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Inversion symmetric two-level systems and the low-temperature universality in disordered solids

M. Schechter1 and P. C. E. Stamp2,3

1Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
2Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

3Pacific Institute for Theoretical Physics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
(Received 4 May 2012; revised manuscript received 21 May 2013; published 5 November 2013)

The low-temperature universal properties in disordered and amorphous solids are considered. We introduce
a model that includes two types of two-level systems (TLSs), which, based on their local symmetry, interact
weakly or strongly with the phonon field. This accounts well for the experimental results and addresses some
long-standing questions: the nature of the TLSs, the smallness and universality of the phonon attenuation, and
the energy scale of 3 K below which universality is observed. Our model describes disordered lattices; we also
discuss its application to amorphous solids.
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I. INTRODUCTION

Amorphous solids, and many disordered lattices, display
remarkably similar characteristics at low temperatures, which
are very different from those of ordered lattices.1 Below a
rather universal temperature TU ≈ 3 K, their specific heat
Cv(T ) is nearly linear in temperature T , the thermal conduc-
tivity κ(T ) is roughly ∝T 2 (both quantities behave as T 3 in
ordered lattices), and their internal friction Q is independent
of T and of the phonon wavelength λ. Moreover, the thermal
conductivity and internal friction vary little between materials
whose microscopic structure ranges from impurities in ordered
crystals to completely disordered amorphous glasses. This
implies a rather universal ratio between the phonon mean
free path l and the phonon wavelength λ, so that l/λ ≈ 150
(Refs. 1–4) and suggests that a fundamental mechanism may
dictate the low-T behavior of disordered solids. What this
mechanism might be is the “universality problem,” which
has emerged as one of the outstanding unsolved mysteries
in condensed-matter physics.3,5

Most theoretical analyses begin with the influential “stan-
dard tunneling” (ST) model.6,7 In this model the low-energy
modes are described by a single set of noninteracting local-
ized two-level systems (TLSs), which interact weakly with
phonons. These TLSs are characterized by two parameters,
viz., ε (the energy bias between the wells) and �o (the
tunneling amplitude between the wells). For an ensemble of
such TLSs, the ST model assumes a broad joint probability
distribution for ε and �o (Refs. 6 and 7), given by P (ε,�o) =
Po/�o, where Po is a constant. The central dimensionless
parameter of the ST model is the “tunneling strength” Co =
Poγ

2/ρc2, where γ is the defect-phonon coupling, ρ the
mass density, and c the phonon velocity. The ST model gives
results agreeing well with the temperature dependence of
CV (T ), κ(T ), Q(T ), and l(T )6–8 if Co is assumed to be an
adjustable parameter. Universality would then be found if one
assumed that Co ≈ 10−3 for the wide range of amorphous and
disordered systems.

The ST model leaves some central questions open.
(i) What is the nature of the TLSs? (ii) Why is Co so small and
universal? (iii) What dictates the energy scale of 3 K below
which universality is observed? (iv) What about interdefect
interactions, which are not small? Thus, the ST model has

been widely questioned, and the problem of universality has
been the subject of thorough theoretical investigation.5,9–16

In disordered lattices universal properties have also been ob-
served in the ferroelectric phase,17,18 and recent experiments on
mixed crystals suggest that strong random strain fields acting
on tunneling defects may be responsible for universality.19–21

Furthermore, experiments on ion-implanted crystalline Si
show that universality is not related to amorphicity.22 This
has led to the argument23 that experimental and theoretical
studies on universality should focus on disordered crystals,
rather than on amorphous systems.

In this paper, we present an approach to the problem,
relating the universality to the symmetry of TLS states under
local inversion. We begin by considering a strongly disordered
crystal (not yet fully amorphous) possessing off-center or
rotational impurities, each having 2N local states between
which it can tunnel. This system has two kinds of low-energy
excitations (symmetric and asymmetric under inversion), cou-
pling very differently to phonons. At low energies we find that
only the symmetric excitations are active and that a quantitative
understanding of universality can then be obtained. We also
argue that this model has a natural generalization to fully
amorphous systems, also leading to universality.

The paper is organized as follows. In Sec. II the model
is introduced. In Sec. III we show how our model leads to
universality and explains other long-standing experimental
observations. We conclude in Sec. IV. The technical derivation
of our model from microscopic considerations is detailed in
Appendix A. In Appendix B we describe in detail the derivation
of the density of states of the symmetric and asymmetric TLSs
in the absence and presence of random fields.

II. THE MODEL

Many disordered crystals showing universal low-T prop-
erties have defects that can be modeled as TLSs that are
either symmetric or asymmetric under local inversion. Some
examples are (i) CN flips and rotations in KBr:CN [Fig. 1(d)],
(ii) F tunneling between interstitial states and between a
lattice position and a vacant interstitial position in CaF2:LaF3

(Ref. 24), and (iii) double N2 rotations and single N2 rotations
in ArN2 (Refs. 25 and 26).
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FIG. 1. (Color online) S and τ spins, and their interaction with
elastic strain. (a) A two-dimensional system in which the impurity
can occupy one of four positions shown by the red and yellow circles;
states of the same color are related by inversion symmetry and form
a “τ -pair”. Different colors correspond to different S subspaces,
between which transitions are asymmetric with respect to inversion.
Distortion by a passing phonon breaks the degeneracy between states
of different colors (i.e., couples to the S excitations) but not between
states of the same color (i.e., does not couple to the τ excitations). (b)
The τ -pair degeneracy is broken in a system with finite strain created
by strong lattice disorder or amorphousness. This results in a finite
but small τ -TLS lattice interaction γτ . (c) We show 2N = 8 states
of an impurity, initially assumed degenerate, which are then split in
a disordered crystal. The splitting between states in the same τ pair
is small. (d) A specific example: the three-dimensional alkali-metal
halide KBr with two CN impurities, which, in strong disorder, align
along one of the three crystal axes (distorting the nearby lattice).
Different τ states are connected by 180◦ CN flips, whereas different
S states are connected by 90◦ rotations.

A. Effective Hamiltonian

Consider first a single off-center or rotational impurity at
lattice site j . In an otherwise pure lattice this impurity can
occupy an even number 2N of states at different points in the
lattice cell; pairs or “doublets” of states related by inversion
symmetry are classically degenerate (this degeneracy being
weakly lifted by tunneling between sites27). We model the
impurity or defect by treating each doublet as a “pseudospin”
τ̂ jn, where n = 1,2, . . . ,N labels the different doublets, and
the Ising variable τ̂ z

jn = |jn↑〉〈jn↑| − |jn↓〉〈jn↓| describes
the “polarization” between the pseudospin states. We like-
wise define an Ising variable Ŝz

jnn′ = |jn〉〈jn| − |jn′〉〈jn′|,
describing the polarization between different doublets |jn〉
and |jn′〉 at site j [compare Fig. 1(a)]. Note that any given
doublet couples very weakly to phonons (only to the gradient
of the strain field28), because of the inversion symmetry.

Now consider a system with some concentration x of
randomly distributed impurities, so that the typical distance
between impurities is Ro = aox

−1/3 where ao is the interatomic
distance. The lattice strain generated by the impurities breaks

the inversion symmetry and scramble the states at each site
[Figs. 1(b) and 1(c)]. The effective low-energy Hamiltonian of
the disordered defect system can then be written as28,29

HSτ =
∑

j

[
hS

j S
z
j + hτ

j τ
z
j

]

+
∑
ij

[
J SS

ij Sz
i S

z
j + J Sτ

ij Sz
i τ

z
j + J ττ

ij τ z
i τ z

j

]
, (1)

where the interaction strengths ha,J ab (with a,b = S,τ ) are
random variables and only the two low-energy pairs are
considered (see details in Appendix A).

The size of the random couplings follows a simple rule,
according to which

J ab
ij = cab

ij γaγb

ρc2
(
R3

ij + ã3
) , (2)

where Rij is the interdefect distance, ã is a short distance cutoff
for the interaction, γS and γτ are the phonon couplings to the S

and τ defects, respectively, in the presence of the disorder, and
the randomness in the magnitude and angular dependence28,29

of these couplings are absorbed into the random variables
cab
ij ∼ O(1). Thus, the three interactions have the same radial

dependence; however, their energy scales are quite different.
At a distance Rij = R0, one finds typical interaction strengths
Jo ≡ J SS ∝ γ 2

S ∼ 500 K, J Sτ ∝ γSγτ ∼ gJo ∼ 10 K, and
J ττ ∝ γ 2

τ ∼ g2Jo ∼ 0.2 K. The random field strengths are also
governed by Jo and g; their typical strengths28 are hS � Jo and
hτ � gJo.

A key feature of these results is the role of the coupling γτ

to the phonons. Unlike the situation in the absence of disorder,
where the inversion symmetric τ -TLSs couple only to the
strain gradient, strong disorder destroys inversion symmetry
and results in a finite coupling γτ to the strain [see Eq. (A23)
and the following derivation of Eq. (1) in Appendix A 2]. Since
the coupling γτ is a result of the rather small deviations from
inversion symmetry, it is much smaller than the coupling of
the asymmetric S-TLSs to the strain. The ratio g = γτ /γS

can be determined microscopically (see Appendix A 2) and
also estimated by simple dimensional arguments: In strongly
disordered systems the typical displacement of a lattice site due
to the random lattice strain will be δa ≈ ao(E
/EC), where
E
 is the Debye energy characteristic of acoustic phonons,
and EC is the typical Coulombic correlation energy in the
solid. Thus, we expect g ≈ δa/ao ≈ E
/EC ∼ 0.02 (see also
Refs. 25 and 30).

A mean-field (MF) treatment of (1) yields a picture of
independent S and τ variables, acted upon by the random
couplings in the Hamiltonian (1). This spreads out the states,
resulting in Gaussian MF densities of states no

S(E), no
τ (E), of

width Jo,gJo and peak height ∝1/Jo,1/gJo, for the S and
τ excitations, respectively [see Fig. 2(a)]. In this MF picture
no

τ (E) � no
S(E) for E  gJo, by a factor 1/g; nevertheless,

the S spins dominate the phonon scattering even at low
energies, because their scattering rate is ∝γ 2

S , and thus far
higher (by a factor 1/g2) than that for τ spins.

Thus, the model of S and τ pseudospins gives a nice simple
picture in MF theory. However, MF theory is misleading; it
neglects correlations between the S and τ variables, which
radically change the low-energy physics.
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B. S-τ correlations

The correct way to handle these correlations is using an
Efros-Shklovskii treatment,31 adapted here for the case of two
types of interacting TLSs and the Hamiltonian (1). The details
are technical (see Appendix B), but the physics of the result is
straightforward [Fig. 2(a)]. Level repulsion between the two
sets of variables has a radical effect on nS(E), but little effect
on nτ (E), simply because the MF level density nτ (E) is much
higher. Thus, nS(E) shows a slow falloff for gJo < E < Jo,
but a precipitous drop for E < gJo ∼ 10 K, so that when
E  gJo, the S states have essentially disappeared. However,
nτ (E) only shows a weak dip below the much lower energy
J ττ

o ∼ g2Jo ∼ 0.2 K, caused by J ττ
o . The phonon spectrum

is only weakly altered. These results, shown in more detail in
Figs. 2(b)– 2(d), are also found in Monte Carlo calculations for
the Hamiltonian in Eq. (1) (Ref. 32) and in a hybrid molecular
statics and Monte Carlo calculation for the KBr:CN system
using only bare interatomic potentials.33

This abrupt switch in the DOS, from S states to τ

states, has a crucial consequence: There is a crossover in
the system properties at a temperature TU [defined by the
condition γ 2

τ nτ (TU ) = γ 2
S nS(TU )]. The crossover temperature

TU ≈ 0.2gJo and is only weakly dependent on ã for typical
values ã/ao ∼ 1–6. Above TU , the S pseudospins predominate,
along with a plentiful supply of phonons, to which they
couple strongly, thereby dominating the phonon attenuation.
In contrast, below TU the S spins are frozen and exert on
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FIG. 2. (Color online) Densities of states (DOS) of τ - and S-TLSs. (a) We show nτ (E) in red (it is hardly changed by S-τ interactions)
and nS(E) in blue [the noncorrelated DOS no

S(E) is shown in green for comparison]. In (b), (c), and (d) we show the reduction factor
P (E) ≡ nS(E)/nS(Ē), where Ē is an energy a few times larger than gJo; essentially, nS(Ē) is the S-spin DOS obtained if one includes S-S
correlations but ignores S-τ correlations, so P (E) measures the effect of S − τ correlations. Numerical results are shown for ã = 0,1.5,3,4.5,6,
for an impurity concentration x = 0.2 and sample size 183 cells (i.e., ∼4650 TLSs), in the three cases (b) hτ = 0, (c) hτ /〈Eτ 〉 ≈ 0.3, and (d)
hτ /〈Eτ 〉 ≈ 1. TU is defined by the energy at which nτ (E)γ 2

τ = nS(E)γ 2
S , i.e., by P (E) ≈ 5g. Similar results for x = 0.5 are shown in Fig. 4.

For both concentrations we find TU ≈ 0.2〈Eτ 〉 for 1 < ao < 6, i.e., TU ≈ 0.2gJo.
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the τ -TLSs a random field much larger than the ττ interaction
J ττ . The τ pseudospins then behave like a set of noninteracting
TLS states in strong disorder. However, they now couple more
strongly to phonons than the S pseudospins and dominate
the phonon attenuation. In the fairly narrow crossover regime
around TU , the S-τ interactions determine the detailed shape
of the crossover.

III. RELATION TO EXPERIMENTS

Our model above, microscopically derived for the disor-
dered lattices, results in the dominant TLSs at low temperatures
having a nearly homogenous DOS at low energies, and a
TLS-TLS interaction which is much smaller than their random
energies. Furthermore, the fact that these tunneling systems
consist of two levels, assumed in the ST model, and later
observed experimentally,2 is intrinsic in our model, a result of
inversion symmetry. In that respect, our model is similar to
the ST model. However, the central advance in our model with
respect to the ST model is that within our model there exists a
generic relation between the coupling of the TLSs to the strain
and their low-energy DOS. This, along with the smallness of
the coupling of the τ -TLSs to the strain, and the fact that they
are not gapped at low energies, allows us to explain some
long-standing experimental results, above all the universality
and smallness of phonon attenuation and the energy scale of
3 K below which universality is observed.

A. Universality

The universality is an immediate consequence of the above
results and is found by simply adapting the original ST model
analysis to the system of S and τ spins. Let us first consider
the strong disorder regime, where x ∼ O(1). The DOS of the
τ -TLSs is then given by nτ ≈ (1/gJoR

3
0) = ρc2/γτγS. At the

same time, by integrating P (ε,�o) over �o one obtains Po =
κnτ , with κ−1 ≡ ln(�u

o/�
l
o), where �l

o,�
u
o are the lower and

upper cutoffs for the “tunneling amplitudes” of the τ -TLSs.
We thus find

Co = κnτγ
2
w

ρc2
≈ κγτ

γS

≈ κg. (3)

This relation is a direct result of the fact that the phonon
scattering rate of τ -TLSs is ∝γ 2

τ , but their DOS is ∝1/γSγτ ,
as it is dictated by the coupling to the S-TLSs (or, in the
absence of S-TLSs, to the strong disorder; see discussion of
mixed crystals in Sec. III B).

Assuming the usual value κ ≈ 0.1, we then find that
Co ≈ 10−3. This small and universal value for Co derives
from its dependence on g, which is also small and varies little
between different strongly disordered materials. Notice that
g also dictates the universal crossover energy TU ≈ 0.2gJo

consistent with the observed energy scale of ≈3 K. Although
glassiness and the mechanism leading to it are not required
by our theory, for glassy systems TG ≈ Jo, i.e., TU ≈ 0.2gTG,
γ 2

τ ∝ TG, and Po ∝ T −1
G , in agreement with experiments.34,35

B. Further experimental consequences

Strong dilution. The low-temperature universal phenomena
are observed in both amorphous solids and disordered lattices.

One advantage of the latter is the ability to control the identity
of the host ions and the concentrations of the tunneling
impurities. For example, in KBr:CN, experiments find that
phenomena such as the temperature independence of the
internal friction and T 2 dependence of the thermal conductivity
exist below 3 K for CN concentrations 0.2 < x < 0.7, but
not for x < 0.2. However, once CN impurities are added to
the mixed crystal KBr0.5KCl0.5, then the above-mentioned
phenomena are observed also at x  1, only with a tunneling
strength which is proportional to x. These experimental
results19,20 were argued to support the notion that the loss of
universality at x  1 is a result of the reduction of the strain.
Our analysis supports this notion.

Let us consider first the dilute case in a pure crystal, e.g.,
KBr1−xCNx with x  1. In this system the strain at each CN
impurity site is caused solely by the presence of the other
CN impurities. This does not change the typical value of γS ,
but γτ ∼ x4/3; see Eq. (A21). As a result, the typical energy
for an S excitation J SS ∝ x, whereas the typical energy for
a τ excitation J Sτ ∝ x7/3. Furthermore, the magnitude of the
τ -TLS energy at site j and its coupling to the phonon field are
strongly correlated, as both are dictated by the proximity of
the nearest-neighbor impurity.

For strongly disordered systems we have argued that
universal properties appear below TU since at this energy scale
τ -TLSs behave as noninteracting TLSs with a roughly constant
DOS and with an interaction with the phonon field which is not
correlated with their energy. At x  1, TU (x) ∝ x7/3  3 K.
Furthermore, even at T < TU (x) it is not clear that universality
exists, as it may well be violated by the above-mentioned
correlations.

Let us now consider the case of dilute tunneling impurities
in a mixed crystal, as were realized by CN impurities added
to KBr0.5Cl0.5 (Refs. 19 and 20). In this case the strain at
the CN impurity sites is dictated by the mixed lattice itself
and is comparable to the strain in KBr1−x :CNx with 0.2 <

x < 0.7. The typical S and τ energies are now dictated by
the random field terms hS , hτ arising from the interaction of
the CNs with the Br and Cl ions through the volume term in
Eq. (A7) [or its simplified form, Eq. (A23) in Appendix A 2];
see also Ref. 28. γτ can be derived similarly to the derivation
in Appendix A 2. Thus, all energy scales are the same as in
the strongly disordered KBr:CN. The only effect of having
small x is the reduction in n(τ ), and we therefore find that
universal properties exist in the mixed crystals, albeit with a
tunneling strength C ≈ 0.1gx/xc. This result is in agreement
with experiments.19,20

Electric dipole interactions. Both τ and S defects may have
electric dipole moments, leading to electric-dipole-mediated
interactions whose strength at the nearest impurity distance
is Jee. Thus, Jo > Jee almost always, but the ratio Jee/J

Sτ
o =

Jee/gJo can be small or large, and typically Jee > J ττ
o = g2Jo.

If Jee < gJo, then all the arguments above go through, but
now the τ -τ interaction strength is Jee; the energy at which
the very weak dipole “depression” appears in nτ (E) then
becomes Jee. Such dipole depressions in the DOS are seen
in some experiments36 below 1 K. If Jee > gJo, electric dipole
interactions also change the S-τ interactions. This does not
change the basic picture, but now one finds TU ∼ Jee, and Co

is reduced to Co ∼ g2Jo/Jee.
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Amorphous systems and glasses. Experimentally, there is
overwhelming support for the notion that the universal phonon
attenuation at low temperatures is equivalent in disordered
lattices and amorphous solids. This strongly suggests that the
mechanism leading to universality is intrinsic to the disordered
state of matter and is the same in both systems. One can
therefore expect that one model would be relevant to both
disordered lattices and amorphous solids. Our model is derived
microscopically for the disordered lattices. We argue here
that although amorphous solids lack long-range order and
exact symmetries on any scale, it is plausible that our model
describes well their low-temperature characteristics.

While amorphous materials do not show long-range order,
local order with a lattice bond coordination number does
exist, except at defect sites, and intersite distances are hardly
altered from lattice values. For example, in amorphous Si,
δa/ao ∼ 0.03(0.1) for nearest (next-nearest) neighbors,37 and
the nearest-neighbor bond angle differs by a maximum of
10%. Now our results depend essentially on the distinction
between S and τ defects and rely on local properties of the
system (contributions to γτ , resulting from deviations from
inversion symmetry, are random and decrease as 1/r4; see
Appendix A 2). Thus, neither Jo nor g is strongly affected by
amorphicity.

This allows us to make some clear predictions for amor-
phous systems. First, if nearly inversion symmetric TLSs do
exist therein, then our model predicts that amorphous systems
will also show universality with similar values of TU and Co.
Second, we predict that, in addition to the TLSs responsible
for the universal properties, there exists a second type of TLS
with much higher (by a factor ∼×102) coupling to phonons
and with a DOS given in Fig. 2. This prediction could, in
principle, be checked by using the powerful technique of
phonon echo,38–40 adjusted to fit the above characteristics of
the asymmetric excitations.

IV. CONCLUSIONS

We find that the low-temperature universal properties in
disordered solids result from inversion symmetric TLSs. Such
TLSs interact weakly with phonons, yet gap other nonsymmet-
ric TLSs at energies lower than 3 K. Quantitative universality
and the energy scale of 3 K below which universality is
observed are both dictated by the rather universal value of the
ratio of strain to interatomic distance in strongly disordered
solids. This is because this value dictates both the relation
between the DOS of the TLSs and their coupling to the phonon
field and the ratio between the universality temperature and the
glass transition temperature. Various additional experimental
observations, some of which are long unaccounted for, are
naturally explained within our theory. Our results are derived
from the microscopic properties of disordered lattices, and
their applicability to amorphous solids needs to be checked.

ACKNOWLEDGMENTS

We thank A. Aharony, A. Burin, O. Entin-Wohlman, A.
Gaita-Ariño, and A. J. Leggett for discussions. The work was
supported by NSERC in Canada, PITP, and the ISF.

APPENDIX A: DERIVATION OF MODEL AND MAPPING
TO INTERACTING S AND τ SPINS

In the main text we use a model of interacting S and τ spins
to describe the low-energy excitations in the system. In this
section we give more details on how this model is derived,
starting from a microscopic model of the systems in which we
are interested.

1. Microscopic model: Single impurity

Consider first a single impurity or defect sitting in an
otherwise perfect lattice, on site j at position rj . We assume
the lattice itself is inversion symmetric and that the system
is insulating. We model the system by a Hamiltonian Ĥ =
Ĥlatt + Ĥimp + V̂ , where Hlatt is the bare lattice Hamiltonian,
Ĥimp is the impurity Hamiltonian, and V̂ is their mutual
interaction. One can then write the impurity Hamiltonian as
Ĥimp = Ĥ o

imp + Ĥ T
imp, where the first bare or “potential” term

takes the form

Ĥ o
imp(rj ) =

N∑
n=1

±∑
σ

εjnc
†
jnσ cjnσ (A1)

and the second kinetic or “tunneling” term is written as

Ĥ T
imp(rj ) =

∑
nn′

∑
σσ ′

tnn′,σσ ′c
†
jnσ cjn′σ ′ . (A2)

We drop this second tunneling term for reasons explained
below.

In these equations, c
†
jnσ (cjnσ ) creates (destroys) an im-

purity or defect state labeled by (i) the impurity site j , (ii)
the pair index n for the N different excitation pairs on the
j th site, and (iii) the internal pair quantum number σ = ±.
Thus, we are assuming a set of N pairs (often called TLSs) of
“internal states” for the impurity or defect, to give a total of 2N

states. That they come in degenerate pairs, with energy εjn,
follows from the assumed inversion symmetry. The number
and physical nature of these states depends on the system of
interest. Thus, e.g., a light halide defect like a Li atom, which
substitutes for Na or K in a KCl or NaCl lattice, can rattle
around inside a “cage” formed by the original lattice. The eight
lowest energy Li impurity states comprise four degenerate
pairs of states; each pair is degenerate with the other three
pairs, and each state is quasilocalized around potential minima
at the 〈111〉 sites. The same is found if we substitute in CN
impurities. Those states quasilocalized around other “cage”
sites (e.g., the 〈100〉 sites) are higher in energy. However,
if we substitute in OH− impurities, we find six degenerate
lowest states localized around three pairs of minima at the
〈100〉 sites, whereas if we substitute in F or Ag impurities
into a NaBr lattice, we find six pairs of degenerate low-energy
states localized around the 〈110〉 sites. In all these cases, the
set of energies εjn divides into several degenerate groups, one
of which is lowest in energy. Typically, each such group of
degenerate states contains more than one pair of states, simply
because there are other symmetries at the impurity site apart
from inversion symmetry. The number of impurity states that
we consider in our Hamiltonian depends on the UV cutoff
we assume for the impurity effective Hamiltonian. Thus, in
the case of, say, CN impurities in a KBr or KCl lattice, we
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might want to consider both the lowest set of four pairs at the
〈111〉 sites, and the set of three pairs of 〈100〉 sites which are
at somewhat higher energy. This then makes for a total of 14
states in our impurity Hilbert space.

In more general cases the physical locations of the TLS
states may not be obvious; the inversion symmetric pairs of
states may refer more complicated defects or to some kind of
rotation. Finally, whereas for systems with only one kind of
defect the energy εjn is independent of site index j , we can also
consider a lattice having several different kinds of impurity or
defect at different sites. The same model Hamiltonian still
applies; but the energy εjn will then depend on j .

As a simple example of this physics we consider a four-site
“toy” model. This model was introduced in Fig. 1(a) of the
main paper. It has the site Hamiltonian

Ĥ o
imp =

4∑
μ=1

εμc†μcμ, (A3)

in which, because of inversion symmetry, ε1 = ε2 = εA, and
ε3 = ε4 = εB , where A,B label the two different inversion
symmetric pairs. We can thus also write this Hamiltonian as

Ĥ o
imp =

∑
σ

εAc
†
Aσ cAσ + εBc

†
Bσ cBσ

= Eo
AB + �o

AB

∑
σ

(εAc
†
Aσ cAσ − εBc

†
Bσ cBσ ), (A4)

where Eo
AB is the mean or “midpoint” energy of the A and B

states, and �o
AB is the difference in energy between them.

We have ignored any tunneling between the different states
in this toy model, just as we did in (A2), because the tunneling
amplitudes, typically |tnn′,σσ ′ | ∼ O(1K) or less, are small,
in strong disorder, compared with the bias energies of the
S-TLSs, typically ≈500 K and the bias energies of the τ -TLSs,
typically ≈10 K, as is discussed in Appendix A 2. Thus,
the effect of tunneling on the distribution of biases of the
symmetric and asymmetric TLSs is negligible. Once the latter
is established, tunneling resumes a role identical to its role in
the ST model. The differences �εnn′ = |εjn − εjn′ | will vary
greatly between different systems, but, as discussed below, we
are only interested in states for which �εnn′ is less than a few
hundred kelvin, since only such states can be shifted by the
strain to low energies.

Consider now the defect-phonon interaction, which arises
because the defect distorts the lattice (since the system is
neutral, we ignore electron transfer terms). It is helpful to
work this out first for the toy model. We have an interaction

V̂j =
4∑

μ=1

Vjμ(uαβ)c†jμcjμ (A5)

at the j th site, where Vjμ(uαβ) is some function of the lattice
strain tensor uαβ(rj ) at site j . We now introduce the Ising
variables Ŝz and τ̂ z as follows [compare main text, Fig. 1(b)].
Define (i) the change η̄AB = EAB − Eo

AB in the midpoint
energy of the four states caused by the defect-phonon coupling;
(ii) the change �̄AB = �AB − �o

AB in the splitting between the
A and B states, and (iii) the splitting energy ζ̄n = εn↑ − εn↓,
opened up by defect-phonon coupling, between the internal
states of the nth pair (here n = A,B).

FIG. 3. (Color online) Interaction of the symmetric TLSs with
the gradient of the strain. The degeneracy of states related by
inversion symmetry is broken by the second derivative of the phonon
displacement.

In terms of phonon variables, η̄AB = ηABδαβuαβ , where
ηAB is just an isotropic energy shift, and �̄AB = �

αβ

ABuαβ ; the
lattice strain is sensitive to the difference between the A and B

states because these are not related to each other by inversion.
However, the two internal states of a given pair are related by
inversion, and so only the gradient ∂γ uαβ of the lattice strain
can cause a splitting between them (see Fig. 3). The splitting
energy is ζ̄n = ζ

αβγ
n ∂γ uαβ .

Thus, we see that the interaction for the toy model, with an
impurity at the j th site, is (here we use the Einstein summation
convention for spin indices α,β, etc.):

V̂j = [
ηABδαβ + �

αβ

ABŜz
AB

]
uαβ(rj )

+
A,B∑
n

ζ αβγ
n τ̂ z

n ∂γ uαβ(rj ). (A6)

We have defined Ŝz
AB = (|A〉〈A| − |B〉〈B|), and likewise τ̂ z

n =
(|n↑〉〈n↑| − |n↓〉〈n↓|), in terms of the site operators given
above. We emphasize here that (i) we should not think of Ŝz as
the z component of a spin variable (we are treating it purely as
an Ising variable); and (ii) we can, if we wish, define a spin-half
operator τ̂ n, for a specific pair n, with the transverse terms τ̂±

n

describing tunneling processes between internal states of a
given pair. However, since we ignore such tunneling processes
in this paper, we only consider τ̂ z

n and treat it as an Ising
variable as well.

Generalizing to an arbitrary number of levels on the
impurity site we get the final Hamiltonian for a lattice system
with a single impurity at site j :

Ĥimp = Ĥph + Ĥ o
imp(rj )

+
∑
nn′

∑
αβ

{[
ηjnn′δαβ + �

αβ

jnn′ Ŝ
z
jnn′

]
uαβ(rj )

+ δnn′ζ
αβγ

jn τ̂ z
jn ∂γ uαβ(rj )

}
, (A7)
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where Ĥ o
imp(rj ) is just the bare impurity term in (A1), and Ĥph

is the acoustic phonon Hamiltonian, which we write as

Ĥph =
∑

j

Cαβγ δ(rj )uαβ

j u
γ δ

j , (A8)

where the form of Cαβγ δ depends on the symmetry of the
lattice.

2. TLS-phonon interactions and the random strain field

We now consider a system with a finite concentration of
impurities and/or defects at random sites {rj }. The key point
we address here is the way in which the random strain fields
in the system then modify the interactions between the defects
and generate a new effective Hamiltonian [the one given in Eq.
(1) of the main text].

The phonon-generated interaction between a pair of defects
has been discussed in many papers.28,29 The strength of the
interactions J ab (where a,b label either S or τ ) can be found
microscopically from the direct phonon exchange between
them,28,29 second-order in the defect-phonon interaction. One
finds, for a pair of defects at sites i and j in an otherwise
perfect crystal, that

J ab
ij ∼ f (θij )�a�b

ρc2R3+α
ij

, (A9)

where Rij is the interdefect distance, and this formula is only
valid for distances �ao, the lattice parameter. All of the very
complicated angular dependence of these interactions28,29 is
incorporated into the angular factor f (θij ), where θij is the
polar angle between the defects. The parameter α = 0,1,2,

for {ab} = {SS},{Sτ }, and {τ,τ } respectively; and we write
�S = � and �τ = ζ , where � = |�αβ

nn′ | and ζ = |ζ αβγ
n |, and

we have suppressed the pair indices in these constants because
we do not need them in what follows. We note that J Sτ

ij and J ττ
ij

fall off like R−4
ij and R−5

ij , respectively, and so at long ranges

can be neglected compared to J SS
ij ∼ R−3

ij . The more rapid
falloff occurs because the phonons couple to the τ defects via
the gradient of the phonon strain rather than the strain itself,
adding extra powers of 1/Rij to the interaction.28

However, when we have a finite random concentration of
defects, things change in two important ways: (i) A set of
random strain fields is generated28 in the system, which has
the effect of breaking the inversion symmetry randomly at
each site (this radically modifies the coupling of the τ spins
to the phonons); and (ii) because of this, the strength of the
interactions J Sτ

ij and J ττ
ij is changed, and this is crucial for the

universality.
To deal with this physics is quite subtle. In Ref. 28, this was

done by simply summing independently the random strain
fields generated by each impurity. However, this is not quite
correct, because as the strain fields increase in strength, they
alter the defect-phonon coupling to the τ defects themselves.
Thus, the results in Ref. 28 are valid only in the regime
where the concentration of defects x  1, whereas here we
are interested in strong disorder, where x is not small, and a
new calculation is required.

The key to the physics in this strong disorder regime is to
realize that we are dealing with a three-body effect; we must

recalculate the two-defect interaction (A9) in the presence of
a third defect.41 Without this third defect, as we have seen, the
effective τ z

i Sz
j interaction is ∝1/R4. We thus recalculate the

effective τ z
i Sz

j interaction, but now in third order in the defect-
phonon coupling. We also assume that the third impurity k is
close to impurity i. This is because (a) the 1/R4

ik dependence
of the interaction and (b) the dependence of its sign, on the
angle between sites i and k, means that such close “third-party”
configurations will dominate all sums over k and the deviation
from inversion symmetry at the τ impurity.

We start again from the bare defect-phonon coupling
in (A7), now written as a sum over defects, so that we have

V̂ =
∑
{j}

[
ηju

αα
j + �

αβ

j u
αβ

j Sz
j + ζ

αβγ

j ∂γ u
αβ

j τ z
j

]
, (A10)

where we have dropped the pair indices n,n′ since they play
no role in what follows. We write the Fourier transform of the
lattice displacement field as

Xα(x) = 1√
N

∑
q,μ

Xqμeqμ,αeiqx, (A11)

where eq,μ,α is a phonon polarization index. We then minimize
the total potential energy, i.e., the sum of the bare phonon
potential energy plus the interaction term above, to find the
resulting distortion in the lattice.28 This distortion is then found
to be

δXα(x) = 1

2

∑
qμ

(δXqμeqμαeiqx + H.c.), (A12)

where we have

δXqμ = 1√
NMω2

qμ

⎛
⎝∑

γ,δ,η

ζ
γ δη

i eqμγ qδqηe
−iqxi τ z

i

+ i
∑
αβ

γ
αβ

j eqμαqβe−iqxj Sz
j

⎞
⎠ , (A13)

and we have restored the sums over spin indices to make clearer
what is being summed.

The effect of this distortion on the third impurity k comes
only from the phonon term (A8), which we write in terms of
the lattice displacement as

Ĥph =
∑

ρφχψ

Cρφχψ (rk)
∂δXkρ

∂xkφ

∂δXkχ

∂xkψ

, (A14)

where

∂δXkρ

∂xkφ

=
∑
qμ

1

NMω2
qμ

⎡
⎣∑

γ δη

ζ
γ δη

i eqμγ qδqη sin q(xk − xi)τ
z
i

+
∑
αβ

γ
αβ

j eqμαqβ cos q(xk − xj )Sz
j

⎤
⎦ eqμρqφ.

(A15)

We now evaluate the term in Eq. (A14) proportional to τ z
i Sz

j , in
order to find the change δJ Sτ

ij (k) in the τ z
i Sz

j interaction caused
by the impurity at site k. Defining
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Aqμ ≡
∑
γ δη

ζ
γ δη

i eqμγ qδqητ
z
i , (A16)

Dqμ ≡
∑
αβ

�
αβ

j eqμαqβSz
j , (A17)

we find the shift in the Sτ interaction caused by the impurity
at site k to be

δJ Sτ
ij (k) = 2

∑
ρφχψ

Cρφχψ (rk)
∑
qμ

eqμρqφ

NMω2
qμ

Aqμ sin [q(xk − xi)]

×
∑
q ′μ′

eq ′μ′χq ′
ψ

NMω2
q ′μ′

Dq ′μ′ cos [q ′(xk − xj )]. (A18)

In the acoustic approximation for the phonon spectrum we
get, after similar integrations to those discussed in Ref. 28, the
result

δJ Sτ
ij (k) = cij ζi�jCk

ρ2c4R4
ikR

3
jk

, (A19)

where ζi = |ζ αβγ

i |, and similarly for �j ,Ck , and all angular
dependence has been absorbed in cij ∼ O(1). This is a
complicated function of angle, which depends on the position
of the impurities and takes either sign. It can then be treated
as a random variable.

Actually, here the acoustic approximation is not valid,
because it is easily seen, as stated above, that when we sum
over all the different impurities at positions rk to find the total
change �JSτ

ij in J Sτ
ij , the dominant configurations will have

Rik ≈ ao. However, since we are only interested in an estimate,
we make the following assumptions,

(i) We assume a defect concentration x which is not small,
which means that the probability that a defect, at some site
i, will have a “third-party” defect on a neighboring site k is
∝x1/3.

(ii) This implies that Rik ∼ aox
−1/3  Rjk , and so we find

�JSτ
ij ≈ γSγτ

ρc2R3
ij

, (A20)

where

γτ ≈ ζ̄ C̄x4/3

ρc2a4
o

, (A21)

and where

γS ≈ �̄. (A22)

Here overbars on the various quantities indicate typical values.
Let us now estimate the magnitude of γτ . First, C̄ ·

(δa/ao)2 ≈ δMω2(δa)2, where δa denotes a typical strain,
and the latter expression is the difference in kinetic energy
of the impurity compared to the host ion. Approximating
δM ≈ M and ω ≈ c/ao we obtain C ≈ Mc2, and thus we
get γτ ≈ x4/3ζ/ao.

Let us now estimate ζ̄ . Since ζ is the coefficient of the
second derivative of the displacement (see Fig. 3), we have ζ̄ ·
δa/a2

o ≈ EC · (δa/ao)2, where EC is the typical (Coulombic)
electronic energy involved in charge displacement in the solid.
Similarly, �̄δa/ao ≈ ECδa/ao; i.e., γS ≈ EC . Thus, for x ≈ 1
we find γτ ≈ γSδa/ao. The parameter g ≡ γτ /γS ≈ δa/ao is
the small parameter of our model. Since E
/EC ≈ δa/ao,

where E
 is the characteristic energy of elastic deformations
in the solid (i.e., roughly the Debye energy), we also have
g ∼ E
/EC .

Thus, in strongly disordered systems, deviations from
inversion symmetry result in a finite interaction between the
τ -TLSs and the phonon field, and the TLS-phonon interaction
Hamiltonian is changed from Eq. (A10) to

V̂dis =
∑
{j}

[
ηju

αα
j + �

αβ

j u
αβ

j Sz
j + γ

αβ

j u
αβ

j τ z
j

]
, (A23)

with |γ αβ | ≡ γτ , and γτ ≈ gγS . This change in the form of
the interaction Hamiltonian upon the introduction of disorder
has been recently confirmed by molecular static calculations.30

Starting from the interaction Hamiltonian in Eq. (A23), one
readily obtains the effective Hamiltonian for the system of the
form

HSτ =
∑

j

[
hS

j S
z
j + hτ

j τ
z
j

]

+
∑
ij

[
J SS

ij Sz
i S

z
j + J Sτ

ij Sz
i τ

z
j + J ττ

ij τ z
i τ z

j

]
, (A24)

where the interaction strengths ha,Jab are now random
variables. If we write the size of the random couplings in terms
of Ro ∼ aox

−1/3, the mean distance between the defects, one
has

J ab
ij = cab

ij γaγb

ρc2
(
R3

ij + ã3
) ≡ J ab R3

o

R3
ij + ã3

, (A25)

where again cab
ij ∼ O(1), where we introduce ã as a short

distance cutoff for the interaction, and where

J SS ∼ Jo ≡ γ 2
S

ρc2
∼ 500 K,

J Sτ ∼ gJo ∼ 10 K, J ττ ∼ g2Jo ∼ 0.2 K. (A26)

The numerical values for the energies assume typical values
for the parameters in disordered insulators. The random fields
are governed by the same parameters; their typical strengths
are hS � Jo and hτ � gJo, as was found earlier.28

The value of Jo denotes the typical energy for an asymmet-
ric excitation of a single impurity in the static lattice, whereas
gJo denotes the typical energy for a symmetric excitation.
Thus, the energy spectrum of a single impurity is as shown
in Fig. 1(c) in the main text. Our approximation here of
suppressing the indices n,n′ is equivalent to considering for
each impurity the lowest two pairs of levels, which is justified
at low temperatures.

The Hamiltonian (A24) is the one quoted in Eq. (1) of the
main text. Its form was already discussed in Ref. 28; what is
new here is the calculation of the renormalization of J Sτ

ij by
the disorder, using the three-body technique described above.

APPENDIX B: DENSITIES OF STATES FOR THE
INTERACTING S-τ SYSTEM

As discussed in the text, the interaction between the S and
τ pseudospins has a drastic effect on the densities of states of
the excitations in the system. What we wish to do here is find
the densities of states (DOS) for the S and τ excitations.
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1. DOS of τ impurities

Let us start from the effective Hamiltonian in (A24), but for
the moment ignore the random fields and just work with the
interaction terms. We begin with the MF DOS introduced in the
main text, viz., the S defect DOS no

S(E) and the τ -defect DOS
no

τ (E), having widths Jo,gJo and peak heights ∝1/Jo,1/gJo,
respectively. Now we consider the effect on these two DOSs
of the Sτ interaction J Sτ .

Consider first the effect exerted by the S spins on the τ spins,
neglecting the very small τ -τ interaction J ττ . Following Efros
and Shklovskii,31 we can argue that the new DOS is given by

nτ (E) = no
τ (E)

∏
j

�(E + ESj
− 2Uj ) ≡ no

τ (E)Pτ (E), (B1)

which defines the reduction factor Pτ (E) in the DOS; here we
define Uj as the interaction between the given τ spin and the
j th S spin and ESj

as the unperturbed energy of this S spin.
We would like to show that there is no appreciable reduction
of the τ DOS by this interaction, at least outside a window
which is exponentially small in g. We proceed by assuming a
series of simplifying conditions, all leading to a reduction of
Pτ (E) below its actual value, and obtain our final result in the
form of an inequality.

We first overestimate nS(E) = 1/Jo for all E < Jo, neglect-
ing the reduced DOS at low energies. We then enumerate the
S spins according to their distance from the τ impurity. Since
there are j impurities within a volume (rj )3, the maximum
interaction of the given τ -TLS with the j th S-TLS is given
by Umax

j = gJo/j . We assume that all interactions have this
maximum value, taking the short distance cutoff to be ã = 0
and taking cSτ

ij = 1. Under these assumptions, for a given E

and a given j th S-TLS we have �(E + ESj
− 2Uj ) = 1 if and

only if ESj
> 2gJo/j − E, with a probability 1 − (2gJo/j −

E)/Jo for E < 2gJo/j (i.e., j < 2gJo/E) and unity otherwise.
Thus, for E  gJo we obtain

Pτ (E) =
2gJo/E∏

j

(
1 − 2gJo/j − E

Jo

)
. (B2)

Defining ε ≡ E/2gJo we obtain

Pτ (ε) =
1/ε∏
j

[
1 − 2g

(
1

j
− ε

)]

>

1/ε∏
j

(
1 − 2g

j

)
>

1/ε∏
j

1/

(
1 + 4g

j

)
. (B3)

Multiplying the denominators, and expanding in a series in g,
we see that

1/ε∏
j

(
1 + 4g

j

)
< 1 +

∑
k

(4g ln 1/ε)k, (B4)

and, therefore,

Pτ (ε) > 1 − 4g ln 1/ε; (B5)

i.e., Pτ (ε) ≈ 1 for ε > exp (−1/8g).
Below we argue that the S impurities are strongly gapped

themselves, so that the above small correction at g2Jo < Eτ <

gJo is probably an overestimate.

Now consider the effect on nτ (E) of the much weaker
ττ interactions. By repeating the same arguments as above,
with J SS

o ≡ Jo replaced with J Sτ
o ≡ gJo and J Sτ

o replaced with
J ττ

o ≡ g2Jo. Then Eq. (B5) is thus reproduced as an inequality.
However, since the τ impurities are not strongly gapped, one
can follow through the same line of arguments with ≈ instead
of > and conclude that there is a further reduction in the τ -spin
DOS by a factor

δPτ (ε′) ≈ 1 − c ln 1/ε′, (B6)

where ε′ ≡ E/g2Jo and c ≈ g. Thus, the correction to the DOS
appears at E < g2Jo and is reduced by the small parameter g,
which is the ratio between the τ -τ interaction and their energy
disorder, and is also the relevant small parameter in our theory.
Experimentally, the dipole gap is indeed seen at energy scales
comparable to the τ -τ interactions,42 and its magnitude is
indeed considerably reduced.

2. DOS of S impurities

The calculation of the DOS of the S impurities is more
subtle, since there is no small parameter, and the result
is of order unity. Furthermore, the correlation between the
interaction and τ energies is crucial and must be taken into
account. We therefore solve the problem using a numerical
simulation. We begin by neglecting the J ττ in Eq. (1), since
the values of Eτ are dictated by the J Sτ interaction. We are
interested in the reduction of the S-TLSs resulting from the
correlations with the τ -TLSs, which we denote by PS(E) and
defined by

nS(E) = nS(Ē)
∏
j

�(E + Eτj
− 2Uj )

≡ nS(Ē)PS(E). (B7)

Here Ē is an energy a few times larger than TU and Uj is the
interaction between a given S-TLS and τj . We therefore use
the following algorithm.

We consider a three-dimensional cubic lattice with a
given size and concentration and randomly distribute the
impurities in the lattice. Each impurity has an S spin and
a τ spin. For a given ã, the interaction is given by Uij =
cijS

z
i τ

z
j J Sτ

0 /(R3
ij + ã3). We define c′

ij ≡ cijS
z
i , where cij is

chosen randomly from a Gaussian distribution of width unity
and zero mean. We thus obtain Uij and Eτj

≡ ∑
i Uij with

their essential dependence, but with no reference to the spin
configuration of the S-TLSs. We then flip the τ spins where
Eτ < 0, to have a positive excitation energy. The Uij ’s are
accordingly redefined. For each Si we then calculate Emin

Si
, the

minimal E satisfying
∏

j �(E + Eτj
− 2Uij ) > 0. We then

obtain PS(E) = N (Emin
Si

< E)/N(S), the ratio between the
number of spins with Emin

Si
< E to the total number of spins.

The results for x = 0.2 are given in Fig. 2 in the main text;
those for x = 0.5 are given in Fig. 4.

3. Random fields

In the derivation above we neglected the explicit random
fields hτ ,hS . This requires special attention when calculating
the DOS, nτ (E),nS(E). In principle, the random fields add to
the energies while keeping the interactions unchanged, thus
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FIG. 4. (Color online) The true S-spin density of states nS(E), as a function of energy for different short-distance behaviors of the interaction.
Details are as in Fig. 2 in the main text, only here x = 0.5 and lattice size is 133 cells (i.e., ∼4400 TLSs).

making the two particle stability condition easier to fulfill,
reducing the dipolar gap. Specifically, for nτ (E) our argument
above follows through directly, and therefore the inequality in
Eq. (B5) stays unchanged. For nS(E) we have carried out the
numerical calculations as described above in the presence of
random fields hτ/〈Eτ 〉 ≈ 0.3 and hτ/〈Eτ 〉 ≈ 1 (where 〈Eτ 〉

is the typical energy of a τ -TLS in the absence of a random
field). The dipolar gap of the S-TLSs indeed becomes smaller,
for hτ/〈Eτ 〉 ≈ 1 the results are changed only slightly, whereas
for hτ/〈Eτ 〉 ≈ 0.3 the quantitative change is appreciable, but
the qualitative behavior is unchanged, as can be seen in Fig. 2
of the main text.
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