
PHYSICAL REVIEW B 88, 174113 (2013)

Role of magnetism in Cu precipitation in α-Fe
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The temperature-dependent solubility of Cu in α-Fe and initial stages of Cu precipitation are investigated
in first-principles calculations and statistical thermodynamic and kinetic modeling based on ab initio effective
interactions. We demonstrate that the weakening of the phase separation tendency with increasing temperature,
especially close to the magnetic phase transition, is related to the strong dependence of the “chemical” interactions
on the global magnetic state. At the same time, our calculations demonstrate that the vibrational contribution
obtained in the quasiharmonic approximation is relatively small for temperatures near the Curie point. The results
of Monte Carlo simulations of Cu solubility and clustering are in good agreement with experimental data.
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I. INTRODUCTION

Alloying is one of the major approaches to improving the
properties of low-carbon steels1 for modern pipelines or naval
applications. Copper has long been used as an alloying element
for improving the corrosion resistance of steel. However, an
excess of copper can result in extra hardening and embrittle-
ment due to copper precipitation, which is greatly accelerated
under irradiation in reactor pressure vessel steels.2–4 During
the last decade, the interest to copper alloying has been
reinforced since a new steel grade was designed5 in which high
values of ductility and fracture toughness were attained using
precipitation strengthening by nanometer-sized copper-rich
particles formed in the α-Fe matrix during cooling. Although
the strengthening effect of copper precipitates has been known
for a long time,6 the mechanism of this phenomenon, as well
as the factors controlling the formation of nanometer-sized
copper-reach inclusions, are still under debate (see, e.g.,
Refs. 7 and 8).

The kinetics of decomposition of supersaturated Fe-Cu-
based alloys has been a subject of numerous experimental
studies where Cu-rich precipitates were formed either during
annealing9–22 or under irradiation.23–43 It has been established
that precipitation occurs in several stages.9,10,44–46 An early
stage typically involves the formation of nanometer-sized
coherent Cu-rich precipitates, which adopt the bcc structure
of the alloy. Next, upon growing in size, the precipitates
are observed to transform into a close-packed phase with
the 9R crystal structure47 (C19 or α-Sm structure type: a
twinned lattice with a nine-layer-repeated stacking sequence)
and, finally, to the fcc structure upon further increasing the
annealing/exposure time.

Despite intensive research during the last
decade,14–17,20,21,48–50 the composition of nanosized
precipitates in Fe-Cu alloys is still under debate (see discussion
in Ref. 8). According to several 3D atom-probe tomographic
studies,15,29,30,49,50 the nanometer-sized precipitates with bcc
lattice contain about 50 at.% of Cu (for a more thorough
discussion of this method see Refs. 17,49 and 50). At the
same time, positron annihilation51 and neutron scattering
studies8 have indicated that precipitates might contain much

less Fe. As is commonly accepted now, the nanometer-sized
precipitates appear strongly undersaturated with Cu in atom
probe measurements. However, the reason of this phenomenon
remains unclear.

The pronounced effect of bcc-Cu precipitates on the me-
chanical properties of α-Fe has stimulated researchers to study
the thermodynamic properties and precipitation of Fe-Cu solid
solutions. Several approaches were employed for studying the
kinetics of decomposition in the Fe-Cu system at different
time and length scales. The phase-field method (PFM) was
used in Refs. 52–55 for simulating microstructural evolution,
including precipitate growth, in Fe-Cu alloys. However, PFM
uses a large number of phenomenological parameters, which
are often uncertain.56 More reliable results were obtained
in the framework of stochastic statistical theory,57,58 which
uses the effective interactions (EI) chosen by fitting to the
experimental data such as the cohesive and mixing energies.
Besides, Monte Carlo (MC) modeling studies with simplified
interactions59–68 yield a qualitatively accurate description of
precipitation kinetics, although they have not yet provided a
physically sound explanation of the experimental results on
precipitate composition.15,29,30,49,50

Theoretical modeling approaches based on first-principles
calculations and atomistic simulations are now becoming
valuable research tools in the investigations of structure,
energetics, and physical properties of alloys. With the aim of
deriving a first-principles parametrization of the total energy in
terms of a cluster expansion, the authors of Ref. 69 performed
a systematic study of various atomic configurations in bcc
Fe-Cu alloys using calculations based on density functional
theory (DFT). A satisfactory agreement was found between the
calculated and experimental mixing enthalpies. An instability
of the bcc crystal lattice was noticed for the copper-rich Fe-Cu
solid solutions with cCu > 50%, for which the elastic modulus
C ′ was calculated to be negative. This finding is important
for understanding the evolution of copper precipitates in iron.
However, the calculations of Ref. 69 were performed for
rather concentrated alloys, cCu > 20%, while the description
of early stages of the decomposition requires the knowledge
of interaction parameters in dilute Fe-Cu solid solutions.
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The energies of pairwise interactions between Cu atoms in
the ferromagnetic matrix of bcc Fe have been determined ab
initio, using the density functional theory calculations.63,64,70,71

It was found that the Cu-Cu interactions are attractive,
strong, and short-ranged. However, these interactions sig-
nificantly underestimated the solubility of Cu in bcc Fe,64

and the obtained mismatch between theory and experiment
at high temperatures in the paramagnetic (PM) state was
ascribed to an unaccounted entropy contribution. As shown in
Refs. 72–74, the disagreement between theory and experiment
at high temperatures can be reduced by taking into account a
vibrational free energy contribution.

Nevertheless, this interpretation cannot be regarded as a
solution of the problem since the theoretical model proposed
in these papers72–74 disregards the effect of magnetic disorder,
treating the Fe-Cu system above the Curie temperature in
the low-temperature ferromagnetic (FM) state. In fact, there
is clear evidence of the impact of magnetic order-disorder
transition upon the Cu solubility in α-Fe: the solubility
exhibits a strongly non-Arrhenius behavior near the Curie
temperature.75–78 This behavior can hardly be explained solely
by the vibrational contribution evaluated for a frozen magnetic
state. The observed variation of the apparent solution energy
of Cu in Fe also implies that the EI in the system should
depend on the magnetic state79 (or degree of magnetic order)
and change with temperature near the Curie point, TC , as is
established in first-principles calculations for Fe-Cr80,81 and
other iron-based alloys.82–85

In fact, the effect of magnetism on thermodynamic prop-
erties of alloys has been a subject of special attention since
the classical papers by C. Zener86,87 whose ideas have been
further developed on a phenomenological level in Refs. 75,78,
and 88–95. Thus a consistent ab initio description of Fe-Cu
solid solutions requires a careful analysis of all the relevant
degrees of freedom, and especially the magnetic one, whose
energy is of the same order as the chemical energy change due
to a phase transformation.96

In order to elucidate the effect of magnetism on the decom-
position of Fe-Cu alloys, we employ a combined modeling
approach, which involves first-principles calculations of the
energetics of Fe-Cu alloys, including the vibrational and
magnetic contributions to the EI, and subsequent statistical-
mechanical (Monte Carlo) simulations of Cu precipitation.
We show that the EI in Fe-Cu alloys vary nonlinearly
with temperature, following the behavior of magnetization,
and namely the temperature dependence of the chemical
interactions produces the main effect on the solubility of Cu
at high temperatures.

The remainder of this paper is organized as follows. In
Sec. II, we give details of the calculations. The calculated
mixing and solution energies (including the effect of lattice
vibrations in the quasiharmonic approximation) are presented
in Sec. III, where a justification is provided for neglecting the
vibrational contribution in our subsequent calculations. The
obtained solution energies are used for evaluating the Cu
solubility limit in the mean-field approximation. In Sec. IV,
effective interactions are calculated, and their dependence on
temperature and composition is discussed. The interactions
obtained in Sec. IV are used in Monte Carlo simulations of the
solid solution decomposition presented in Sec. V. In the same

section, the simulation results are compared with the available
experimental and theoretical data, and the role of magnetism
in the thermodynamics and the kinetics of precipitation is
discussed.

II. METHODOLOGY

A. First-principles techniques

1. Exact muffin-tin orbital method calculations

The exact muffin-tin orbitals (EMTO) method97–100 has
been used to calculate electronic structure, total energies
and EI in random bcc Fe-Cu alloys. Substitutional disorder
in the alloys has been treated within the coherent potential
approximation (CPA).101 The accuracy of the CPA has been
checked in the corresponding locally self-consistent Green’s
function (LSGF) calculations102,103 and EMTO-LSGF.104 The
LSGF method has also been used to determine the parameters
(screening constants) describing the contributions of screened
Coulomb interactions to the one-electron potential V scr

i of alloy
component i and to the total energy Escr within the single-site
DFT formalism:105

V scr
i = −αscr

e2qi

S
and Escr = βscr

2

∑
i

ciqiV
scr
i . (1)

Here, e is the electron charge, S is the Wigner-Seitz radius, and
qi and ci are the average net charge of the atomic sphere and the
concentration for the ith alloy component, respectively. The
calculated screening constants are αscr = 0.92 and βscr = 1.15
in the FM state and αscr = 0.86 and βscr = 1.15 in the PM
state.

The PM state is described by a disordered local moment
(DLM) model106,107 in which each alloy component is rep-
resented by its spin-up (↑) and spin-down (↓) species that
are assumed to be distributed randomly on the underlying
lattice. The FM state with reduced magnetization, m, have
been described by a partially disordered local moment (PDLM)
model80 in which a binary Fe1−cCuc is presented by a random
ternary alloy (Fe↑

x Fe↓
1−x)1−cCuc, where

x = 1 + m

2
. (2)

The total energies were determined in the generalized
gradient approximation108 (GGA) using the full charge density
(FCD) formalism.100 All the self-consistent EMTO-CPA cal-
culations were performed by using an orbital momentum cutoff
of lmax = 3 for partial waves. The integration over the Brillouin
zone was done using 25 × 25 × 25 grid of k points determined
according to the Monkhorst-Pack scheme.109 The convergence
of the results was checked by increasing the k-point grid up to
41 × 41 × 41 in some calculations.

The energies of alloy are defined by the following configu-
rational Hamiltonian:

Hconf = 1

2

∑
p

V (2)
p

∑
i,j⊂p

δciδcj

+ 1

3

∑
t

V
(3)
t

∑
i,j,k⊂t

δciδcj δck

(3)

+ 1

4

∑
q

V (4)
q

∑
i,j,k,l⊂q

δciδcj δckδcl,
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where V (2)
p , V

(3)
t , and V (4)

q are the two-, three- and four-site
interactions for the corresponding two-, three-, and four-site
clusters denoted by p, t , and q. The δci are the concentration
fluctuations at sites i; δci = pi − c, where pi is the occupation
number at site i, taking on values 1 or 0 if the site i is occupied
by an Fe or Cu atom, respectively.

The chemical contribution to the EI on a fixed ideal under-
lying lattice has been determined by the screened generalized
perturbation method (SGPM)105,110 using the EMTO-CPA
self-consistent one-electron potentials of alloy components.
In the case of EI, it consists of two contributions: one from the
one-electron energies V

(2)
one−el(R) (see Refs. 105 and 110) and

the other from screened Coulomb interactions Vscr(R):

V (2)−ch
n ≡ V (2)−ch(Rn) = V

(2)
one−el(Rn) + V scr(Rn), (4)

where n is the coordination shell, which corresponds to sites
Rn, and

V scr(R) = e2αscr(R)
q2

eff

S
. (5)

Here, qeff = qCu − qFe is the effective charge transfer between
Cu and Fe and αscr(R �= 0) are the intersite screening constants,
which have been determined in the corresponding LSGF
supercell calculations for different alloy compositions and
magnetic states. In particular, the values of αscr(Rn) for the
first three coordination shells in the dilute limit of FM (DLM)
Fe-rich Fe-Cu random alloy are found to be 0.1090 (0.1131),
0.0143 (0.0252), 0.0028 (−0.0028). The intersite screening
constants for concentrated alloys (6.25 < c < 50 at.% Cu)
have been determined from a fit to the calculated ordering
energies of some ordered structures (e.g., B2, B32, and D03).
The screening constants determined in this way were 0.0226,
0.0050, and −0.0006 for the first three coordination shells,
respectively, both in the FM and DLM states. In some cases,
especially when considering high temperatures, we have used
experimental lattice parameters111–114 in the first-principles
calculations of EI and solution energies.

2. Projector augmented wave method calculations

The full-potential projector augmented wave (PAW)
method115,116 as implemented in the Vienna ab initio sim-
ulation package (VASP)117–120 has been used in several cal-
culations, namely, to compute the Cu solution energy at
0 K, to calculate the force constants of Fe, Cu, and Fe-Cu
alloys for subsequent lattice dynamics calculations (to model
the vibrational contribution to the solution energy at finite
temperatures), as well as to evaluate the strain-induced and
vibrational contributions to the effective pair interactions.

In particular, the strain-induced interactions V si
n have been

obtained as the difference of the relaxation energies around a
pair of Cu atoms separated by the distance of nth coordination
shell, �ECu−Cu

rel (Rn), and that for a single Cu impurity atom,
�ECu

rel , in a supercell of otherwise pure Fe (see Refs. 121
and 122):

V si
n = �ECu−Cu

rel (Rn) − 2�ECu
rel . (6)

For that purpose, we have used a 128-atom 4 × 4 × 4 super-
cell built upon a cubic bcc unit cell consisting of two atoms.
The total energy calculations have been done in the GGA

with the kinetic energy cutoff of 350 eV and using a uniform
4 × 4 × 4 Monkhorst-Pack mesh of k points. The calculations
of the strain-induced interactions have been done in the FM
state, thereby assuming that the strain-induced interactions
in the PM state are the same. We believe it is a reasonable
approximation, because strain-induced interactions are mostly
due to the size mismatch of the alloy components which is
only slightly affected by the magnetic state. This approach has
been previously applied to iron-based systems.123,124

The PAW method has also been used in the total en-
ergy calculations of random Fe0.875Cu0.125, Fe0.75Cu0.25, and
Fe0.50Cu0.50 alloys. They have been modeled by supercells of
different sizes. In particular, a 128-atom supercell formed by
4 × 4 × 4 translations of a two-atom (×2) cubic unit cell of
the bcc structure was used in calculations of Fe0.875Cu0.125 and
Fe0.75Cu0.25, while a 64-atom supercell (4 × 4 × 4) built upon
a bcc primitive unit cell was used to model the Fe0.50Cu0.50

random alloy.
In order to keep the cubic symmetry of the under-

lying bcc lattice, which is preserved on average in real
alloys, the shape of the unit cells was kept fixed while
all the atomic positions inside the supercell were re-
laxed until the forces acting on atoms were less than
10−2 eV/Å. The GGA108 has been used in the PAW self-
consistent calculations. The convergence criterion for the total
energy was 10−5 eV. To avoid systematic errors, the total
energies of pure elements in the PAW calculations of the
mixing energies of a particular alloy have been calculated
using the same supercells and parameters of the PAW method
as in the total energy calculations for the corresponding alloy.

B. Monte Carlo simulations

In the present work, we perform two different types of
Monte Carlo (MC) simulations of decomposition in the Fe-Cu
alloys. To simulate alloy thermodynamics, we have used the
Monte Carlo125 method in the canonical ensemble exchanging
randomly chosen Fe and Cu atoms. This algorithm provides a
quick way to achieve the equilibrium distribution of atoms in
simulations.

The simulation box in Monte Carlo calculations was
80 × 80 × 80 built upon on the primitive bcc unit cell.
For each alloy composition, the simulation began from a
random distribution generated at high temperature, and then
the temperature was lowered down in small steps. At each
temperature, the system was first equilibrated for 3000 MC
steps/atom. After that, the mean values of the total energy, heat
capacity, and correlation functions were obtained by averaging
over additional 6000 MC steps/atom.

In order to simulate the kinetics of Cu precipitation, we have
used a simplified but fast lattice kinetic Monte Carlo method
based on Kawasaki dynamics.126 Within this scheme, a pair of
Cu and Fe atoms are exchanged in accordance with the MC
algorithm only if they are nearest neighbors. Let us note that the
use of a more general kinetic Monte Carlo (KMC) approach,127

which employs realistic vacancy-mediated exchange of alloy
components, is quite time consuming in the case of dilute
alloys as it may require a huge number of atomic-vacancy
exchanges to change the alloy configuration.
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In Kawasaki dynamics, the time of the decomposition
process is expressed in terms of the number of elementary
atom rearrangements. The real time scale can be established
from a relation between the impurity diffusion coefficient Di

of the solute atom in the matrix and the time τ needed for
a successful jump of a Cu atom into the nearest-neighbor
position:

Di = d2

τ
. (7)

To determine the time constant τ , we have used the nearest-
neighbor distance in bcc Fe d = 1.46 Å and experimental
data on the temperature dependence of the impurity diffusion
coefficient Di for Cu in Fe, as represented by Jönsson’s
model.93,94 The model takes accurately into account the non-
Arrhenius behavior of the self-diffusion and impurity diffusion
coefficients near the critical temperature of magnetic ordering
in iron. For temperatures below TC the model yields values
of the Cu impurity diffusion coefficient that are rather close
to the values calculated in Ref. 64, but some two orders of
magnitude lower than those used in Ref. 128.

III. MIXING AND SOLUTION ENERGIES

A. Magnetic and chemical contributions

Since Fe-Cu alloys do not form ordered interemetallic
compounds, the main thermodynamic quantity characterizing
the solubility of the solute (Cu), as well as the stability of the
solid solution with respect to decomposition, is the enthalpy of
formation (or the mixing energy) of the random alloy at zero
pressure P = 0. The mixing energy is defined as the difference
between the total energy of a random alloy EFe1−cCuc

and the
weighted sum of total energies of the pure components, EFe

and ECu, calculated in the same bcc structure:

Emix(c) = EFe1−cCuc
− (1 − c)EFe − cECu. (8)

In the upper panel of Fig. 1, we show the mixing energy
of Fe-Cu alloys calculated in the DLM and FM states by the
EMTO method in the GGA. The results for the FM state are
in good agreement with PAW method calculations using 128-
atom supercells (the results are shown in the Figure) as well
with PAW results reported previously.69 Although the mixing
energies calculated in the DLM and FM states seem to be
close to each other, their detailed concentration dependencies
in the dilute limit of Cu are quite different. This is better seen
in the lower panel of Fig. 1 where we plot another quantity,
the effective mixing potential Wmix(c) = Emix(c)/[c(1 − c)].
Although Wmix is almost constant in the DLM state for the
whole composition range, in the FM state, it changes abruptly
close to pure Fe.

Such an abrupt change of the mixing potential is a clear
indication of a strong concentration dependence of the EI.
Indeed, in the absence of the concentration dependence of
the effective pair interactions, Wmix would a constant that
could be expressed (in mean field approximation) as Wmix =
1/2

∑
p zpVp, where zp is the coordination number and Vp the

effective pair interaction at the pth coordination shell.
In the dilute limit, the mixing potential Wmix(c → 0)

becomes equal to the impurity solution energy of Cu in
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FIG. 1. (Color online) Mixing energy of bcc Fe-Cu random alloys
Emix (top) and mixing potential Wmix = Emix/[c(1 − c)] as a function
of Cu concentration in the FM and DLM states (bottom). The EMTO-
CPA results are shown by circles and triangles, while supercell PAW
results by open squares (unrelaxed) and filled diamonds (relaxed).

Fe (apart from a small addition term, the structural energy
difference of the bcc and fcc Cu, which is about 2.6 mRy
according to PAW calculations). One can clearly see from the
results presented in the lower panel of Fig. 1 that the magnetic
state hugely affects the solution energy of Cu impurity in bcc
Fe, something which is not visible if one just compares the
mixing energies. Our 128-atom supercell PAW-VASP calcula-
tions, without relaxing the atomic positions, yield 47.9 mRy
for the Cu solution energy at the room temperature lattice
constant, the relaxation energy being −1.7 mRy. Our EMTO-
LSGF calculations yield 48.2 mRy without local lattice
relaxations, which is in good agreement with our PAW
results and EMTO-CPA results (see Fig. 1). They are in
reasonable agreement with other first-principles results, which
are scattered in the range of 32.3–58.1 mRy.64,70–72,129 Such a
large scatter is probably due to sensitivity of the results to the
size of the supercell and other details of the calculations.

Let us note that the solution energy in the DLM or
paramagnetic state strongly depends on the lattice constant.
Being determined at an experimental high-temperature lattice
constant, it is about 28.8 mRy at T = 1000 K, which is
substantially lower than the value of about 33 mRy at the
theoretical lattice constant corresponding to T = 0 K. We note
again that the solution energies calculated in the DLM state
do not contain the contribution from lattice vibrations, which
is quite difficult to determine.

Independently of the magnetic state, impurities of Cu in
the α-Fe matrix exhibit strong tendency towards clustering.
The tendency becomes substantially weaker with increasing
temperature, which is the result of both, thermal lattice
expansion and changing the global magnetic state. Such a
dependence should cause a peculiar behavior of the basic
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thermodynamic and kinetic alloy properties. This also means
that theoretical simulations require the use of the temperature-
dependent EI (through magnetization).

B. Effect of lattice vibrations: Quasiharmonic approximation

In this section, we investigate the vibrational contribution
to the solution energy �F vib

sol , which, according to Refs. 72
and 73, is responsible for a substantial increase of the solubility
at high temperatures, close to the magnetic phase transition. In
doing so, we calculate the phonon free energy of pure bcc Fe,
fcc Cu, and dilute bcc Fe-Cu alloys. In order to minimize the
systematic computational error, all the calculations are done
for 64-atom supercells based on the primitive cell of either bcc
structure (cases of pure Fe and Fe-Cu alloys) or fcc structure
(the case of pure Cu).

The corresponding force constants have been calculated
using the density functional perturbation theory (DFPT)130–132

as implemented in VASP.116 The electronic structure self-
consistent calculations have been done using a uniform
6 × 6 × 6 Monkhorst-Pack mesh of k points. The kinetic
energy cutoff was 350 eV. The calculations of vibrational
properties have been carried out using PHONOPY code.133,134

The phonon density of states and the vibrational free energies
�F vib have been evaluated using a 6 × 6 × 6 q-point mesh of
Monkhorst and Pack.

It is clear that the vibrational contribution is temperature
dependent: it is negligible at 0 K, but can be substantial at high
temperatures. The simplest way to account for the vibrational
contribution is to use a harmonic approximation when the
phonon free energy is determined for a fixed lattice constant
and a given magnetic state. More accurate consideration
can be done using a quasiharmonic approximation, where
the vibrational free energy is determined as a function of
temperature at several different lattice constants.

In general, one also needs to follow the change of the
magnetic state with temperature, which, in particular, has
been shown to affect the elastic135 and vibrational properties
of bcc Fe.136,137 Unfortunately, lattice dynamics calculations
for alloys in the PM state are too cumbersome at the present
time. Therefore we restrict ourselves here to quasiharmonic
treatment of lattice vibrations in the FM state. In order
to further simplify our consideration, we use experimental
data for the lattice constants of α-Fe and Cu at different
temperatures.113,114 This procedure is accurate enough to
obtain a qualitative picture of the thermal expansion effect.

The results are presented in Fig. 2, where we show the
contribution from lattice vibrations to the solution energy,
calculated as a function of temperature for a set of lattice
constants. As one can see, our results for the room temperature
lattice parameter of Fe are in good agreement with those
obtained by Reith et al.72 at the theoretical 0 K lattice parameter
of bcc Fe. That is, if the lattice constant is fixed to the
ground-state value, one indeed gets quite substantial negative
contribution from the lattice vibrations to the solution energy
of Cu in Fe near and above the Curie temperature.

At the same time, if one takes into consideration the thermal
lattice expansion, the result for the vibrational contribution
to the solution energy changes dramatically. It is shown by
thick solid line in Fig. 2. As one can see, instead of a linear
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FIG. 2. (Color online) Temperature dependence of the vibrational
solution free energy for a single Cu impurity in a 64-atom Fe
supercell. The bold solid line is the resulting F vib

sol corresponding to
experimental temperature-dependent equilibrium lattice parameter.
The dash-dotted line shows the result reported by Reith and
Podloucky of Ref. 72.

decrease of the vibrational contribution to the solution energy
with temperature, one observes its quite substantial nonlinear
growth, so that at temperatures close to the magnetic transition
it actually becomes small positive. It is also clear that the final
conclusion about the contribution of lattice vibrations to the
solution energy can be drawn only when the corresponding
thermal magnetic excitations are properly taken into account
in the phonon calculations.

We have also estimated the vibrational contribution to the
nearest-neighbor effective pair interaction, which has been
obtained in the vibrational free energy calculations of a pair
of Cu atoms in two different configurations in the 64-atom
supercell. First, the two Cu atoms were placed next to each
other, and then they were considered far away from each other
(at the most distant coordination shell for the given supercell).

Assuming that vibrational contribution to the effective
pair interaction is small at the distant coordination shell, the
vibrational contribution to the EI at the first coordination shell
is given by the difference of the vibrational total energies.
The so-defined vibrational contribution to the solute-solute
interaction energy is less than 1 mRy at the lattice parameters
corresponding to temperatures in the range 950–1050 K, which
is significantly smaller than the effective chemical interactions
presented in Sec. IV, and therefore it was neglected in the
subsequent calculations.

IV. EFFECTIVE INTERACTIONS

As has been mentioned above, apart from “chemical”
interactions that are defined on a rigid undistorted lattice, there
can be another contribution, coming from configurationally
dependent local lattice relaxations. The contribution is also
referred to as the strain-induced interaction. Since the size
mismatch between Fe and Cu atoms is small, the strain-
induced interactions are also expected to be small. Indeed,
the strain-induced interactions V si

n , obtained for the first five
coordination shells of the bcc lattice in the dilute limit of
Cu in Fe, are −0.96, −0.70, 0.03, 0.07, and 0.50 mRy,
respectively. In general, they also depend on the volume,
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concentration, and temperature. Nevertheless, we assume that
such dependencies are negligible, and just add the strain-
induced contribution to the chemical interactions obtained
from the SGPM calculations.

A. Magnetization dependence of the effective interactions

In the description of magnetic excitations in Fe, we assume
that they are mostly transverse magnetic excitations, that
are magnons or spin waves at low temperature. At high
temperatures, the magnon picture breaks down due to magnon-
magnon interactions, and magnetic excitations of another type
appear, namely, longitudinal spin fluctuations. However, in bcc
Fe, the effect of the latter is relatively little pronounced, so one
can still use the Heisenberg approach, but with renormalized
magnetic interactions which will now be dependent on the
global magnetic state.

The interactions should also depend on the relative orienta-
tion of the magnetic moments at two particular sites, as well as
on the global magnetization. However, using the PDLM model,
one can reduce such a dependence only to two orientations of
the local magnetic moment: spin up, which we assume to be
aligned with the direction of the global magnetization (i.e.,
majority spin orientation), and spin down with the opposite
orientation. That is, in a partially ordered magnetic state of
Fe, there are three different magnetic exchange interactions:
J Fe↑Fe↑

p , J Fe↑Fe↓
p , and J Fe↓Fe↓

p , which become equal to each other
only in the completely random DLM state, where the magnetic
Hamiltonian is

Hmagn = −
∑

p

∑
i,j∈p

Jpeiej . (9)

Here, Jp are the magnetic exchange interaction parameters
for the pth coordination shell, ei the direction of magnetic
moments on site i.138

In Fig. 3, we show the magnetic exchange interactions,
J Fe↑Fe↑

p and J Fe↑Fe↓
p , for different values of magnetization. As

one can see, the magnetic exchange interactions exhibits quite
strong dependence on magnetization close to the perfectly
ordered FM state (m = 1). Such a strong dependence is
a clear indication that bcc Fe is not an ideal Heisenberg

FIG. 3. (Color online) Magnetic exchange interaction param-
eters, J Fe↑Fe↑

p (f) and J Fe↑Fe↓
p (af) in bcc Fe as a function of

magnetization, m.

system in which the magnetic interaction parameters are
supposed to be just constants. However, in a more general
consideration, if one allows for a magnetization dependence of
the magnetic exchange interactions, the Heisenberg picture is
still qualitatively reasonable. The dependence of the magnetic
exchange interactions in bcc Fe on the magnetic state has been
discussed earlier.110,139

Since the transverse magnetic fluctuations are much faster
than the rate of atomic jumps associated with equilibration of
atomic configuration, one can define “spin-averaged” effective
pair interactions as80

V (2)
p = 〈

V FeCu
p

〉
= 1 + m

2
V Fe↑Cu

p + 1 − m

2
V Fe↓Cu

p + (1 − m2)

2
J Fe↑Fe↓

p ,

(10)

where V Fe↑Cu
p and V Fe↓Cu

p are the effective pair interactions
of Cu with Fe in spin-majority and spin-minority magnetic
configurations, respectively. They are different for a nonzero
magnetization and become the same in the DLM state.
In the ordered FM state, the EI are given by the first
term only.

The total effective pair interactions, including the strain-
induced contribution, in Fe0.99Cu0.01 alloy are shown on Fig. 4
for four different magnetizations. Magnetization strongly
affects the interactions at the first coordination shell, by
lowering its value by about 10 mRy in the FM state compared
with that in the DLM one. Let us note that the contribution of
the exchange interactions, J Fe↑Fe↓

1 is only about half of the total
effect (see Fig. 3). The other half is due to renormalization of
the V Fe↑Cu

1 with the magnetization. In other words, the global
magnetic state directly affects the chemical interactions in
the system. The calculated dependence of the effective pair
interactions in Fe-rich Fe-Cu alloys on the state of magnetic
order is similar to the one reported previously for Fe-Cr
alloys.80,81
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m  = 0.8 (PDLM)

m  = 1 (FM)

FIG. 4. (Color online) Total effective pair interactions in bcc
Fe0.99Cu0.01 for different values of magnetization. Negative pair
interaction energy corresponds to preferential clustering of two Cu
impurities.
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FIG. 5. (Color online) Dependence of the nearest-neighbor ef-
fective chemical pair interaction on the square of magnetization for
different different alloy compositions. The temperature scale, which
matches the value of the global magnetization of Fe, is shown on the
top.

B. Composition and configuration dependencies of the
effective interactions

The interactions presented in Fig. 4 have been calculated
at a fixed room-temperature experimental volume. While
the volume dependence of the EI appears to be weak, the
effective interactions are found to be strongly dependent on
the alloy composition in the FM state. In Fig. 5, we show the
magnetization dependence of the strongest nearest-neighbor
chemical interaction for three different alloy compositions: 1,
12.5, and 25 at.% Cu. As a matter of fact, such a concentration
dependence can be traced back to changes induced by solute
Cu atoms in the local electronic and magnetic structure of the
alloy, as has been previously elucidated in the case of Fe-Cr
alloys.81

To demonstrate this, we perform calculations of the
effective pair interactions in random Fe-Cu alloys using a
polymorphous model105 of a random alloy where every Cu and
Fe atom within supercell are different due to their particular
local environment. The calculations are done by the LSGF
method for 1024-atom supercells with random distributions
of Fe and Cu atoms for alloy compositions 6.25, 12.5, 25,
and 50 at.% Cu. The local interaction zone of the LSGF
method102,103 has included the nearest-neighbor coordination
shell. The calculations have been done at the room-temperature
lattice constant in the FM state and at the high-temperature
lattice constant in the DLM state.

In Fig. 6, we show the local-environment dependent SGPM
interactions (i.e., only the chemical contribution), which are
statistical averages over the four different alloy compositions
modeled by the 1024-atom supercells and over all the specific
atomic configurations found there that have a given number of
Cu nearest neighbors. In other words, these are the effective
pair interactions calculated using pairs of Fe and Cu atoms
having different numbers of Cu nearest neighbors in the first
coordination shell. As one can see, the effective interactions
strongly depend on the local environment of the “interacting”
atoms in the FM state of the matrix, especially when the
number of Cu nearest neighbors varies between 0 and 3.

0 1 2 3 4
Number of nearest neighbors Cu to Cu

-15

-10

-5

V
 (

2)
, m

R
y

Fe (0 n.n Cu)
Fe (1 n.n Cu)
Fe (2 n.n Cu)
Fe (3 n.n. Cu)
Fe (4 n.n. Cu)
CPA

DLM

FM

FIG. 6. (Color online) Configuration-dependent effective pair
interactions in ferromagnetic (FM, full symbols) and disordered local
moment (DLM, open symbols) paramagnetic states, calculated for
pairs of Fe and Cu atoms having different numbers of other Cu atoms
in the first coordination shell. The corresponding CPA-averaged
interactions in random Fe-Cu alloys with 12.5, 25, 33.3, and 50 at.%
Cu are shown by circles.

In Fig. 6, we also show the results of the SGPM-CPA
calculations in the framework of an isomorhpous model105

for concentrated Fe alloys with 12.5, 25, 33.3, and 50 at.% Cu,
which correspond (on average) to 1, 2, 3, and 4 Cu atoms in the
first coordination shell around any atom. It is clear that the CPA
results provide a reasonable average magnitude of the local-
environment resolved SGPM interactions. However, if one is
to describe such a system by the usual Ising model with fixed
EI in subsequent statistical simulations, one faces the problem
of choosing a single EI value that would be representative of
the whole set of concentration- and configuration-dependent
EI for every coordination shell.

There is no obvious and definite approach to this problem,
although there are very simple arguments in favor of the choice
of the EI determined for alloys with higher Cu concentration.
The point is that when the temperature is close to the onset
of phase separation, Cu atoms start surrounding themselves
with other Cu atoms in the nearest-neighbor shell, thereby
increasing the local concentration of Cu. Thus the nearest-
neighbor interaction makes its thermodynamic contribution
when two Cu atoms become nearest neighbors, i.e., when each
of them has at least one Cu in the nearest-neighbor shell.

In this sense, it is interesting to compare the SGPM
calculated results with the results of direct calculations of the
nearest-neighbor Cu-Cu interactions in dilute alloys of Cu in
Fe, determined as the difference between the total energies
of a pair of Cu atoms placed as nearest neighbors and as the
most distant neighbors in a given supercell.140 This interaction
has been determined in several previous supercell calculations
employing different first-principles methods, yielding quite
different results ranging from −10.3 to −18.4 mRy.63,70,71,129

Our result for the chemical nearest-neighbor interaction,
i.e., without the strain-induced contribution obtained by the
PAW method using a 128-atom supercell, is −14.1 mRy. The
corresponding LSGF supercell calculations yield −12.4 mRy,
the value which is more relevant for comparison with the
SGPM results, since it is obtained within the same computa-
tional framework. This result is in fact in good agreement with
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TABLE I. Calculated total pair interactions V (2)−tot
n (including

both chemical and strain-induced contributions) in the Fe - 12.5 at.%
Cu alloy for different values of magnetization. Negative interaction
means attraction between Cu atoms. The interactions are in mRy.

n FM m = 0.8 m = 0.6 m = 0.4 DLM

1 −13.5 −10.8 −9.2 −8.2 −7.4
2 −3.6 −3.1 −2.6 −2.4 −2.3
3 −0.0 −0.22 −0.3 −0.3 −0.3
4 0.3 −0.1 −0.2 −0.3 −0.3
5 0.1 0.6 1.0 1.4 1.7
6 −0.1 0 0 0 0
7 −0.2 0 0 0 0

the SGPM-LSGF interactions for the case of Fe and Cu having
one Cu nearest-neighbor, or the SGPM-CPA interactions for
the Fe0.875Cu0.125 random alloy. This means that a reasonable
choice for statistical thermodynamics simulations of alloy
decomposition is a set of EI determined at a high concentration
of Cu. In this sense, the Cu clustering at the onset of the phase
separation is probably best described by the EI corresponding
to concentration of 12.5 at.% Cu, which are presented in
Table I.

C. Multisite interactions

Using the SGPM method we have calculated the three-
site, V (3), and four-site, V (4) EI in bcc Fe0.875Cu0.125 alloy.
The strongest three-site interaction is for an atomic chain of
the nearest neighbors along the close-packed [111] direction,
−2.4 mRy in the FM state and 0.5 mRy in the DLM state. The
strongest four-site interaction is for the rhombus of the nearest
neighbors in the (110) plane, −4.1 mRy in the FM state and
−0.2 mRy in the DLM state. Although these interactions are
quite large in the FM state, they become significantly reduced
in the PDLM and DLM states. Therefore they have been mostly
neglected in our Monte Carlo simulations.

V. SIMULATIONS OF DECOMPOSITION OF Fe-Cu ALLOY

A. Monte Carlo simulations of precipitation temperature

To determine the precipitation start temperature in Fe-
Cu alloys, we have performed canonical ensemble125 MC
simulations for Cu alloys within concentration range from 1 to
10 at.% using temperature-dependent (through magnetization)
EI. A large simulation box containing about 106 atoms has
been used in order to minimize the interface energy effects on
the solubility limit calculations. Indeed, if N is the number
of atoms in a precipitate, then the fraction of Cu atoms at the
precipitate-matrix interface may be estimated as ∼1/

√
N . For

the chosen size of the simulation box, and in the case of an
alloy with 1% Cu, one expects that about 1 out of 100 Cu
atoms will be situated at the interface, which is acceptable for
calculating the precipitation.

As has been mentioned above, multisite interactions are
relatively small. In particular, we found that the inclusion
of the multisite interactions results only in a slight shift of
about 10 K of the phase separation temperature. Therefore, to
speed up the MC simulations, we have used only effective pair
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FIG. 7. (Color online) Warren-Cowley SRO parameter α for the
first coordination shell (curve 1) and configurational contribution to
the heat capacity CV (curve 2) obtained in the MC simulations for
Fe - 1 at.% Cu alloy with the EI for Fe - 12.5 at.% Cu alloy.

interactions up to the seventh coordination shell. The choice
of the magnetization for particular temperature has been done
using an analytic expression,141 which relates the temperature
to magnetization in bcc Fe.

The temperature of the phase transition (Cu precipitation)
has been located using the Warren-Cowley short-range order
(SRO) parameter142 α in the first coordination shell and the
specific heat CV , obtained using the statistical data collected
during MC simulations with varying temperature (cooling).
In Fig. 7, we show the results of the MC simulations for
the alloy containing 1 at.% of Cu. The shapes of α(T ) and
CV (T ) curves are typical for the first-order phase transition.
The width of the apparent transition region decreases with
copper concentration. The temperature just above the drastic
increase in α(T ) was associated with the critical temperature
of Cu precipitation T0(c) for the given concentration c; the
error of this procedure was estimated to be about 10 K.

The effective cluster interactions depend on concentration
in Fe-Cu alloy (see Sec. IV). Such a dependence may be
important at the earliest stage of Cu precipitation when the
local concentration increases with time. However, the existing
approaches to modeling the decomposition usually neglect
this effect. To estimate its magnitude, we have used in our
calculations two sets of effective interactions corresponding
to compositions Fe - 12.5 at.% Cu (Table I) and Fe - 1 at.%
Cu (Fig 4). For temperatures T < TC , we used the EI values
calculated at magnetization m = m(T ) whose temperature
dependence described in Ref. 141; for T > TC , the values
of EI corresponding to m = 0 have been used.

The so-obtained precipitation temperatures are plotted by
open symbols in Fig. 8 in the Arrhenius coordinates ln(c)
versus the inverse temperature 1/T for two sets of EI,
corresponding to 1 at.% (Fig. 4) and 12.5 at.% (Table I) of
Cu in Fe. Available experimental data are shown by filled
symbols. As can be seen from Fig. 8, both sets of theoretical
results are qualitative agreement with experiment. However,
the simulations with the EI corresponding to 12.5 at.% of Cu
in Fe are in better agreement with experiment, and predict
a higher solubility for T < Tc and lower for T > Tc, than
the results obtained the set of EI corresponding to Fe - 1
at.% Cu. It means, in our opinion, that Fe - 12.5 at.% Cu
composition (when each Cu atom have at least one Cu atom
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FIG. 8. (Color online) Calculated Cu solubility (onset of clus-
tering) shown together with experimental data (filled circles from
Ref. 76 and filled squares from Ref. 35). The Monte Carlo results
are shown by open triangles (with the EI calculated for Fe - 1
at.% Cu) and half-filled diamonds (EI for Fe - 12.5 at.% Cu). The
dashed lines show the single-site mean-field solubility calculated
using magnetization-dependent solution energy (curve 1) or con-
stant solution energy corresponding to the fully ordered FM state
(curve 2). The Curie temperature is shown by vertical dotted line.

in first coordination shell) describes better Cu distribution
corresponding to the embryo of the precipitate.

The decrease of the apparent solution energy of Cu in bcc
Fe above the Tc is due to weakening of the effective nearest-
neighbor pair interaction in the PM state as compared to that
in the FM state (see Fig. 4). Thus, the change of slope of the
solubility line on the Arrhenius plot of Fig. 8 with temperature
near Tc originates from the dependence of interactions on the
global magnetization.

In Fig. 8, we also show the solubility estimated using
a single-site mean-field (MF) approximation based on the
solution energy:

c = exp(−Esol/kBT ). (11)

Here, we have used our calculated solution energies, 46.2
mRy in the FM state, and 28.8 mRy in the DLM state (see
Sec. III A). For intermediate magnetic states we have used the
approximation that the solution energy varies in proportional
to the square of magnetization.

As one can see, if the magnetic-dependent solution energies
are used, the MF results in the DLM and FM states are in
good agreement with experimental data and MC simulations
with the EI from 12.5 at.% Cu alloy. However, if one use FM
solution energies (T = 0), MF results quite different from the
MC results in finite temperatures. The origin of the difference
is the fact that EI in the MC simulations are dependent on
magnetization. Thus it is clear that a substantial increase of
the Cu solubility in Fe in the FM state at temperatures close
to the Curie temperature has magnetic origin: the interaction
between Cu becomes much less repulsive when FM state is
weakening.

The results of MC modeling slightly deviate from the
experiment76 above the Curie temperature (see Fig. 8). This
discrepancy indicates that the global magnetization is not the
only parameter that controls the thermodynamics of bcc Fe
based alloys near the magnetic transition. We describe the
paramagnetic state within the DLM approximation assuming

a completely random distribution of magnetic moments, in the
sense that all correlations are absent. At the same time, the
magnetic short-range order (MSRO) that is quite pronounced
to be strong in bcc Fe well above the TC

96,143 should contribute
to the effective interactions in the paramagnetic state of
Fe-Cu. The MSRO may be expected to produce a smoother
temperature dependence of the solubility near TC , while having
a slight effect on the value of solubility at higher temperatures.
Thus a smooth decrease of magnetization with temperature
approaching TC from below, as well as the presence of MSRO
above the TC , mask the total effect of magnetism on the Cu
solubility in bcc Fe, in spite of the substantial difference in
the magnitude of effective interactions between the ordered
ferromagnetic and disordered paramagnetic states.

B. Kinetics of decomposition

To investigate the kinetics of decomposition in Fe-Cu alloys
we have carried out MC simulations using Kawasaki dynamics
approach with the ab initio effective pair interaction in the
first three coordination shell determined in the Fe - 12.5 at.%
Cu alloy (see Table I), which allow us well to describe Cu
solubility. Our calculations show that the more distant effective
pair interactions do not affect qualitatively the transformation
kinetics. The set of interactions is chosen according to the
magnetization value that corresponds to the temperature of
modeling (using an analytic expression suggested in Ref. 141).

Isothermal decomposition of Fe-Cu alloys has been mod-
eled starting from a random distribution of Cu atoms on the
lattice sites of a 80 × 80 × 80 supercell built upon a two-atom
bcc unit cell subject to periodic boundary conditions. The
simulation results are presented in Fig. 9 as a time-temperature-
transformation (TTT) diagram, which is usually employed to
describe kinetics of isothermal phase transformations.

The TTT diagram shows the time needed to reach a given
fraction of decomposition at a fixed temperature. The degree
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FIG. 9. (Color online) Time-temperature-transformation (TTT)
diagram of decomposition of dilute Fe-Cu alloys. It shows the time
needed to attain the precipitate volume fraction of 0.2 a given
temperature. The curves (1.1’), (2.2’), (3.3’) correspond to the alloy
concentrations of 0.4, 0.8, and 1.2 at.% Cu. The solid lines (1,2,3)
correspond to KMC modeling with PDLM interactions, the dashed
lines (1’,2’,3’) correspond to the modeling with FM interactions.

174113-9



O. I. GORBATOV et al. PHYSICAL REVIEW B 88, 174113 (2013)

of decomposition was determined as

S = 1

N

N∑
j=1

σj θ

(
1

Z

Z∑
k=1

σ
(j )
k − 1

)
, (12)

where N is the number of Cu atoms, σ
(j )
k are the occupation

numbers for the nearest-neighbor positions of site j , Z is
the number of the nearest neighbors (equal to 8 for bcc
lattice), θ (x) is the Heaviside function. This definition means
that a Cu atom is counted as belonging to a precipitate if
all its nearest neighbors are also Cu atoms. In other words,
we assume (in accordance with the MC thermodynamic
simulations) that precipitates contain only Cu atoms and
neglect the contributions due to the precipitate-matrix interface
when calculating the volume fraction of precipitates.

The c-shaped TTT curve emanates from the combined
effect of increasing the driving force for the phase transfor-
mation (decomposition) with decreasing the temperature, and
decreasing the nucleation and growth rates of precipitates due
to the decreasing diffusion rate. Our calculations show that
copper clustering does not occur in the PM state at T > 1043 K
for alloy compositions in the range from 0.4 to 1.2 at.% Cu.
In contrast, in the FM state at temperatures below 920 K, the
decomposition is already observed for alloys containing as
little as 0.4 at.% Cu.

The results of the kinetic MC simulations show that if the
EI corresponding to the fully ordered FM state are used at all
temperatures (dashed lines in Fig. 9), the position of the nose on
TTT curves is not observed in the considered temperature in-
terval, in disagreement with experimental observations.35 Thus
account of the EI variation with temperature approaching to TC

appears necessary for reasonable description of precipitation
kinetics in Fe-Cu alloys.

As can be seen from Fig. 9, increasing the Cu concentration
accelerates the process of decomposition in Fe-Cu alloys:
the nose of TTT curves shifts from 103 s at 900 K to 10 s
at 1000 K when the Cu concentration is increased from
0.4 to 1.2 at.%. The temperature at which the calculated
transformation rate reaches its maximum is in reasonable
agreement with that observed in the experiment.35 In particular,
our calculations predict the maximum transformation rate for
alloy Fe - 1.2 at.% Cu to correspond to temperature ∼1000 K,
whereas experimentally the maximum transformation rate
was was found at ∼950 K for alloy Fe - 1.4 at.% Cu.35

In the range of temperatures corresponding to the noses on
the calculated TTT curves, the corresponding transformation
times are in the same order of magnitude as the times observed
experimentally. At the same time, our calculations predict

much slower precipitation kinetics at lower temperatures than
the kinetics obtained in previous theoretical studies such as
Ref. 64.

VI. CONCLUSIONS

We have investigated the decomposition in Fe-Cu alloys
using first-principles calculations of the effective interactions
and subsequent statistical-mechanical (Monte Carlo) simula-
tions of Cu precipitation. We have found that the EI in Fe-Cu
alloys are strongly dependent on the global magnetic state
of the alloy. This is also reflected in a strong dependence of
the Cu impurity solution energy in Fe on the magnetic state.
The solution energy is significantly reduced in the PM state
compared to that in the FM state.

At the same time, our vibrational free energy calculations
show that lattice vibrations most probably play a minor role
in the solubility of Cu in Fe at high temperatures. However,
further investigation is needed to fully account for the effect
of magnetic disorder in the lattice dynamics at temperatures
of the order of TC .

Another important effect, which should be accounted for
in the future more accurate theoretical consideration of this
system, is the dependence of the effective interactions on the
local composition. Although this dependence is much less
pronounced in the PM state, it has been shown to be quite
substantial in the FM state. In particular, the accounting of the
concentration dependence of EI can affect the precipitation
kinetics and the precipitate composition. This task requires
going beyond the traditional Ising-like model of configuration
energetics of alloys. Combined with the still missing accurate
account of the vibrational contribution it will be a highly
nontrivial task.
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