × 29 × 21 in the correspond-
ing irreducible Brillouin zones. For both lattice distortions,
six strains δ = 0,0.01,0.02, . . . ,0.05 were used. All potential

174205-2



Ab INITIO INVESTIGATION OF THE ELASTIC . . . PHYSICAL REVIEW B 88, 174205 (2013)

sphere radii were fixed to the average Wigner-Seitz radius.
The self-consistent EMTO calculations were performed within
the generalized gradient approximation proposed by Perdew,
Burke, and Ernzerhof (PBE),30 which has been verified for the
Fe-Ni-based systems by many former investigations.31–33

In the ordered L12 structure, there are three Ni atoms
at the face-center positions and one Fe atom located at the
origin. In partially ordered structures, the degree of long-range
order was controlled by changing the composition at the face-
center positions as Ni1−xFex and at the origin as Ni3xFe1−3x ,
represented by the formula unit (Ni1−xFex)3(Ni3xFe1−3x).
Accordingly, we changed x from 0 (corresponding to Ni3Fe
in the L12 structure) to 0.25 (corresponding to the completely
disordered Ni0.75Fe0.25 alloy in the fcc structure). Hence, the
degree of disorder may be expressed as S = 1 − 4x.

The paramagnetic state was modeled via the disordered
local magnetic moment (DLM) picture.34 Accordingly, we
used the configuration (Ni↑n/2Ni↓n/2)(Fe↑

f/2Fe↓
f/2), f being the

concentration of Fe and n that of Ni at a given site (e.g.,
f = 1 − 3x and n = 3x for the site at the origin) and the
arrow showing the magnetic moment of the atoms. The DLM
approach has been widely used to model systems well above
the magnetic transition temperature (i.e., in the fully disordered
paramagnetic state).

The impurity problem is solved within the single-site
(CPA) approximation, and hence the Coulomb system of
a particular alloy component i may contain a nonzero net
charge. In the present application, the effect of charge misfit
was taken into account using the screened-impurity model
(SIM).35,36 According to that, the additional shift in the
one-electron potential and the corresponding correction to the
total energy are controlled by the dimensionless screening
parameters αi and β. The parameters αi are determined from
the average net charges and electrostatic potentials of the
alloy components obtained in regular supercell calculations.36

The second dimensionless parameter β is determined from
the condition that the total energy calculated within the CPA
should match the total energy of the alloy obtained using the
supercell technique. For most alloys, the suggested optimal
values of β and αi are between ∼0.6 and ∼1.2.35,36 Often, the
SIM parameters αi and α ≡ βαi are chosen to be the same.14

In order to get a suitable SIM parameter for the Ni3Fe
system, we made use of a special quasirandom structure37,38

(SQS) containing 16 atoms per unit cell and computed the
total energy for four different lattice parameters (a = 3.4665,
3.5207, 3.5748, and 3.6290 Å) using the EMTO method. Then
we compared the SQS total energy to that obtained by the
CPA using different SIM parameters. For this optimization,
we adopted the PBE functional and for the sake of simplicity
we assumed αi = α. The results are summarized in Fig. 1,
which shows that the optimal SIM parameter weakly depends
on the lattice parameter. In contrast to Cu3Au, where the SIM
parameters are somewhat more sensitive to the volume,18 here
we find that ∼0.9 is a good choice for the optimal α value
in Ni3Fe irrespective of the volume. In the following, all
calculations are based on α = αi = 0.9.

III. RESULTS

The calculated bulk properties of ferromagnetic (FM)
and paramagnetic (PM) Ni3Fe are shown in Figs. 2–7. For

FIG. 1. (Color online) Total energy of fcc Ni3Fe random alloy
calculated using the EMTO-CPA method as a function of the SIM
parameter α. The energies are plotted relative to the total energy of
an SQS supercell containing 16 sites. Results are shown for four
different lattice constants.

reference, the elastic parameters are also listed in Table I as
a function of the long-range-order parameter S. We estimated
the errors associated with the numerical parameters of the
calculations and the numerical fittings and found that for the
lattice parameters and elastic constants the error bars are below
10−3 Å and 0.5 GPa, respectively.

A. Equilibrium volume and magnetic moment

The total and partial magnetic moments for Fe and Ni
sites in Ni3Fe are displayed in Fig. 2 as a function of S. The
present results for the ferromagnetic state agree well with the
former theoretical39 and experimental40 values. According to

FIG. 2. (Color online) Total and partial magnetic moments in
the ferromagnetic (FM) and local (Fe) magnetic moment in the
paramagnetic (PM) Ni3Fe alloys as a function of the degree of
order S. The corresponding total energies per atom are shown on
the right axis. The former theoretical results were obtained by the
full-potential augmented plane wave (FLAPW) method (Ref. 39) and
the experimental data refer to the ferromagnetic state (Ref. 40).
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FIG. 3. (Color online) Lattice parameter as a function of the de-
gree of the long-range order S for the ferromagnetic and paramagnetic
states of Ni3Fe. The experimental results are from Refs. 9 (b), 10 (c),
8 (d), and 6 (e). The quoted theoretical value (FLAPW) for the ordered
ferromagnetic state is from Ref. 39 (a). All experimental results refer
to the ferromagnetic state.

the present findings, in the FM state the magnetic moments
of Fe (Ni) atoms increase from ∼2.7μB (∼1.7μB ) to ∼2.9μB

(∼1.9μB ) with increasing long-range order. We notice that the
Ni moments vanish in the PM (DLM) state, but the Fe local
magnetic moments are very similar for the two magnetic states.

Figure 2 also shows that the total energy E(S) plotted as
a function of the degree of order S decreases as the system
becomes chemically more ordered. The energy difference
between paramagnetic and ferromagnetic states increases from
∼4 mRy to ∼5.3 mRy when the long-range-order parameter

FIG. 4. (Color online) Single-crystal elastic constants C11, C12,
and C44 plotted as a function of the degree of order S for the
ferromagnetic and paramagnetic states of Ni3Fe. For comparison, we
included the available experimental data for Ni77.82Fe from Ref. 1 (a)
(room-temperature data) and Ni79.19Fe from Ref. 2 (b) (extrapolated
from lower-temperature values to 0 K). All experimental results refer
to the ferromagnetic state.

changes from 0 to 1. This implies that chemical ordering
stabilizes the ferromagnetic order with respect to the PM state.

In Fig. 3, we compare our results for the lattice parameter a

with the experimental values6,8–10 and the previous theoretical
result.39 The present result for the chemically ordered L12

phase turns out to be in good agreement with most of the
experimental data. We also notice that on the average the
agreement with experiments is better for the EMTO results
than for the full-potential augmented plane wave (FLAPW)
results.39 Comparing the quoted experimental values, we
observe that the milling method slightly overestimates the
lattice parameter as compared to the other values. Chinnasamy
et al.8 reported lattice parameters between 3.563 and 3.587 Å,
depending on the milling time (only the smallest value is
shown in Fig. 5). They argue that the somewhat larger lattice
parameter compared to other experimental results is due to the
disordering created upon milling. This speculation might seem
to fail in light of the present study. Even if there is such a lattice
expansion effect with decreasing chemical order parameter,
that should be much smaller than the one seen in Ref. 8. On
the other hand, we should point out that the present theory
cannot account for the grain-boundary and other extended
defects created by milling, which may be another plausible
reason for the above discrepancy.

For the ferromagnetic state of Ni3Fe, we find that the lattice
parameter change is less than 10−3 Å, which can in fact be
ignored within the present estimated error bar associated with
the numerical fit of the equation of state. For the paramagnetic
state, the lattice parameter change due to ordering is 4.5 ×
10−3 Å. This change is slightly larger than the one obtained
for the ferromagnetic state, and it might have some effect on
the volume-sensitive physical properties. Magnetism mainly
affects the lattice parameter in the random solid solution, and
this effect almost disappears as the system approaches the
ordered state.

It is interesting to note that according to the present calcu-
lations, the lattice parameter slightly increases (4.5 × 10−3 Å)
when going from the chemically and magnetically disordered
state to the ordered state. This is against common expectations.
Namely, the lattice parameter should shrink with increasing
degree of order as is found for most materials.3 That is because
ordered systems have stronger bonds which should be reflected
by higher density. Furthermore, as we will see in the next
section, some of the elastic constants also increase with S.
Usually a larger lattice parameter corresponds to a smaller
elastic constant (i.e., the third-order elastic constants are
negative). This observation makes the anomalous behavior of
the lattice parameter even more interesting. Although the above
change in a is extremely small, it calls for further investigations
from both the theoretical and experimental sides.

B. Disorder effect on the elastic constants

The calculated single-crystal elastic constants C11, C12, and
C44 are plotted in Fig. 4 as functions of the long-range-order
parameter S for the ferromagnetic and paramagnetic states.
Before discussing the trends obtained, we assess the accuracy
of our results. As there are no experimental single-crystal
elastic constants for the stoichiometric ordered and disordered
structures, we make comparisons with the available data for
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FIG. 5. (Color online) The tetragonal shear elastic constant (C ′) and polycrystalline elastic moduli (B, G, and E) as functions of the
degree of order S for the ferromagnetic and paramagnetic states of Ni3Fe. For reference (see the text), C ′ values obtained for the hypothetical
nonmagnetic (NM) systems are also shown. For comparison, the values from Ref. 41 (a), Ref. 42 (b), Ref. 39 (c), and Ref. 42 (d) are shown.

Ni77.82Fe and Ni79.19Fe. Since the composition ratio is not
exactly 1:3, at low temperatures these two systems should be
a mixture of ordered and disordered phases. Not knowing the
degree of order S for these two systems, we plot all of the
experimental values referred to in the left side of the figure (at
S = 0), but keep in mind that these values do not correspond to
fully disordered states. Taking into account that temperature

FIG. 6. (Color online) The Debye temperature as a function of
the degree of order S for the ferromagnetic and paramagnetic states
of Ni3Fe. The available experimental data are from Ref. 43 (a) and
Ref. 2 (b) for Ni79.19Fe.

(neglected in the present study), chemical composition, and
degree of order all affect the elastic parameters, we might
conclude that the results from the EMTO calculations are in
line with the quoted experimental values.

Figure 4 shows that in the ferromagnetic state, C11 increases
by 8.3% with increasing S. At the same time, C12 slightly
decreases and C44 increases with S. However, these latter
changes are substantially smaller in absolute value than that

FIG. 7. (Color online) The degree of order S plotted as a function
of g ≡ (G − Gd )/Gd , where G is the partially ordered and Gd the
fully disordered shear modulus.
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TABLE I. Theoretical single-crystal elastic constants C11(S), C12(S), C44(S), and C ′(S), polycrystalline bulk B(S), shear G(S), and Young’s
E(S) moduli (GPa), Poisson’s ratio ν, Pugh ductile/brittle ratio B/G, Zener anisotropy ratio C44/C ′, Cauchy pressure (C12 − C44) (GPa), and
Debye temperature �D (K) for ferromagnetic (upper panel) and paramagnetic (lower panel) Ni3Fe alloys as a function of the degree of order
S. The estimated error bar for the elastic parameters is below 0.5 GPa.

S B C ′ C11 C12 C44 G E ν �D (C12 − C44) C44/C ′ B/G

Ferromagnetic Ni3Fe
1 193.7 49.9 260.2 160.4 145.9 95.0 244.9 0.289 493.4 14.51 2.92 2.04
0.88 192.8 48.1 256.9 160.8 147.6 94.3 243.2 0.290 491.6 13.21 3.07 2.05
0.8 192.3 46.5 254.2 161.3 147.0 92.8 239.8 0.292 487.8 14.26 3.16 2.07
0.68 191.6 44.3 250.7 162.0 145.8 90.7 234.9 0.296 482.4 16.27 3.29 2.11
0.6 191.2 43.3 248.9 162.4 145.0 89.5 232.2 0.298 479.4 17.42 3.35 2.14
0.4 190.5 41.3 245.6 163.0 143.4 87.4 227.3 0.301 473.9 19.53 3.47 2.18
0.2 190.2 40.2 243.8 163.4 142.6 86.1 224.5 0.303 470.7 20.81 3.55 2.21
0 190.1 39.9 243.3 163.5 142.4 85.8 223.7 0.304 469.8 21.12 3.57 2.22

Paramagnetic Ni3Fe
1 193.7 37.1 243.2 168.9 146.7 85.1 222.6 0.308 468.0 22.19 3.95 2.28
0.88 191.3 36.3 239.7 167.1 146.5 84.3 220.5 0.308 465.8 20.54 4.04 2.27
0.8 190.6 36.0 238.6 166.6 146.4 84.0 219.8 0.308 464.9 20.18 4.07 2.27
0.68 189.9 35.9 237.7 166.0 146.3 83.8 219.3 0.308 464.4 19.65 4.08 2.27
0.6 189.5 35.8 237.2 165.6 146.3 83.8 219.0 0.307 464.1 19.34 4.09 2.26
0.4 188.8 35.7 236.4 165.0 146.4 83.8 218.9 0.307 464.0 18.57 4.10 2.25
0.2 188.4 35.7 236.0 164.6 146.5 83.8 218.9 0.306 464.0 18.04 4.10 2.25
0.0 188.2 35.8 235.9 164.4 146.6 83.8 219.0 0.306 464.1 17.84 4.02 2.25

of C11. In the paramagnetic state, all elastic constants remain
almost constant as a function of S. That is, the single-crystal
elastic constants are not affected by the degree of long-range
order in the magnetically disordered state. This finding is in ac-
cordance with the results reported for the nonmagnetic Cu3Au
(Ref. 18) and Pd0.5Ag0.5 (Ref. 17) alloys. Therefore, different
magnetic states lead to markedly different behavior of the
elastic constants as a function of the long-range chemical order.

On the other hand, different degrees of chemical order
produce quite different dependence of the single-crystal elastic
constants on the magnetic state. In particular, C11 and C12

have much bigger responses to the magnetic ordering effect in
the chemically ordered state than in the disordered state. But
C44 behaves in the opposite way; it has a bigger response to
the magnetic effect in the chemically disordered state. When
S � 0.4, the magnetic effect on C12 may be ignored, but it has
sizable impact on C44. When S � 0.4, the magnetic effect in
C12 becomes important, but C44 keeps almost the same value
for the two magnetic states.

The tetragonal shear elastic constant C ′ = (C11 − C12)/2
is shown in the left upper corner of Fig. 5 along with one
experimental value reported for the disordered FM state.41 In
the ferromagnetic state, C ′ increases by ∼25% when going
from the disordered to the ordered state. This change is very
large, which shows that the ordered state is significantly
more stable mechanically than the disordered state. In the
paramagnetic state, C ′ changes only by ∼3.6% as S increases
from 0 to 1. Therefore, magnetism affects C ′ and thus
the elastic anisotropy (C44/C ′) in very different ways at
different degrees of order. In the chemically ordered state,
the magnitude of C ′ increases from 37.1 GPa to 49.9 GPa
(∼35%) upon magnetic ordering. The effect is diminished as
the degree of order gradually decreases. This confirms that
magnetismdynamically stabilizes the ordered state.

The polycrystalline elastic parameters are summarized in
Fig. 5. The present bulk modulus B and shear modulus G are
in line with the experimental and the former theoretical values
in most phases. An exception is the paramagnetic L12 phase,
for which the EMTO bulk modulus differs considerably from
the FLAPW result, which was reported to be substantially
higher (by ∼20 GPa) than that of the ferromagnetic state. That
is because in Ref. 39 nonmagnetic calculations were used to
model the paramagnetic state, ignoring the effect of disordered
local magnetic moments on the bulk properties.

In the ferromagnetic state, the Young’s modulus E increases
nonlinearly as the degree of order S increases. However, for the
paramagnetic state, E is almost constant with S. The depen-
dence of the shear modulus G(S) on the long-range order for
two different magnetic state is similar to that of E(S). Close to
the ordered state, the ferromagnetic Ni3Fe is much stiffer than
the paramagnetic phase. Close to the disordered state, the effect
of magnetism almost disappears. The trend of the bulk modulus
is totally different from those of E(S) and G(S). Namely, B(S)
has a weak dependence on the degree of the long-range order
and magnetism. This may be understood from the trends of
C11 and C12 in Fig. 4. The ordering-induced increase of C11

is to large extent canceled by the ordering-induced decrease
of C12 in B = (C11 + 2C12)/3. Unfortunately, there are no
measurements nor other theoretical results available of the bulk
modulus for the ordered paramagnetic state. Thus, instead, we
compare Ni3Fe with the structurally similar Cu3Au system,
for which theoretical studies indicate that the bulk modulus B

does not increase significantly with increasing degree of order.
A similar conclusion was found in the case of Pd0.5Ag0.5 as
well.17

In Table I, we also included the long-range-order effect on
the Zener anisotropy ratio (C44/C ′) and the ductile/brittle pa-
rameters. The values show that the elastic anisotropy changes
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under the influence of long-range order and magnetism. The
change is quite different for different magnetic states. For
the paramagnetic state, the anisotropic ratio has almost no
response to the long-range order. But for the ferromagnetic
state, the anisotropy of Ni3Fe decreases considerably with S.
Therefore, the magnetic effect on the elastic anisotropy be-
comes larger as the degree of long-range order gets closer to 1.

For all cases, the magnitude of the Pugh ratio of B/G is
much bigger than the critical value 1.75 for the ductile/brittle
transition.44 On this ground, we may conclude that the long-
range order and magnetism do not affect the ductility of Ni3Fe
system. We should also mention that according to Table I,
the Poisson ratio ν and the Cauchy pressure (C12 − C44)
change slightly and all of them are far from their critical
ductile/brittle values. Hence, magnetism and the degree of
order have negligible influence on the ductile/brittle properties
of Ni3Fe alloys.

C. Debye temperature

Figure 6 illustrates the relationship between the elastic
Debye temperature and the magnetic and chemical long-range-
order effects. Our results for �D are surprisingly close to
the results by Turchi et al.43 and Kanrar and Ghosh,2 both
measurements obtained for FeNi79.19. According to the de-
pendence of the Debye temperature on the Ni concentration as
obtained in Ref. 2, the Debye temperature of the ferromagnetic
disordered Ni3Fe system should be about ∼450 K, which is
also close to the results of the present work. The difference
between the Debye temperatures in the disordered and partially
ordered states (S = 0.69) is reported to be 7.8 K.4 This is in
accordance with the results of the present ab initio calculations.
Compared to the previous work on Cu3Au,18 the above change
may be considered large. Due to the magnetic effects, the
long-range order contributes more in the Ni3Fe system than
in the nonmagnetic Cu3Au to the vibration entropy change
upon ordering. In the chemically disordered state, magnetic
ordering changes the Debye temperature by ∼1.2% compared
to 5.4% (25.4 K) found for the ordered state.

The entropy change due to the order-disorder transition
can be estimated from the present elastic Debye temperatures.
According to the high-temperature expansion of the harmonic
phonon entropy,45 for the entropy change at the order-disorder
transition we have �So-d

ph ≈ 3kB ln �o
D/�d

D. Using the present
results, the theoretical �So-d

ph changes from 0.024kB to 0.147kB

due to the magnetic effects, which indicates that magnetism
strengthens the vibrational entropy effect. The reason behind
this effect is that the elastic constants depend differently on the
degree of order S for the two magnetic states. The Fe atoms
have totally different distributions for the completely disor-
dered and the ordered structures. In the ordered structure, the
Fe atoms are in a simple cubic sub-lattice, but in the disordered
structure, the Fe atoms occupy a face-centered cubic structure.

Considering the strong elastic-chemical coupling in the
ferromagnetic state, we suggest that one can estimate the
degree of order S using the measured elastic modulus. Figure 7
gives the relationship between the degree of order S and the
reduced shear modulus g defined as g ≡ (G − Gd )/Gd , where
Gd is the shear modulus of the fully disordered phase. We find
that a simple power fit function can accurately reproduce the

calculated data. For instance, the trial function S(g) = agb

with a = 0.305 59 and b = 0.460 63 reproduces well the S(g)
curve up to g ∼ 10%. Then one can find the actual degree of
order S by measuring the shear modulus and comparing that
to the fully disordered value.

To close our analysis about the long-range-order and
magnetic effects on the elastic properties of Ni3Fe, we use the
first-principles energy to estimate the transition temperature
using the Bragg-Williams-Gorsky approximation.29 In the
present work, we get U0 = 0.034 333 Ry which gives To =
1138 K. This value is very close to the Monte Carlo result
(1030 K) of Ekholm et al.46 According to the discussion
in Ref. 46, when the temperature is close to the transition
temperature, the magnetically ordered state is degenerate with
the partially ordered magnetic state, and at the same time
the lattice parameter has a corresponding change. This would
apparently decrease the value of U0 and consequently decrease
the estimated transition temperature.

IV. DISCUSSION

From the results presented in the previous section, it is
clear that, as a result of chemical ordering, the tetragonal shear
elastic constant C ′(FM) exhibits the largest relative change. In
Fig. 5, we also show the results calculated for the hypothetical
nonmagnetic (NM) state. It is found that the absolute values of
the ordering effects for the FM and NM states are similar, but
C ′(NM) and C ′(FM) follow opposite trends as a function of S.
For comparison, C ′(PM) is nearly constant with increasing S.
In the following we try to understand the electronic structure
origin of these differences by monitoring the electronic total
densities of states (DOSs) of ordered and disordered alloys in
FM, PM, and NM states.

The total densities of states for NM, FM, and PM Ni3Fe
alloys are shown in Fig. 8, the upper, middle, and lower panels,
respectively. Results are shown for the ordered (left panels)
and disordered (right panels) cases. In the figure, we included
the DOSs for the undistorted fcc and L12 lattices (red solid
curves) and also for the orthorhombic lattices obtained by
applying the Do distortion [Eq. (1)] with δo = 0.05 (black
dashed curves). We recall that this lattice distortion is used
to compute C ′. We observe that the large NM peak near
the Fermi level (∼33–37 states/Ry) disappears in the FM
and PM states, explaining the observed spontaneous spin
polarization of the system in terms of the classical Stoner
model. Furthermore, in the ordered FM state, the spin-up d

channel is fully occupied, whereas the spin-down channel
shows a local minimum near the Fermi level. This indicates a
strong covalent type of bonds for the ordered FM system. The
local minimum disappears in the disordered FM state, showing
that this phase is thermodynamically less stable as compared
to the ordered FM state. The occupied parts of the PM DOSs
are very similar for the ordered and disordered cases.

Elastic distortion lowers the cubic symmetry and thus splits
the degenerate Eg and T2g states of the d density of states.
If the degenerate states are present around the Fermi level
(EF ), the symmetry lowering deformation usually decreases
the one-electron energy and thus the kinetic energy of the
system. That is because some of the split sub-bands move
above the Fermi level and as a result the partial spectral
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FIG. 8. (Color online) Total DOSs of NM, FM, and PM Ni3Fe alloys for the fully ordered L12 phase (left panels) and fully disordered fcc
phase (right panels). DOSs are shown for the undistorted cubic lattices (red solid curves) as well as for 5% orthorhombic distortions used to
compute the tetragonal elastic constants C ′ (black dashed curves). The energy axis is relative to the Fermi level (EF ).

weight decreases. According to this scenario, a larger DOS
peak at the Fermi level should yield a larger negative kinetic
energy change (in absolute value) and hence result in a smaller
elastic parameter. For instance, body-centered cubic Fe at high
pressure is nonmagnetic and has a pronounced DOS peak at
the Fermi level, which was used to explain the calculated large
negative C ′ elastic parameter.47 We should point out that the
above arguments hold assuming that the systems in question
possess similar electrostatic and exchange-correlation energy
changes with lattice distortion. Otherwise, the force theorem
fails,48 and the latter energy terms can very well overwrite the
changes dictated merely by the kinetic energy.

In the present case, we compare the ordered and disordered
DOSs of various magnetic states to find the ordering effect
on C ′. Here we assume that the average electrostatic and
exchange-correlation energy terms in �E(δo) do not change
upon chemical ordering and thus the leading energy term
comes entirely from the one-electron energy (i.e., the force
theorem holds). We denote by D the DOS at the Fermi
level. According to Fig. 8, D(NM)ord > D(NM)dis (the dif-
ference being about 3 states/Ry), suggesting C ′(NM)ord <

C ′(NM)dis based on the above scenario. Next, we find
that for the spin-down channels (the spin-up channels
are very similar) D(FM)ord < D(FM)dis (the difference be-
ing about 5 states/Ry), indicating C ′(FM)ord > C ′(FM)dis.
Finally, D(PM)ord < D(PM)dis (the difference being about
1 states/Ry), resulting in C ′(PM)ord > C ′(PM)dis. Moreover,
considering the relative differences between the ordered and

disordered DOSs at the Fermi level, we may conclude that the
difference between the ordered and disordered C ′’s should be
largest for the FM state and smallest for the PM state. All these
predictions are in perfect agreement with the actual trends from
Fig. 5. It is gratifying that the above simple arguments, based
merely on the total electronic density of states, can account for
the fully self-consistent results.

Comparing the undistorted and distorted DOSs in Fig. 8, we
can reveal some further details behind the calculated ordering
effects in the C ′’s. The large DOS peak for ordered NM Ni3Fe
located right below EF (near −0.015 Ry) splits upon lattice
distortion. Part of it moves to energies above and part of it to
energies below EF . This results in a small decrease of D(NM).
No similar changes can be seen for the disordered NM phase,
which explains why C ′(NM)ord is smaller than C ′(NM)dis. On
the other hand, the spin-down D(FM) of the ordered state
slightly increases with lattice distortion as a result of splitting
of the DOS peaks above and below the Fermi level. Part of
the local minimum is also filled up, indicating a substantial
energy increase upon lattice distortion and thus a relatively
large C ′(FM)ord. For the PM state, no significant changes in
the DOSs can be seen near the Fermi level, in accordance with
the almost vanishing ordering effect in C ′(PM).

V. CONCLUSIONS

Using ab initio alloy theory, we investigated the magnetic
and long-range-order effects in the elastic properties of Ni3Fe.
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For the lattice parameter a, the main effect of magnetism
is concentrated in the chemically disordered region, with
long-range-order parameter below S ∼ 0.6, and the effect
gradually disappears with increasing S. In the ferromagnetic
state, the lattice parameter is almost constant as a function of
the degree of order. Of the three single-crystal elastic constants,
only C11 and C12 are found to be affected by magnetism in the
ordered state; however, their combined effect results in a nearly
constant bulk modulus as a function of S. C44 changes slightly
with S and the magnetic state. The tetragonal shear modulus
C ′, the Young’s modulus E, and the shear modulus G increase
significantly with the degree of order in the ferromagnetic
state, but the effect becomes weak as the system approaches
the random regime. In particular, the C ′ shear modulus depends
strongly on the magnetic state and the degree of order. As a
result, the Zener anisotropy C44/C ′ and the Possion ratios are
strongly affected by the long-range order in the ferromagnetic
state. Nevertheless, the actual values for the Pugh ratio and
the Cauchy pressure remain far from their critical values,
indicating that the ductility of Ni3Fe is not influenced by the
chemical and/or magnetic ordering.

For both ferromagnetic and paramagnetic states, the chem-
ically disordered phase is elastically softer, which contributes

by 0.024kB–0.147kB to the ordering entropy, depending on
the magnetic state. On the other hand, using a nonmagnetic
approximation for the paramagnetic state, as is often done
in standard density functional calculations, would result in a
softer ordered phase and thus in negative ordering entropy. The
calculated trends were explained using the electronic density of
states of ordered and disordered nonmagnetic, ferromagnetic,
and paramagnetic Ni3Fe alloys. We showed that the details
of the DOSs can fully account for the calculated ordering
effects in C ′ and thus also in the Young’s and shear moduli
and Debye temperature. The present findings highlight the
importance of the magnetic state in studying chemical ordering
and demonstrate that the magnetic effects can overwrite the
chemical terms.
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