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We derive the complete flexoelectric tensor, including electronic and lattice-mediated effects, of an arbitrary
insulator in terms of the microscopic linear response of the crystal to atomic displacements. The basic ingredient,
which can be readily calculated from first principles in the framework of density-functional perturbation theory,
is the quantum-mechanical probability current response to a long-wavelength acoustic phonon. Its second-order
Taylor expansion in the wave vector q around the � (q = 0) point in the Brillouin zone naturally yields the
flexoelectric tensor. At order one in q we recover Martin’s theory of piezoelectricity [Martin, Phys. Rev. B
5, 1607 (1972)], thus providing an alternative derivation thereof. To put our derivations on firm theoretical
grounds, we perform a thorough analysis of the nonanalytic behavior of the dynamical matrix and other response
functions in a vicinity of �. Based on this analysis, we find that there is an ambiguity in the specification of
the “zero macroscopic field” condition in the flexoelectric case; such arbitrariness can be related to an analytic
band-structure term, in close analogy to the theory of deformation potentials. As a by-product, we derive a
rigorous generalization of the Cochran-Cowley formula [Cochran and Cowley, J. Phys. Chem. Solids 23, 447
(1962)] to higher orders in q. This can be of great utility in building reliable atomistic models of electromechanical
phenomena, as well as for improving the accuracy of the calculation of phonon dispersion curves. Finally, we
discuss the physical interpretation of the various contributions to the flexoelectric response, either in the static or
dynamic regime, and we relate our findings to earlier theoretical works on the subject.
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I. INTRODUCTION

Flexoelectricity, the electric polarization linearly induced
by an inhomogeneous deformation,1 has become a popular
topic in material science during the past few years.2–8 The
interest is motivated by the universality of the flexoelectric
effect, which, unlike piezoelectricity, is present in insulators
of any symmetry and composition (including simple solids
such as crystalline Si and NaCl).9 While flexoelectricity is
not a new discovery (the effect was predicted by Kogan in
1964;1 the bending of a parallel-plate capacitor induced by
an applied voltage was experimentally demonstrated in 1968
by Bursian et al.10), it has traditionally been regarded as a
very weak effect, hardly detectable in macroscopic samples.
Only in the past few years research has taken off on this front,
thanks to the breathtaking progress in the design and control
of nanoscale structures. From an application point of view,
reducing the size of the active elements is crucial to obtaining
a sufficiently large response: The uniform strain gradient
that can be sustained by a sample before material failure is
inversely proportional to its lateral dimensions. Ironically, in
the context of perovskite thin films, strain gradients (e.g.,
occurring during epitaxial growth) have long been regarded
as harmful to the operation of ferroelectric memories,11,12

and only later explored as a potentially useful functional
property. Several recent experimental breakthroughs4–6 have
convincingly demonstrated that the effect can indeed be
giant7 in thin films, large enough to rotate5 and/or switch6

ferroelectric domains, or to replace conventional piezoelectric
materials13,14 in sensors and transducers.

At the level of the theory, advances have been comparatively
slow. For a long time, the main reference in the field
was the seminal work by Tagantsev,15 which focused on

lattice-mediated responses only, and from a phenomenological
perspective. Maranganti and Sharma16 have later applied the
method of Ref. 15 to the calculation of the flexoelectric
coefficients in selected materials. Unfortunately, a consid-
erable spread emerged between the predictions of different
microscopic models, hence the need for a more fundamental
treatment. It has taken many years before a full first-principles
calculation of the flexoelectric coefficients was attempted.17

More recently, Resta18 and Hong and Vanderbilt19 have
established the basis for a general formulation of the problem
in the context of electronic-structure density-functional theory,
but a unified approach, encompassing both electronic and
lattice-mediated effects, has not emerged yet. Note that most
theoretical treatments to date have defined the flexoelectric
tensors starting from the real-space moments of localized re-
sponse functions (either atomic forces induced on neighboring
atoms15 or multipolar expansions of the charge response to
atomic displacements18). This is a drawback in the context of
electronic-structure calculations, where working with periodic
functions would be preferable, as it would eliminate the need
for expensive supercell geometries.

Given the incomplete state of the theory, there are press-
ing questions coming from the experiments that are still
unresolved to date. First, whether the flexoelectric tensor is
a well-defined bulk property has been a matter of debate
for several years;15,18 consequently, it is currently unclear
if it is at all possible to separate the surface and bulk
contributions in a typical experiment. Next, it has been pointed
out4 that static measurements alone leave the flexoelectric
tensor undetermined; in order to solve for all the independent
components, one needs to combine static with dynamic data.
Is it, however, physically justified to “mix” the two? What
do we get as a result, a static or a dynamic quantity?
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Finally, of particular importance in the area of perovskite
oxides (which are by far the best studied and most promising
materials for flexoelectric applications) is the interplay of
inhomogeneous deformations with the main order parameters
(either ferroelectric polarization or antiferrodistortive tilts of
the oxygen octahedral network). This has been the subject of
several studies in the context of phenomenological20,21 and
effective Hamiltonian22 approaches, but a systematic way to
calculate the coupling coefficients (to be used as an input to
the higher-level simulations) is still missing.

In a broader context, it worth noting that the interest of
flexoelectricity is by no means limited to perovskites: For
example, curvature-induced effects are of outstanding rele-
vance in the physics of two-dimensional nanostructures23 such
as sp2-bonded crystals (e.g., graphene24 or boron nitride25).
Also, the electrostatic potential induced by deformation fields
is a known concern in the performance of optoelectronic
quantum-well devices,26 especially in the promising area
of foldable inorganic light-emitting diodes.27 The theory
of absolute deformation potentials,28 intimately related to
flexoelectricity,18,29 is an invaluable tool in the band-gap
engineering of these (and other) semiconductor-based systems.
Rationalizing these diverse and technologically important
phenomena into a unified theory would be, of course, highly
desirable from a modeling perspective.

Here, we show how to consistently address the above issues
by using density-functional perturbation theory30 (DFPT) as
a methodological framework. By taking the long-wavelength
limit of acoustic phonons, we derive the electromechanical
tensors (both piezoelectric and flexoelectric) in terms of stan-
dard lattice-periodic response functions, which can be readily
calculated by means of publicly available first-principles
codes. We demonstrate the consistency of our formalism
by rederiving already established results, such as Martin’s
theory31 of piezoelectricity and existing theories15,18,19 of
flexoelectricity. To substantiate our arguments, we carefully
study the nonanalyticities, due to the long-range character
of the electrostatic interactions, that plague the electronic
response functions in the long-wave regime. In particular,
we devise a rigorous strategy to dealing with this issue
by suppressing the macroscopic (G = 0) component of the
self-consistent electrostatic potential in the linear response
calculations. We find, however, that such a procedure is not
unique; there is an inherent ambiguity in the specification
of the “zero macroscopic field” condition in the flexoelectric
case, which can be traced back to the choice of an arbitrary
reference energy in the periodic crystal. We rationalize such
ambiguity by establishing a formal link between the present
theory of flexoelectricity and the preexisting theory of absolute
deformation potentials.29 In addition to providing a solid
formal basis to our derivations, our treatment of macroscopic
electrostatics also yields a rigorous generalization of the
Cochran-Cowley formula to higher orders in q, which can
be of great utility in future lattice-dynamical studies. Finally,
based on our findings, (i) we derive an exact sum rule, relating
the flexoelectric coefficients to the macroscopic elastic tensor;
(ii) we use such a sum rule to demonstrate that the same
definition of the flexoelectric tensor is equally well suited to
describing static or dynamic phenomena; (iii) we discuss the
physical interpretation of the various physical contributions

to the flexoelectric tensor, relating them to earlier first-
principles29 and phenomenological20,21 studies.

This work is structured as follows. In Sec. II, we introduce
some useful basic concepts of continuum mechanics and the
general strategy that we use to attack the flexoelectric problem.
In Sec. III, we introduce the formalism of density-functional
perturbation theory, and the basic ingredients that will be
used in the remainder of this work. In Sec. IV, we proceed
to performing the long-wave analysis of an acoustic phonon,
deriving the piezoelectric and flexoelectric response tensors
in terms of the basic ingredients defined above. In Sec. V,
we discuss several important properties of the electronic
response functions (polarization and charge density), and use
them to draw a formal connection to Martin’s theory of
piezoelectricity,31 and to earlier theories15,18,19 of flexoelec-
tricity. In Sec. VI, we study the nonanalytic properties of the
aforementioned response functions, obtaining (among other
results) a higher-order generalization of the lattice-dynamical
theory of Pick, Cohen, and Martin.33 Finally, Sec. VII is
devoted to discussing the physical implications of the derived
formulas, while in Sec. VIII we briefly summarize our main
results and conclusions.

II. PRELIMINARIES

A. Strain and strain gradients

In continuum mechanics, a deformation can be expressed
as a three-dimensional (3D) vector function uα(r), describing
the displacement of a material point from its reference position
at r to its current location r′:

r ′
α(r) = rα + uα(r).

The deformation gradient is defined as the gradient of uα taken
in the reference configuration

ε̃αβ(r) = uα,β (r) = ∂uα(r)

∂rβ

. (1)

ε̃αβ(r) is often indicated in the literature as “unsymmetrized
strain tensor,” as it generally contains a proper strain plus
a rotation. By symmetrizing its indices, one can remove the
rotational component, thus obtaining the symmetrized strain
tensor

εαβ = 1
2 (uα,β + uβ,α).

εαβ is a convenient measure of local strain, as it only depends
on relative displacements of two adjacent material points, and
not on their absolute translation or rotation with respect to
some reference configuration.

In this work we shall be primarily concerned with the
effects of a spatially inhomogeneous strain. The third-rank
strain gradient tensor can be defined in two different ways,
both important for the derivations that follow. The first (type-I)
form consists in the gradient of the unsymmetrized strain

ηα,βγ (r) = ∂ε̃αβ(r)

∂rγ

= ∂2uα(r)

∂rβ∂rγ

. (2)

Note that ηα,βγ , manifestly invariant upon β ↔ γ exchange,
corresponds to the ναβγ tensor of Ref. 19, and to the symbol
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η1,11 η2,11

ε11,1 ε12,1 = ε21,1

η1,12 = η1,21 ε11,2

FIG. 1. Individual components of the strain gradient tensor in a
square two-dimensional lattice. The “longitudinal” (ε1,11), “shear”
(ε12,1), and “transverse” (or “bending,” ε11,2) components are linearly
independent; a fourth pattern of less obvious physical interpretation
(η1,12) is a combination of ε12,1 and ε11,2. Direction 1 corresponds to
the horizontal axis, 2 to the vertical; the polarization vector is oriented
along 2.

∂εαβ/∂rγ of Ref. 15. Alternatively, the strain gradient tensor
can be defined (type-II) as the gradient of the symmetric strain
εαβ :

εαβ,γ (r) = ∂εαβ(r)

∂rγ

,

invariant upon α ↔ β exchange. It is straightforward to verify
that the two tensors contain exactly the same number of
independent entries, and that a one-to-one relationship can
be established to express the former as a function of the latter
and vice versa. For example,

ηα,βγ = εαβ,γ + εγα,β − εβγ,α. (3)

In Fig. 1, we illustrate the three independent components
of the ηα,βγ and εαβ,γ tensors on a square two-dimensional
(2D) lattice, evidencing analogies and differences. It is clear
from the figure that the longitudinal and shear components
are elementary objects in both type-I and -II forms. The
main difference between the two representations concerns
the third independent component, which assumes the form
of a flat displacement pattern in the type-I form, and has
the more intuitive interpretation of a pure bending (one can
show that ε11,2 = 1/R, where R is the curvature radius) in
the type-II form; the latter will be indicated as transverse
strain gradient henceforth. In fact, these three components of
the strain gradient tensor are, by symmetry, the only types of
independent perturbations in a cubic material, and are therefore
very important in the context of flexoelectricity.

FIG. 2. Displacement fields in longitudinal (top) and transversal
(bottom) sound waves.

B. Long-wavelength acoustic phonons

A macroscopic strain gradient breaks the translational
symmetry of the crystal lattice. For this reason, the response to
such a perturbation can not be straightforwardly represented
in periodic boundary conditions. This makes the theoretical
study of flexoelectricity more challenging than other forms of
electromechanical couplings, e.g., piezoelectricity. To circum-
vent this difficulty, we shall base our analysis on the study
of long-wavelength acoustic phonons. These perturbations,
while generally incommensurate with the crystal lattice, can be
conveniently described30 in terms of functions that are lattice
periodic, and therefore are formally and computationally very
advantageous.

The direct relationship between an acoustic phonon and a
mechanical deformation is clear from Fig. 2: in the longitudinal
and transversal waves one can visually identify regions of
negative and positive strain gradients, respectively, of the
longitudinal and shear type. Mathematically, this observation
can be formalized by writing (at the lowest order in the wave
vector q) an acoustic phonon as a homogeneous displacement
of every material point of the type

uβ(r,t) = Uβ eiq·r−iωt ,

where Uβ is the displacement amplitude and ω the frequency.
Consider now the microscopic polarization currents (these are
due to the displacements of the charged particles, electron
and nuclei, from their equilibrium positions) induced by the
phonon at the linear-response level34

P̃α(r,t) = UβP̃
q
αβ(r) eiq·r−iωt .

Assuming for the moment that P̃ q is an analytic function of
q at the � point, in a neighborhood of � (i.e. in the long-
wavelength regime) we can replace it with its second-order
Taylor expansion

P̃
q
αβ � P̃

(0)
αβ − iqγ P̃

(1,γ )
αβ − qγ qλ

2
P̃

(2,γ λ)
αβ . (4)

Now, by applying Eqs. (1) and (2), we can compute the local
deformation gradient and strain gradient that are associated
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with the acoustic phonon

ε̃βγ (r,t) = ∂uβ

∂rγ

= iUβqγ eiq·r−iωt , (5)

ηβ,γ λ(r,t) = ∂2uβ

∂rγ ∂rλ

= −Uβqγ qλ eiq·r−iωt . (6)

A comparison of Eqs. (4)–(6) suggests that the polarization
response to a uniform strain (piezoelectricity) and to a strain-
gradient (flexoelectricity) are, respectively, related to the first-
and second-order Taylor expansions in powers of q of the
polarization field produced by a sound wave. The latter can
be computed by working with lattice-periodic functions only,
implying that all the theoretical and computational weaponry
developed so far within periodic boundary conditions (e.g.,
Bloch theorem, plane-wave basis set, pseudopotentials, etc.)
can be proficiently applied to the flexoelectric problem. This
is precisely the approach that we shall take in the remainder
of this work.

While this appears conceptually simple, there are a number
of important issues that need to be addressed before one can
establish the formal link between the electrical properties of
sound waves and the macroscopic electromechanical tensors.
First of all, it is not clear a priori whether the above
strategy is even applicable. Long-wavelength phonons are
generally accompanied by macroscopic electric fields. This is
a substantial complication from the operational point of view:
the longitudinal character of the electrostatic screening causes
a nonanalytic behavior of most response functions [e.g., the
atomic eigendisplacements and the electronic polarization (see
Sec. VI for a detailed discussion)] in a vicinity of �, thwarting
their expansion in powers of q. Whether (and how) these
nonanalyticities can be tamed will need to be assessed prior
to starting the actual derivations. Second, phonon eigenmodes
also contain, in addition to genuine macroscopic deformations,
translations and rotations of a given crystal cell with respect to
its reference configuration at rest. It will be therefore necessary
to show that such rototranslations do not contribute to the
macroscopic electrical response. Third, a phonon is inherently
a dynamic perturbation, and whether the effects derived for a
sound wave are equally applicable to a static deformation will
need to be carefully demonstrated. In the following sections,
we shall first introduce the basic ingredients that we need in
order to derive the total polarization response, Eq. (4); next, we
shall proceed to the formal derivation of the electromechanical
tensors, and to their validation in relation to the aforementioned
sources of concern.

III. DENSITY-FUNCTIONAL PERTURBATION THEORY

This section will provide a brief introduction to the DFPT
formalism. This is mainly aimed at specifying the general
context of our derivations, as well as at pointing out the key
modifications to the standard approach30 that are necessary
in the context of this work. In particular, we shall put the
emphasis on the following three technical points: the treatment
of the macroscopic fields; the definition of the microscopic
polarization response; the practical calculation of the relevant
response functions by means of publicly available codes.

A. Linear response to monochromatic perturbations

Our starting point is an insulating crystal, whose equi-
librium configuration is described by the three primitive
translation vectors a1,2,3 and by a basis of N atoms located
at positions τ κ (κ = 1, . . . ,N) within the primitive unit cell.
Within density-functional theory, the electronic ground state
can be written in terms of the self-consistent (SCF) Kohn-Sham
equation

Ĥk|φnk〉 = εnk|φnk〉,
where Ĥk is the SCF Hamiltonian at the point k in the
Brillouin zone, and |φnk〉 and εnk are, respectively, the ground-
state Bloch orbitals and eigenvalues. In full generality, the
Hamiltonian

Ĥk = T̂k + V̂ ext
k + V̂ Hxc

contains a single-particle kinetic energy operator T̂k, the
external potential of the nuclei V̂ ext

k , and the Hartree and
exchange and correlation potential, the latter depending self-
consistently on the electronic charge density ρel:

ρel(r) = −s
�

(2π )3

∑
n

∫
BZ

d3k φ∗
nk(r)φnk(r). (7)

(s is the occupation of the orbital, equal to 2 if spin pairing
is assumed.) The total charge density ρ(r) = ρel(r) + ρ ion(r)
includes the contribution of the nuclear point charges

ρ ion(r) =
∑
lκ

Zκδ(r − Rlκ ), (8)

where Zκ is the bare pseudopotential charge (or the atomic
number in the case of an all-electron description), and
δ(r − Rlκ ) is a Dirac delta function. [Note that Rlκ = Rl + τ κ

is the equilibrium (unperturbed) atomic position in the crystal,
and l is a cell index.]

Consider now a monochromatic perturbation, where the
atoms in the sublattice κ undergo a small displacement along
β of the type

ul
κβ = λeiq·Rlκ . (9)

The linear response of the crystal to such a perturbation can
be readily computed in the framework of density-functional
perturbation theory30 by solving the following Sternheimer
equation:

(Ĥk+q + αP̂k+q − εnk)
∣∣�φ

q,κβ

nk

〉 = −Q̂k+q �V̂
SCF,κβ

k+q,k |φnk〉.
(10)

Here, |�φ
q,κβ

nk 〉 are the desired first-order wave functions, P̂k =∑
n |φnk〉〈φnk| and Q̂k = 1̂ − P̂k are the projection operators

on the valence and conduction subspaces, and �V̂
SCF,κβ

k+q,k is the
sum of the external perturbing potential (due to the atomic
displacements) and the linear variation in the Hxc potential
due to the rearrangement of the electron cloud. The arbitrary
parameter α guarantees orthogonality between |φnk+q〉 and
|�φ

q,κβ

nk 〉 and is otherwise irrelevant. Note that Eq. (10)
involves lattice-periodic functions only, and thus provides a
convenient route to accessing the relevant response functions
at an arbitrary wave vector q.
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In the context of this work, we need to focus on three basic
response functions, all of which are linear in the perturbation
amplitude λ. (To avoid overburdening the notation, from now
on we shall omit the “�” prefix whenever the linearity of a
given response function with respect to λ is obvious from the
context.) The first quantity is the variation of the total charge
density

dρ(r)

dλ
= ρ

q
κβ(r)eiq·r.

Similar to ρ(r), the cell-periodic function ρ
q
κβ(r) = ρ

el,q
κβ (r) +

ρ
ion,q
κβ (r) can be also decomposed into an electronic and a

(trivial) ionic contribution

ρ
el,q
κβ (r) = −2s

�

(2π )3

∑
n

∫
BZ

d3k φ∗
nk(r) �φ

q,κβ

nk (r),

ρ
ion,q
κβ (r) = Zκ

∑
l

[
−∂δ(r − Rlκ )

∂rβ

− iqβδ(r − Rlκ )

]
,

where �φ
q,κβ

nk is the solution of Eq. (10).
The second quantity is the microscopic polarization re-

sponse, defined as the current density j(r,t) that is linearly
induced when the perturbation is adiabatically switched on via
a time-dependent parameter λ:

λ → λ(t), jα(r,t) = dPα(r)

dλ
λ̇(t).

The variation of Pα(r) can also be written as a cell-periodic
part multiplied by a phase

dPα(r)

dλ
= P

q
α κβ(r)eiq·r,

and decomposed into an electronic and ionic part P
q
α κβ =

P
el,q
α κβ + P

ion,q
α κβ . The ionic contribution has again a simple

expression

P
ion,q
α κβ (r) = Zκδαβ

∑
l

δ(r − Rlκ ), (11)

independent of q. It is easy to verify that

∇ · (
Pion,q

κβ eiq·r) = −ρ ion,qeiq·r.

The electronic contribution P
el,q
α κβ is a new quantity that is

not part of currently available DFPT implementations. Further
details on how it can be calculated in practice are provided in
Sec. III D.

The third and last basic response function that we shall
consider in this work is the force induced on the atom lκ ′
along α, df l

κ ′α/dλ, whose cell-periodic part is the q-space
force constant matrix �:

df l
κ ′α

dλ
= −�

q
κ ′α κβeiq·Rlκ′ . (12)

This is, of course, a central quantity in DFPT, and can be readily
computed following the prescriptions of Refs. 30, 35, and 36.
(With respect to the procedure described in these works, note
that there is an important subtlety related to the phase of the
perturbing potentials and response functions, which we shall
discuss in Sec. III C1.)

B. Taylor expansion in a vicinity of �

As we shall see in Sec. IV, in order to obtain the long-wave
limit of the polarization response to a phonon [Eq. (4)],
one needs to evaluate a number of intermediate quantities.
These are the lowest terms of the Taylor expansion (in q
space) of the fundamental response functions �q, ρq, and
Pq introduced earlier in this section. Unfortunately, these
functions are plagued by a nonanalytic behavior at �, which
implies that their direct Taylor expansion is not feasible. The
nonanalyticity is related to the macroscopic electric fields that
occur in response to the perturbation. To clarify this point, it
is useful to write the induced electric field as

dEα(r)

dλ
= Eq

α κβ(r) eiq·r.

After expanding the cell-periodic part Eq
α κβ(r) into its

reciprocal-space coefficients (indexed by the reciprocal-lattice
vectors G), it becomes apparent that the G = 0 term (indicated
by a wide bar symbol)

Eq
α,κβ = 1

�

∫
cell

Eq
α,κβ (r) d3r,

which is purely longitudinal, is problematic for q → 0. In fact,
one can show (a rigorous derivation is provided in Sec. VI B)
that, at order zero in q, Eq

α,κβ is a direction-dependent constant

Eq→0
α,κβ ∼ −4π

�
q̂α

(q̂ · Zκ )β
q̂ · ε · q̂

, (13)

where ε is the macroscopic dielectric tensor, Z∗
κ,αβ is the Born

dynamical charge tensor, and q̂ = q/q. Such a nonanalytic

behavior of Eq→0
α,κβ propagates to the charge, polarization, and

lattice responses, thwarting their Taylor expansion at �.
We shall circumvent this difficulty by removing the

macroscopic electrostatic component (corresponding to the
G = 0 vector of the reciprocal lattice) from the self-consistent
electrostatic potential. This prescription has the effect of
screening the longitudinal fields associated with the long-
wavelength phonon. Therefore, it corresponds to adopting
short-circuit electrical boundary conditions in the calculation
of the response functions, which is indeed the standard
convention in the definition of the electromechanical coupling
coefficients. This way, we have solved two problems at once:
(i) all the response functions become analytic at � and their
polynomial expansion is, in principle, well defined at any order
in q; (ii) we have specified once and for all that the response
functions are calculated with a macroscopic electric field kept
constant and equal to zero, i.e., in short circuit. A formal
demonstration of these claims, based on the dielectric matrix
approach,33 is provided in Sec. VI.

By using the aforementioned precautions, it is now formally
possible to perform the Taylor expansion of the charge-density
response (we shall assume from now on that repeated indices
are implicitly summed over)

ρ
q
κβ(r) � ρ

(0)
κβ (r) − iqγ ρ

(1,γ )
κβ (r) − qγ qλ

2
ρ

(2,γ λ)
κβ (r), (14)

the microscopic polarization

P
q
α,κβ (r) � P

(0)
α,κβ (r) − iqγ P

(1,γ )
α,κβ (r) − qγ qλ

2
P

(2,γ λ)
α,κβ (r), (15)
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and the force-constant matrix

�
q
κα,κ ′β � �

(0)
κα,κ ′β − iqγ �

(1,γ )
κα,κ ′β − qγ qλ

2
�

(2,γ λ)
κα,κ ′β. (16)

Note the choice of the prefactors, which is motivated by the
relationship to the localized real-space representation (see
Sec. V). In practice, at an arbitrary order and for a given
response function g

q
κβ(r), we define

g
(n,γ1...γn)
κβ (r) = in

∂ng
q
κβ(r)

∂qγ1 . . . ∂qγn

∣∣∣∣
q=0

. (17)

This prescription also guarantees that the functions
g

(n,γ1...γn)
κβ (r) are always real.

C. Practical considerations

1. Phase factors

Our definition of the elementary monochromatic perturba-
tions [Eq. (9)] differs from that used by Gonze35 and Gonze
and Lee36 (GL),

u
GL,l
κβ = λeiq·Rl ,

by a sublattice-dependent (but cell-independent) phase factor

ul
κβ = u

GL,l
κβ eiq·τ κ .

Such a modification is irrelevant in the calculation of phonon
dispersion curves, but is crucial in the context of the long-
wave expansion performed here. In fact, it guarantees that the
acoustic phonon eigenmodes do not depend on the (arbitrary)
assignment of each basis atom to a given cell in the crystal,
and therefore we regard it as a very natural choice on general
physical grounds.

From the point of view of practical calculations, it should be
kept in mind that all the response functions discussed in this
work generally differ from the quantities that are computed
within the publicly available implementations of DFPT. Given
that the modification consists in a trivial phase, however, it
is easy to write the correspondence between the response
functions defined by GL and those considered here. For
example, concerning the charge-density response, we have (by
using the linearity of the response functions in the perturbation)

ρ
q
κβ(r) = ρ

GL,q
κβ (r) eiq·τ κ .

In the case of the force-constant matrix, there is an additional
phase factor coming from the factorization (12), which leads
to the following correspondence:

�
q
κα κ ′β = C̃GL

κα κ ′β(q) eiq·(τ κ′−τ κ ).

Of course, the real-space force constants (i.e., the second
derivative of the total energy with respect to the displacements
of individual atoms) must be consistent with the definition
given by GL:

�l
κα κ ′β = CGL

κα κ ′β(0,l).

Therefore, our modification essentially concerns the definition
of the Fourier transform that is used to move between direct
and reciprocal space. Here, we have [compare with Eq. (10)
of Ref. 36]

�
q
κα κ ′β =

∑
l

�l
κα κ ′βeiq·(Rl+τ κ′ −τ κ ).

2. Differentiation in q space

To calculate the Taylor expansion of the response functions,
one can follow two different routes. Ideally, it would be
desirable to take the analytical gradients of the Sternheimer
equation (10) in q space and solve directly for the perturbed
wave functions at a given order in q:∣∣φq

nk

〉 � ∣∣φ(0)
nk

〉 − iqγ

∣∣φ(1,γ )
nk

〉 − qγ qλ

2

∣∣φ(2,γ λ)
nk

〉
.

(The dependence on the sublattice index κ and the displace-
ment direction β has been kept implicit to avoid overburdening
the notation.) Then, the response functions could be simply
calculated from the orbitals at the desired order in q by
exploiting the linearity of the respective Taylor expansions.
For example, the charge density at linear order in q would
read as

ρ
(1,γ )
κβ (r) = −2f

�

(2π )3

∑
n

∫
BZ

d3k φ∗
nk(r) φ

(1,γ )
nk (r)

+Zκδβγ

∑
l

δ(r − Rlκ ). (18)

We have not implemented the analytic long-wave expansion
of the Sternheimer equation here. (The explicit derivation
is under way and will be the subject of a future communi-
cation.) Instead, we propose, for the time being, to extract
the needed Taylor-expanded response functions by using a
finite-difference approach in q space.37 This has the advantage
of allowing the calculation of the flexoelectric tensor in
arbitrary solids by means of the existing implementations of
DFPT. In practice, it suffices to discretize Eq. (17) (replace g

with the desired response function) by using an appropriate
grid of q points surrounding �. This procedure is good for
performing the long-wave analysis of the charge density
and the force-constant matrix, as both quantities are fully
implemented in publicly available codes. The calculation of
the polarization response deserves a separate comment, as
currently available implementations of DFPT provide access
only to the macroscopic (cell-averaged) part, and not to the
full microscopic current density. In the following section, we
shall outline a viable procedure to access the latter quantity.

D. Microscopic polarization response

To derive the electronic contribution to the microscopic
polarization response, we shall work in reciprocal space, and
write P

el,q
α,κβ in terms of its Fourier coefficients (we shall omit

the superscript “el” in the remainder of this section, as the
absence of the ionic contribution is obvious from the context)

P
q
α,κβ (G) = 1

�

∫
cell

d3r P
q
α,κβ (r)e−iG·r. (19)

We seek an (unknown) operator P̂α,q+G such that

P
q
α,κβ (G) = 2

s�

(2π )3

∑
n

∫
BZ

d3k 〈ψnk|P̂α,q+G
∣∣�ψ

q,κβ

nk

〉
, (20)

where ψnk(r) = φnk(r)eik·r and �ψ
q,κβ

nk (r) = �φ
q,κβ

nk
(r)ei(k+q)·r. (Strictly speaking, only the G = 0 component of
the polarization response, corresponding to P

q
α,κβ , is sufficient

for the scope of this work; we keep the G dependence for the
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sake of generality.) It is convenient to simplify the notation,
and write

P
q
α,κβ (G) = 2

∑
v

〈ψv|P̂α,q+G
∣∣�ψq,κβ

v

〉
, (21)

where the index v runs over valence (occupied) wave functions.
As the first-order wave functions belong, by construction,
to the conduction manifold, one can insert a projector Q̂ =∑

c |ψc〉〈ψc|,
P

q
α,κβ (G) = 2

∑
v,c

〈ψv|P̂α,q+G|ψc〉
〈
ψc

∣∣�ψq,κβ
v

〉
,

where c runs over the unoccupied orbitals. Since both |ψc〉 and
|ψv〉 are eigenstates of the unperturbed Hamiltonian Ĥ , one
can readily write

P
q
α,κβ (G) = 2

∑
v,c

〈ψv|[P̂α,q+G,Ĥ ]|ψc〉
εc − εv

〈
ψc

∣∣�ψq,κβ
v

〉
. (22)

Now, assuming that P̂α,q+G does not depend explicitly on time
we have, from Ehrenfest theorem,

d

dt
〈Â〉 = −i〈[Â,Ĥ ]〉, (23)

where 〈Ô〉 stands for the expectation value of the operator
Ô. Since in a nonmagnetic insulator j(r,t) = dP(r,t)/dt , it
follows that the commutator in Eq. (22) must correspond to
the current density operator

ĵα,q+G = −i[P̂α,q+G,Ĥ ]. (24)

Hence, we have

P
q
α,κβ (G) = −2i

∑
v

〈
ψ̃α,q+G

v

∣∣�ψq,κβ
v

〉
, (25)

where ∣∣ψ̃α,q+G
v

〉 = −
∑

c

|ψc〉 〈ψc|ĵα,q+G|ψv〉
εc − εv

(26)

are the first-order orbitals induced by ĵα,q+G as a perturbing
operator. These can be conveniently obtained by solving the
non-self-consistent Sternheimer equation

(Ĥ − εv)
∣∣ψ̃α,q+G

v

〉 = −Q̂ ĵα,q+G |ψv〉. (27)

This result allows us to calculate the cross-gap matrix elements
of the unknown microscopic polarization operator P̂α,q+G
by means of the more familiar current density operator.
The probability current is a fundamental quantum-mechanical
observable, and implementing it in an existing DFPT code
should not present major conceptual obstacles; such a task
will be the topic of a future communication. In this context,
it is worth mentioning the work of Umari, Dal Corso, and
Resta,38 where the microscopic polarization response to a
uniform electric field perturbation was derived and computed;
the authors used an approach that is closely related to the one
presented here.

IV. LONG-WAVE ANALYSIS

In the following, we shall use the long-wave method39 to
derive the electromechanical response (either piezoelectric

or flexoelectric) of the crystal in terms of the elementary
ingredients introduced above. We shall first focus on the atomic
displacements induced by a “short-circuited” (in the sense
specified in the previous section) acoustic phonon, and later
compute the polarization field associated with the deformation.

A. Internal strains

Consider the real-space atomic equation of motion

mκü
0
κα(t) = −�l

κακ ′βul
κ ′β(t),

where u are the displacements, � is the real-space force-
constant matrix, and mκ is the mass of the species κ . (l indexes
the lattice cell where the atom κ ′ is located; the atom κ is
located at the l = 0 cell; α and β refer to Cartesian directions.)
We seek solutions of the type

ul
κβ(t) = U

q
κβeiq·Rlκ−iωt .

These are given by the eigenvalue problem

mκω
2Uq

κα = �
q
κα κ ′βU

q
κ ′β. (28)

We solve Eq. (28) perturbatively15,39 in a vicinity of q = 0 by
writing the wave vector as39 εq, where ε is a dimensionless
perturbation parameter. For an acoustic branch, ω and U

q
κα can

be expanded as follows:39

ω(εq) = εω(1,q) + ε2ω(2,q) + · · · , (29)

Uεq
κα = U (0,q)

κα + iεU (1,q)
κα + ε2U (2,q)

κα + · · · . (30)

(The expansion of ω starts with the linear term, as for acoustic
waves the frequency approaches zero as εq → 0.) We shall
now proceed to calculating the induced displacements by
plugging Eqs. (29) and (30), and the Taylor expansion of the
force-constant matrix (16) into Eq. (28), and by grouping the
different terms according to their perturbative order.

At order zero in ε, we have

�
(0)
κα,κ ′βU

(0,q)
κβ = 0 → U

(0)
κβ = Uβ, (31)

i.e., the phonon eigenvector must be independent of κ . In
fact, the matrix �(0) is the zone-center dynamical matrix
of the crystal, and has three zero-frequency eigenmodes
corresponding to the rigid translations of the whole lattice
along each Cartesian direction. This means that Eq. (31) is
identically verified by any real-space vector U.

At first order in ε we have

�
(0)
κα,κ ′βU

(1,q)
κ ′β − Uβqλ

∑
κ ′

�
(1,λ)
κα,κ ′β = 0. (32)

Solvability requires that∑
κκ ′

�
(1,λ)
κα,κ ′β = 0

be identically satisfied for any α,β, which is indeed the case.39

The explicit solution can be written as

U (1,q)
κα = �κ

αβγ Uβqγ , (33)

�κ
αβγ = �̃

(0)
κα,κ ′λ�

κ ′
λβγ . (34)
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Here, we have introduced �̃
(0)
κα κ ′β as the pseudoinverse40

of the singular matrix �
(0)
κα κ ′β (the zero eigenvalues of �,

corresponding to rigid translations, are mapped into zero
eigenvalues of �̃, while the nonsingular remainder of the
matrix is inverted), and

�κ
αβγ =

∑
κ ′

�
(1,γ )
κα κ ′β (35)

is the piezoelectric force-response tensor (following the
notation of Ref. 40). �κ

αβγ describes the force induced
on the sublattice κ along α when the crystal undergoes a
homogeneous strain deformation41 εβγ , and is symmetric with
respect to β ↔ γ exchange.39 The internal-strain tensor31

�κ
αβγ describes the atomic relaxations induced by εβγ , and

inherits the β ↔ γ invariance from �. Note that �κ
αβγ is

specified only modulo an arbitrary κ-independent (but possibly
αβγ -dependent) constant, which physically corresponds to a
rigid shift of the whole lattice.

At second order in ε we obtain

�
(0)
κα κ ′′μU

(2,q)
κ ′′μ = mκ [ω(1,q)]2Uα − qγ qλT

κ
αβ,γ λUβ, (36)

where mκ are atomic masses, and we have introduced the type-I
flexoelectric force-response tensor T as follows:

T κ
αβ,γ λ = [αβ,γ δ]κ + 1

2 [(αγ,βλ)κ + (αλ,βγ )κ ]. (37)

The square brackets and round brackets are defined (in loose
analogy with the notation of Ref. 39) as

[αβ,γ δ]κ = −1

2

∑
κ ′

�
(2,γ δ)
ακ βκ ′ , (38)

(αλ,βγ )κ = �
(1,λ)
κα κ ′ρ�

κ ′
ρβγ . (39)

[αβ,γ δ]κ describes the force induced along α on a given
atomic sublattice κ by a “frozen-ion” (in the sense specified in
Ref. 19) strain gradient ηβ,γ δ (in type-I form). (αλ,βγ )κ de-
scribes the additional force produced by the atomic relaxations
that are first order in ε and is, therefore, only relevant to crystals
that have one or more free Wyckoff parameters. Note that the
round bracket is a type-II object (i.e., it relates the force along
α to the type-II strain gradient component εβγ,λ), hence the
symmetrization in Eq. (37) (the T tensor is a type-I object).

The linear problem (36) admits solution if and only if the
following condition on ω(1,q) is satisfied:15,39

(M[ω(1,q)]2δαβ − qγ qλTαβ,γ λ)Uβ = 0, (40)

where M = ∑
κ mκ is the total mass of the primitive cell, and

Tαβ,γ λ = ∑
κ T κ

αβ,γ λ. We shall see in Sec. IV C that the quantity
Tαβ,γ λ/� can be considered a “type-I” representation of the
macroscopic elastic tensor C.42 One will then easily recognize
Eq. (40) as the sound-wave equation.39 Its solutions depend
only on C, on the mass density M/�, and on the propagation
direction q̂ = q/q, and are therefore characterized by a linear
dispersion relation along any given q̂. By combining Eq. (40)
with (36), we readily obtain

U (2,q)
κα = −Uβqγ qλN

κ
αβγλ, (41)

Nκ
αβγλ = �̃

(0)
κακ ′ρT̂

κ ′
ρβ,γ λ, (42)

where Nκ
αβγλ is the type-I flexoelectric internal-strain tensor,

and we have also introduced the mass-compensated force-
response tensor

T̂ κ
αβ,γ λ = T κ

αβ,γ λ − mκ

M
Tαβ,γ λ. (43)

Note that the sum over κ of the T̂ tensor identically vanishes
by construction; this is a necessary condition for the linear
problem (42) to be solvable, proving that our derivations are
internally consistent.

In summary, the lattice response to a (short-circuited) long-
wavelength acoustic phonon can be written as

Uq
κα = Uβ

[
δαβ + iqγ �κ

αβγ − qγ qλN
κ
αβγλ

] + O(q3), (44)

where �κ
αβγ and Nκ

αβγλ are the desired internal-strain tensors.
Before closing this part, it is useful to briefly comment on

the relationship between our derivation and that of Tagantsev.
Our approach accurately follows the formalism of Ref. 15,
except for the procedure to extract the relevant physical
quantities from the force constants of the crystal.43 Tagantsev
wrote the moments of the force-constant matrix as lattice
sums in real space, whose convergence is not guaranteed
unless a specific prescription for dealing with macroscopic
electrostatics is formulated. A heuristic treatment of the
macroscopic fields might be possible in atomistic models,
where the charge response to individual atomic displacements
is trivially simple. In the present quantum-mechanical context,
the problem is complicated by the presence of higher-order
multipolar interactions,18,19 whose impact on lattice dynamics
might be cumbersome to keep track of. Here, we solve this
issue by working in q space, where a rigorous strategy to
suppress the problematic electric fields in the long-wavelength
limit is easy to implement once and for all, and does not require
any special effort.

B. Macroscopic flexoelectric coefficients in type-I form

In order to write the total polarization response to the
long-wavelength phonon (and hence to an arbitrary mechanical
deformation), we need to combine the eigendisplacements
derived in the previous section with the small-q expansion
of the induced polarization [Eq. (15)]. As in this work we are
only concerned with the macroscopic response, we shall work
on the cell-averaged counterparts of the polarization-response
functions, which we indicate by an overline symbol,

P
(n,γ1,...,γn)
α,κβ = 1

�

∫
cell

d3r P
(n,γ1,...,γn)
α,κβ (r). (45)

By construction, the zero-order term is proportional to the
Born effective charge tensor of the species κ:

�P
(0)
α κβ = Z∗

κ,αβ . (46)

It follows that, due to the acoustic sum rule,33 the sum over κ

of the P
(0)

tensor identically vanishes. Thus, the contribution
of the rigid translation to the macroscopic P vanishes as well
(as anticipated above), leaving us with the terms that are linear
and quadratic in q:

P α(r,t) = (
iUβqγ eαβγ − Uβqγ qλμ

I
αβ,γ λ

)
eiq·r−iωt , (47)
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where the relaxed-ion response tensors are given by

eαβγ = ēαβγ + 1

�
Z∗

κ,αρ�κ
ρβλ, (48)

μI
αβ,γ λ = μ̄I

αβ,γ λ − 1

2

(
�κ

ρβγ P
(1,λ)
α,κρ + �κ

ρβλP
(1,γ )
α,κρ

)
+ 1

�
Z∗

κ,αρNκ
ρβγλ. (49)

In the above expressions, we have used the bar symbol to
indicate, following the notation of Ref. 40, the frozen-ion
counterparts of the tensors:

ēαβγ = −
∑

κ

P
(1,γ )
α,κβ , (50)

μ̄I
αβ,γ λ = 1

2

∑
κ

P
(2,γ λ)
α,κβ . (51)

The tensors e and ē correspond to the well-known relaxed-
ion and frozen-ion piezoelectric coefficients, and are both
symmetric with respect to β ↔ γ exchange. (This property of
the latter tensor, as well as its relationship to Martin’s theory of
piezoelectricity,31 will be rigorously demonstrated in Secs. V C
and V D, respectively.) Hence, the unsymmetrized stress tensor
ε̃βγ (r,t) = iUβqγ eiq·r−iωt can be replaced with its symmetric
counterpart in Eq. (47), leading to an expression that is fully
invariant with respect to either translations or rotations of the
original reference:

P α(r,t) = εβγ (r,t) eαβγ + ηβ,γ λ(r,t) μI
αβ,γ λ. (52)

This formula, which is a central result of this work, allows
us to identify μI and μ̄I with the sought-after relaxed-ion and
frozen-ion flexoelectric tensors, respectively, i.e.,

μI
αβ,γ λ = ∂P α

∂ηβ,γ λ

. (53)

The superscript I indicates that μI and μ̄I are “type-I” objects,
i.e., they describe the response to a type-I strain gradient tensor
ηβ,γ λ. One can, of course, write the flexoelectric tensor μ in
type-II form; we shall do this explicitly hereafter, as such a
conversion is important for later derivations (and, in particular,
for tracing the important link to elasticity that we anticipated
in Sec. IV A).

C. Type-II form and “elastic sum rule”

From the definition of the type-II strain gradient tensor
εβγ,λ, it follows that

μII
αλ,βγ = ∂P α

∂εβγ,λ

, (54)

where the type-II flexoelectric tensor is related to μI via a
cyclic permutation of the last three indices

μII
αλ,βγ = μI

αβ,γ λ + μI
αγ,λβ − μI

αλ,βγ . (55)

Note that μII
αλ,βγ is invariant upon exchange of the last two

indices, consistent with the analogous symmetry of the type-
II strain gradient tensor. By combining Eq. (55) with (49)
we have

μII
αλ,βγ = μ̄II

αλ,βγ − P
(1,λ)
α,κρ�κ

ρβγ + 1

�
Z∗

κ,αρL
κ
ρλ,βγ . (56)

The tensor μ̄II is defined from μ̄I via the symmetrization (55).
The internal-strain tensor Lκ follows from Nκ via an analogous
operation on the indices βγλ, which can be ultimately traced
back to a redefinition of the force-response tensor

Lκ
ρλ,βγ = �̃

(0)
κρκ ′αĈκ ′

αλ,βγ , (57)

Ĉκ
αλ,βγ = T̂ κ

αβ,γ λ + T̂ κ
αγ,λβ − T̂ κ

αλ,βγ . (58)

In turn, the tensor Ĉκ
αλ,βγ can be written explicitly in terms of

the type-II flexoelectric force-response tensor

Cκ
αλ,βγ = [αβ,γ λ]κ + [αγ,λβ]κ − [αλ,βγ ]κ + (αλ,βγ )κ ,

(59)

after separating the mass-dependent part

Ĉκ
αλ,βγ = Cκ

αλ,βγ − mκ

M
�Cαλ,βγ . (60)

Under the assumption that the crystal at rest is free of stresses
(see Sec. 28 of Ref. 39),

Cαλ,βγ = 1

�

∑
κ

Cκ
αλ,βγ (61)

is the macroscopic elastic tensor calculated in short-circuit
boundary conditions (zero macroscopic electric field). This is
another key result of this work, which we shall indicate as
“elastic sum rule” henceforth.44

The detailed proof that Eq. (61) indeed is the elastic tensor
can be found in the Born and Huang (BH) book.39 In fact, our
choice of notation for some intermediate lattice-dynamical
quantities was motivated by their direct relationship to the
[αβ,γ λ] and (αβ,γ λ) of BH:

[αβ,γ λ]BH = 1

�

∑
κ

[αβ,γ λ]κ ,

(αβ,γ λ)BH = 1

�

∑
κ

(αβ,γ λ)κ .

By combining these definitions with Eqs. (59) and (61), we
recover the BH formula for the elastic tensor [Eq. (27.26)
therein]

Cαλ,βγ = [αβ,γ λ] + [αγ,λβ] − [αλ,βγ ] + (αλ,βγ ).

As mentioned in Sec. IV A, the square brackets have to do
with the frozen-ion deformation of the lattice, and are the
only contribution in high-symmetry crystals, while the round
brackets have to do with the internal degrees of freedom that
respond to a uniform strain in lower-symmetry crystals. To
further illustrate the implications of these statements in the
context of elasticity, it is useful to write Cκ

αλ,βγ = C̄κ
αλ,βγ +

(αλ,βγ )κ , where we have introduced the auxiliary quantity

C̄κ
αλ,βγ = [αβ,γ λ]κ + [αγ,λβ]κ − [αλ,βγ ]κ . (62)

The bar symbol was motivated by the direct relationship
between C̄κ

αλ,βγ and the frozen-ion elastic tensor40 C̄αλ,βγ :∑
κ

C̄κ
αλ,βγ = �C̄αλ,βγ . (63)

Thus, the quantity (αλ,βγ ) is simply the additional contri-
bution to the elastic tensor Cαλ,βγ = C̄αλ,βγ + (αλ,βγ ) that
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is associated with the relaxation of the internal degrees of
freedom of the cell.

In a hand-waving way, one can say that the type-II
flexoelectric force-response tensor is a “sublattice-resolved”
version of the macroscopic elastic coefficients. This statement
can be substantiated by invoking a general result of continuum
mechanics, relating the divergence of the stress field to the net
force fα acting on a volume � of the material,

fα =
∫

�

d3r ∇βσαβ(r). (64)

Recall the definition of the stress tensor in a linear material

σαβ(r) = Cαβγλεγλ(r). (65)

Assuming a bulk crystal, the elastic tensor is independent of
position; therefore, for a unit cell of the crystal we immediately
have ∑

κ

f κ
α = �Cαβγλεγλ,β(r). (66)

This conclusively proves our claim: the macroscopic elastic
tensor can be interpreted as a net force acting on the primitive
cell in response to a strain gradient. This must correspond
to the basis sum of the force induced on individual atoms
(again in response a strain gradient), which is nothing but the
flexoelectric force-response tensor C.

D. Dynamic and static flexoelectricity

It is apparent from the above derivations that the flexo-
electric internal-strain tensors (either type-I, N, or type-II, L)
directly depend on the atomic masses via T̂ or Ĉ [Eq. (43)].
This poses a conceptual problem, as many experiments involve
an external load that is statically applied to a sample. If
the flexoelectric tensor is an intrinsically dynamic quantity,
as one would conclude based on its mass dependence, is
there a hope that our theory might be able to interpret such
data? Tagantsev15 argued that one must consider two distinct
versions of the flexoelectric tensor: a static and a dynamic one.
In the following, we shall discuss this point in detail, in light
of the results presented so far.

To start with, it is useful to analyze the physical origin
of the aforementioned mass dependence in the dynamical
context of a long-wavelength acoustic phonon. Suppose that
the perturbed crystal is characterized by a macroscopic strain
gradient εβγ,λ(r,t) at a given position r and time t . According
to Eq. (66), the unit cell at (r, t) feels a net force that depends on
εβγ,λ, on the macroscopic elastic tensor of the material and on
its mass density. Such force produces, in turn, an acceleration
a equal to

aα = �Cαλ,βγ

M
εβγ,λ.

Then, in the moving frame of such material point, each
individual atom must experience, in addition to the force
induced by the strain gradient in the laboratory frame, a
fictitious force equal to −mκaα:

f̃ κ
α = −mκ

�Cαλ,βγ

M
εβγ,λ.

Such fictitious force indeed coincides with the mass-dependent
contribution to the compensated flexoelectric tensor Ĉκ

αλ,βγ .

The fact that the sublattice sum of Ĉκ
αλ,βγ vanishes identically

is consistent with the obvious fact that, in its own accelerated
frame, the material point does not move by definition, so the
total force acting on it must vanish.

The above arguments clearly establish the dynamical nature
of the flexoelectric internal-strain tensor that we derived in
Sec. IV A. Nevertheless, it is straightforward to show that the
same tensor (L or N) is equally valid to describing the static
response of the system to a uniform gravitational field. This can
be demonstrated, for example, by assuming that an external
force, proportional to the mass mκ , is applied to every atom of
the crystal, and by performing the explicit derivation all over
again. Alternatively, and more simply, one could invoke the
equivalence principle of general relativity: the fictitious forces
occurring in the accelerated frame described above must be
analogous to those occurring in an inertial frame under the
action of a gravitational field.

Assuming a static regime and that the effects of gravitation
are negligibly small on the experimentally relevant scale, the
following condition for mechanical equilibrium must hold at
every point in the sample:∑

βγλ

Cαλ,βγ εβγ,λ(r) = 0. (67)

Equation (67) implies that an individual component of the
strain gradient tensor εβγ,λ can not be sustained statically at
any point in a material unless Cαλ,βγ = 0 for all α. Thus,
in a static deformation field, two (or more) inequivalent
strain gradient components generally coexist, in such a way
that their respective net force mutually cancels. Let us see
the consequences of this observation on the flexoelectric
response. The lattice-mediated contribution (note that the other
contributions to �P are independent of masses and therefore
not a concern here) to the flexoelectric polarization is

�P
latt
α = Z∗

κ,αρ

�
�̃

(0)
κρκ ′χ

(
Cκ ′

χλ,βγ − �mκ

M
Cχλ,βγ

)
εβγ,λ.

By summing up all the components of εβγ,λ and by imposing
the equilibrium condition (67), the mass-dependent part
disappears, and we have

�P
latt
α = 1

�
Z∗

κ,αρ�̃
(0)
κρκ ′χCκ ′

χλ,βγ εβγ,λ(r). (68)

This expression depends, as it should, only on static properties
of the material, i.e., the interatomic force constants and the
linear response of the electron cloud to a displacement of the
nuclei. This result resolves the paradox that we formulated
at the beginning of this section and provides us with the
comforting proof that our theory is indeed applicable to both
static and dynamic phenomena alike. In particular, the above
derivations confirm that the flexoelectric tensor is a genuine
dynamical quantity, but is readily applicable to static regimes,
as the troublesome mass dependence disappears in such cases.

There is, therefore, no need to seek the definition of a
distinct “static” tensor,15 and in fact such a quest would be
thwarted by the inherent indeterminacy of the problem. Sup-
pose we have found some definition of the (lattice-mediated)
tensor that reproduces the results of static measurements, and
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call it μII,a
αλ,βγ . It is straightforward to see that any of the infinite

variants of μII,a that can be obtained by writing

μ
II,b
αλ,βγ = μ

II,a
αλ,βγ + Z∗

κ,αρ�̃
(0)
κρκ ′χλκ ′Cχλ,βγ ,

where λκ ′ is a set of completely arbitrary values (apart that
their sum over κ ′ must vanish), describes the static behavior of
the material equally well. [Experimentally, this fact translates
in the formal impossibility (already pointed out in Ref. 4)
of measuring the individual components of the flexoelectric
tensor by static means, even by combining the results of
a vast number of geometries and configurations.] Of these
infinite variants it suffices, of course, to choose one; few
will disagree on the mass-compensated μ being the most
sensible choice, as it is good for both static and dynamic
phenomena.

As an academic exercise, it is interesting to briefly comment
on other conceivable ways (not necessarily realistic) of
compensating the net flexoelectric force on the unit cell,
which might make sense in the context of a computational
or gedanken experiment. This can be done by treating the
masses mκ in Eq. (60) as free parameters, and by setting them
by hand to some arbitrary value. Interestingly, one can show
that by setting all masses to the same value we would recover
Tagantsev’s definition of the “static” flexoelectric tensor
(whose appellation as static appears therefore questionable). In
turn, by setting all masses to zero except one single atom (say,
A) in the basis, we would allow only atoms A to feel inertia,
while the other species would be, at any given time, fully
relaxed in the deformation field generated by the A sublattice.
This is reminiscent of the computational strategy used by Hong
et al.17 of “freezing in” the displacements of one sublattice
while letting the others relax. We stress that these “alternative”
definitions of the flexoelectric tensor do not correspond to any
physically measurable quantity, and therefore their use appears
of little interest, except as a conceptual aid to check the internal
consistency of the theory.

V. ELECTRONIC RESPONSE FUNCTIONS

The scope of this section is to derive a number of useful
properties of the electronic response functions, i.e., the charge
density and polarization. We shall focus on their mutual
relationship, on their symmetry properties, and on their
representation in terms of localized functions. Based on these
results, we shall illustrate the soundness of our formalism by
providing alternative derivations of already established results,
such as Martin’s theory of piezoelectricity31 and the theory of
the longitudinal flexoelectric response developed by Resta18

and Hong and Vanderbilt.19

A. Charge versus polarization response

By using the fundamental relationship

∇ · P(r) = −ρ(r),

one can verify that (recall the q-dependent phase factor in both
ρ and P; in the following equations we omit the dependence

on r and use ∂/∂rα → ∂α in order to lighten the notation)

ρ
(0)
κβ = −∂αP

(0)
α,κβ,

ρ
(1,γ )
κβ = P

(0)
γ,κβ − ∂αP

(1,γ )
α,κβ ,

ρ
(2,γ1γ2)
β = P

(1,γ2)
γ1,κβ + P

(1,γ1)
γ2,κβ − ∂αP

(2,γ1γ2)
α,κβ ,

ρ
(3,γ1γ2γ3)
κβ = P

(2,γ2γ3)
γ1,κβ + P

(2,γ3γ1)
γ2,κβ + P

(2,γ1γ2)
γ3,κβ

−∂αP
(3,γ1γ2γ3)
α,κβ ,

. . . ,

where the rule to extend this to an arbitrary order is self-
explanatory. It is interesting to look at the cell averages of the
above expressions, as these are immediately relevant for the
calculation of the macroscopic electromechanical coefficients.
The cell average of the divergence of a periodic function is
zero, and therefore we have

ρ
(0)
κβ = 0, (69a)

ρ
(1,γ )
κβ = P

(0)
γ,κβ, (69b)

ρ
(2,γ1γ2)
κβ = P

(1,γ2)
γ1,κβ + P

(1,γ1)
γ2,κβ , (69c)

ρ
(3,γ1γ2γ3)
κβ = P

(2,γ2γ3)
γ1,κβ + P

(2,γ3γ1)
γ2,κβ + P

(2,γ1γ2)
γ3,κβ . (69d)

As a first observation, note that the average of the induced
charge upon rigid displacement of the sublattice κ must be
zero, to preserve neutrality. Second, it is clear that the elec-
tronic polarization-response tensor at the order n − 1 contains
sufficient information (in general more than necessary) to fully
determine the charge-response tensor at the order n. In the
n = 1 case, such a relationship is one to one; both ρ(1) and

P
(0)

tensors correspond to the Born effective charge tensor
(apart from a trivial factor of volume). The relationship at
n = 2,3 will be clarified in the following sections.

B. Extended and localized representations

Several authors (starting from Martin31) have based their
treatment of electromechanical effects on the charge-density
response to the displacement of an isolated atom, rather than to
extended collective modes as we have done so far in this work.
In the following, we shall establish the rigorous link between
these two perspectives on the same problem, thus putting our
own approach on firmer theoretical grounds. To that end, we
need to move to a localized representation of the response
functions at a given order in q. In close analogy to the theory
of Wannier functions,45–47 we can achieve this via a Fourier
transform in q space. For example, in the case of the charge
density we have

fκβ(r − Rlκ ) = �

(2π )3

∫
BZ

d3q ρ
q
κβ(r)e−iq·(Rlκ−r), (70)

where fκβ(r) is (analogously to Ref. 31) the response to the
displacement of an isolated atom at the lattice site Rlκ . Since
we are considering a periodic bulk crystal, of course fκβ is
independent of the cell index l. Similarly, for the polarization
we can readily extract the α component of the polarization
field Pα,κβ induced by a small displacement of the atom lκ
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along β:

Pκβ(r − Rlκ ) = �

(2π )3

∫
BZ

d3q Pq
κβ(r)e−iq·(Rlκ−r). (71)

Before proceeding any further, however, we need to stop
for a moment and make a parenthetical digression. In fact,
the forthcoming derivations will heavily rely on the decay
properties of the P and f functions in real space. Such decay
is fast enough only if the dependence of the extended response
functions Pq and ρq on q is analytic across the full Brillouin
zone, which brings us back to macroscopic electrostatics.

Recall that in Sec. III we discussed a procedure to “cure”
the nonanalytic behavior of the electric fields near �, by
simply removing the G = 0 term from the self-consistent
electrostatic potential. Such a prescription is, however, well
defined only in the context of a Taylor expansion around �,
and is therefore unsuitable to the present purposes; the above
Fourier transforms are integrals over the full Brillouin zone. To
have a truly localized representation of the charge-density (and
polarization) response to the displacement of an isolated atom,
we need to devise a strategy that ensures (i) the analyticity of Pq

and ρq over all reciprocal space, and (ii) their periodicity in q,
i.e., ρq+G(r)eiG·r = ρq(r). Clearly, the “G 
= 0” prescription
can not satisfy both requirements, hence the need for an
alternative approach.

To address this issue, we shall follow the strategy proposed
by Martin31 of assuming that a very low-density gas of
mobile carriers is superimposed to the insulating crystal lattice.
As demonstrated in Sec. VI E, this assumption modifies the
Coulomb kernel as follows:

4π

q2
→ 4π

q2 + k2
TF

, (72)

where kTF is the inverse of the Thomas-Fermi screening length.
As the Coulomb kernel is now analytic over all reciprocal
space, we can now safely include the G = 0 component of
the electrostatic potential, and therefore fulfill both (i) and
(ii). Of course, the response functions that result from the
former (“G 
= 0”) and the latter (“Thomas-Fermi” or “TF”)
procedures generally differ (and further depend on kTF in
the latter case). One can show (see Sec. VI E), however,
that the lowest orders in their Taylor expansion around �,
and this includes all quantities that enter the piezoelectric
and flexoelectric tensors, are unsensitive to whether one uses
“G 
= 0” or “TF.”

Based on this result, we shall implicitly assume from now on
that all response functions are defined within the TF model, and
proceed to deriving the relationship between the q expansion
of their extended representation (ρq and Pq) and the real-space
moments of their localized representation (f and P). For both
physical quantities, the converse Fourier transforms can be
written as

ρ
q
κβ(r) =

∑
l

fκβ(r − Rlκ )eiq·(Rlκ−r), (73)

Pq
κβ(r) =

∑
l

Pκβ(r − Rlκ )eiq·(Rlκ−r). (74)

By differentiating Eq. (73) in q space, we readily obtain

ρ
(0)
κβ (r) =

∑
l

fκβ(r − Rlκ ), (75a)

ρ
(1,γ )
κβ (r) =

∑
l

fκβ(r − Rlκ )(r − Rlκ )γ , (75b)

ρ
(2,γ λ)
κβ (r) =

∑
l

fκβ(r − Rlκ )(r − Rlκ )γ (r − Rlκ )λ. (75c)

Analogous formulas link the extended P (0,1,2) to the
localized P . (These are simply obtained by replacing ρ → Pα

and f → Pα in the above expressions.) It is useful to introduce
the moments of the localized functions, by means of the
following integrals over all space:

Q
(n,γ1...γn)
κβ =

∫
d3r fκβ(r)rγ1 . . . rγn

, (76)

J
(n,γ1...γn)
α,κβ =

∫
d3r Pα,κβ (r)rγ1 . . . rγn

. (77)

Q
(0)
κβ vanishes because of charge neutrality, while Q(n=1,2,3)

are, respectively, the dipolar (n = 1), quadrupolar31 (n = 2),
and octupolar18,19 (n = 3) moments of the induced charge
distribution f . Following Eqs. (75a)–(75c), such moments are
trivially related to the cell average of the extended functions
that we have used throughout this work:

Q
(n,γ1...γn)
κβ = �ρ

(n,γ1...γn)
κβ , (78)

J
(n,γ1...γn)
α,κβ = �P

(n,γ1...γn)
α,κβ . (79)

Later in this section we shall use these results to demonstrate
the consistency of the present theory with earlier works on the
subject. Before doing that, we need to demonstrate a number
of key symmetry properties of the response functions, which
we shall discuss in the following.

C. Symmetry properties

The symmetry properties of the charge response were
established by Martin;31 we shall translate his results to our
notation, and later extend these ideas to the polarization
response. We shall be concerned with the basis sums of the
electronic response functions

ρ
(n,...)
β (r) =

∑
κ

ρ
(n,...)
κβ (r), (80)

P
(n,...)
αβ (r) =

∑
κ

P
(n,...)
α,κβ (r), (81)

which are relevant for the frozen-ion contribution to the
electromechanical tensors. Translation invariance requires31

that

ρ
(0)
β (r) = −∂ρ(r)

∂rβ

, (82)

where ρ(r) is the ground-state charge density of the crystal at
rest. The polarization counterpart of this property reads as

P
(0)
αβ (r) = δαβρ(r). (83)

The physics behind Eq. (83) is clear: upon rigid translation of
the crystal, the induced current density must be proportional
to the charge density at r, and directed along the translation
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direction (i.e., the electron cloud must undergo the same rigid
shift as the nuclei).

Rotation invariance states that the electronic charge density
must accompany a rigid rotation of the atomic lattice. This
leads31 immediately to the invariance of ρ

(1,γ )
β with respect to

β ↔ γ exchange:

ρ
(1,γ )
β (r) = ρ(1,β)

γ (r). (84)

[This result follows from Eq. (18c) of Ref. 31, by using
Eqs. (81), (75a), and (75b).] In the context of the polarization,
the same invariance property holds,

P
(1,γ )
αβ (r) = P (1,β)

αγ (r). (85)

To see this, describe the rotation with a displacement u of a
point r in the crystal as

uα = εαβγ θ̂βrγ , (86)

where θ̂ is an axial vector and εαβγ is the antisymmetric Levi-
Civita symbol. We impose as above that the charge density
transforms the same way as the atomic lattice,∑

lκ

∑
βγλ

εβγλPα,κβ(r − Rlκ )θ̂γ (Rlκ )λ =
∑
γ λ

εαγλρ(r)θ̂γ rλ,

(87)

where we have written the sums over the Cartesian indices
explicitly for clarity. By using Eq. (83) we can write

ρ(r) =
∑

β

P
(0)
αβ (r) =

∑
lκβ

Pα,κβ(r − Rlκ ).

This leads immediately to∑
lκ

∑
βγλ

εβγλθ̂γ P
(1,λ)
αβ (r) = 0, (88)

which must be satisfied for any θ̂ , thus completing the proof.
We have accumulated enough results now to compare our
theory to earlier treatments of the electromechanical problem,
respectively, piezoelectricity and flexoelectricity.

D. Martin’s theory of piezoelectricity

Based on the theory developed in this work, we can write
the polarization response to a deformation (to first order in q,
which includes the relevant terms for piezoelectricity) as

P α(r) = εβγ (r)
[
P

(0)
α,κρ�

κ
ρβγ − P

(1,γ )
αβ

]
. (89)

As before, P
(0)
α,κβ = Z∗

κ,αβ/� is the Born effective charge

tensor divided by the volume. Concerning P
(1,γ )
αβ , recall the

relationship between the polarization and the charge-response
functions [Eq. (69c)]

P
(1,γ )
αβ + P

(1,α)
γβ = ρ

(2,αγ )
β . (90)

Next, observe that P
(1,γ )
αβ is symmetric with respect to γ ↔ β,

while ρ
(2,αγ )
β is symmetric with respect to γ ↔ α. This means

that the two tensors have the same number of independent
entries (18); hence, the above relationship can be readily

inverted to yield the polarization tensor components as a
unique function of the charge response tensor

P
(1,γ )
αβ = 1

2�

[
Q

(2,αγ )
β + Q(2,γβ)

α − Q(2,αβ)
γ

]
, (91)

where we have expressed the latter in terms of the induced
quadrupolar moments. By inserting Eq. (91) into Eq. (89), we
recover Eq. (26) of Ref. 31.

The same result could be deduced, via a somewhat
clumsier algebra, from the total charge-density response to
a deformation. At first order in q, the net induced charge is
zero; therefore, we need to push our expansion to the second
order in q, i.e., to the strain-gradient term

ρ(r) = ηβ,γ λ(r)
[
ρ

(2,γ λ)
β − 1

2�κ
ρβγ ρ(1,λ)

κρ − 1
2�κ

ρβλρ
(1,γ )
κρ

]
.

(92)

[This equation was obtained by replacing the polarization
response tensors in Eq. (49) with the corresponding charge-
density tensors, and by eliminating the vanishing terms.] By
rewriting the same expression in terms of the type-II strain
gradient tensor εβγ,λ, we readily obtain

ρ(r) = εβγ,λ(r)

[
P

(1,γ )
λβ − Z∗

κ,λρ

�
�κ

ρβγ

]
. (93)

[We have used Eq. (91) and �ρ(1,λ)
κρ = Z∗

κ,λρ .] This is very
similar to Eq. (89), except that here we have the charge instead
of the polarization, the type-II strain gradient instead of the
strain tensor, and a minus sign. To demonstrate that Eqs. (89)
and (93) are, in fact, equivalent one just needs to write Eq. (89)
in a macroscopic strain gradient

P α(r) = εβγ,λ

(
rλeαβγ + μII

αλ,βγ

)
, (94)

where eαβγ is the piezoelectric tensor, and the flexoelectric
contribution is included for completeness. By applying ∇ ·
P = −ρ, one readily recovers Eq. (93), thus completing the
proof.

This derivation tells us that, in order to extract the piezo-
electric tensor, one can look indifferently at the polarization
induced by a strain or at the net charge associated with a strain
gradient. In the latter case, the purely electronic (frozen-ion)
contribution is written in terms of the quadrupolar response
tensor, consistent with Martin’s arguments. Interestingly, our
derivation also shows that the peculiar symmetrization of the
quadrupolar tensor indices [Eq. (91)], which was inferred by
Martin via symmetry arguments, is intimately related to the
analogous relationship [Eq. (3)] between the type-I and -II
strain gradient tensors. In particular, the tensor Q

(2,γ λ)
β /(2�)

describes the macroscopic charge-density response to a frozen-
ion strain gradient of type I, ηβ,γ λ; this can be recast into type-II
form via the symmetrization (91), yielding the frozen-ion
piezoelectric tensor.

As a closing remark, note that the present theory is
consistent with the definition of the frozen-ion piezoelectric
coefficient proposed by Hong and Vanderbilt.19 In our notation,
Eq. (13) of Ref. 19 reads as

ēα,βγ = − 1

�
J

(1,γ )
αβ = −P

(1,γ )
αβ . (95)
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E. Earlier treatments of the flexoelectric problem

We shall discuss the literature works that are most relevant
to the present theory and that have most directly contributed
to its conceptual foundation. The connection to Tagantsev’s
theory15 of the lattice-mediated response has been extensively
discussed in Sec. IV. There, we have pointed out the crucial
necessity for an adequate treatment of the nonanalyticities
due to the long-range electrostatic forces, which we imple-
mented by suppressing the G = 0 term in the self-consistent
electrostatic potential. Interestingly, by using the “screened”
Coulomb kernel described in Sec. V we can draw an even
closer link to Ref. 15, i.e., express the �(0,1,2) matrices that we
used in this work in terms of the moments of the real-space
force constants. Define, following the prescriptions of Sec. III,
the real-space force constant matrix as a Fourier transform of
the reciprocal-space one,

�l
κα,κ ′β = �

(2π )3

∫
BZ

d3q �
q
κα,κ ′βe−iq·(Rl+τ κ′ −τ κ ). (96)

(Note the phase factor dependent on the relative sublattice
positions τ κ ′ − τ κ ; see Sec. III for an explanation.) Thanks
to the screening of the long-range Coulomb forces, the real
space � decays exponentially as a function of the interatomic
distance Rl + τ κ ′ − τ κ . This means that the moments of �l

are well defined up to any order. Consider now the converse
transform

�
q
κα,κ ′β =

∑
l

�l
κα,κ ′βeiq·(Rl+τ κ′−τ κ ). (97)

By differentiating with respect to the components of q, we
readily obtain the desired link between the small-q Taylor
expansion of �q and the moments of �l .

We shall now focus more specifically on the theory of the
electronic flexoelectric response that was proposed by Resta18

(RR) and Hong and Vanderbilt19 (HV). RR demonstrated that
the (purely electronic) longitudinal flexoelectric response in
elemental crystals (this statement was later generalized to all
insulating crystals by HV) is uniquely determined by the basis
sum of the induced octupolar moments Q

(3,αγ λ)
β in our notation.

To see this, recall our result for the flexoelectric polarization in
a “frozen-ion” sound wave under fixed-E electrical boundary
conditions (short circuit, SC)

P
SC
α (r) = −Uβqγ qλ

2
P

(2,γ λ)
αβ eiq·r. (98)

Now, assume that the wave is purely longitudinal (Uβ = Uq̂β),
and consider the longitudinal component of the dielectrically
screened (i.e., we assume a phonon propagating in an ideal
insulator, in absence of mobile carriers) polarization by
projecting it over q̂,

P q̂(r) = − Uq2

2 q̂ · ε · q̂
q̂αq̂β q̂γ q̂λ P

(2,γ λ)
αβ eiq·r, (99)

where we have inserted a factor of q̂ · ε · q̂ (ε is the high-
frequency dielectric tensor) to account for the fixed-D electri-
cal boundary conditions that characterize a long-wave phonon
along the propagating direction. Note that the amplitude of the
longitudinal strain gradient tensor along q is ηq̂ = −Uq2eiq·r;

also, we use P
(2) = J (2)/� and Eq. (69d):

J
(2,γ λ)
αβ + J

(2,αγ )
λβ + J

(2,λα)
γβ = Q

(3,αγ λ)
β . (100)

After a cyclic permutation of the indices, we readily obtain

∂P q̂(r)

∂ηq̂
= 1

6�

q̂αq̂β q̂γ q̂λQ
(3,αγ λ)
β

q̂ · ε · q̂
, (101)

where the numerator of the fraction is the longitudinal
component of the octupolar tensor along q̂, consistent with RR
and HV. (The dielectric screening factor q̂ · ε · q̂ is implicit in
the multipolar moments defined by HV and RR; see Sec. VI D
for a detailed derivation.)

Unlike the piezoelectric case, Eq. (100) can not be inverted
to express the J (2) tensor as a function of Q(3); the octupolar
charge response contains enough information to describe
the (purely electronic) longitudinal flexoelectric effect, but
additional data, contained in J (2), is necessary to describe the
transversal response.19 To address the latter, HV proposed to
write [Eq. (13) therein, expressed in our notation]

μ̄I
αβ,γ λ = 1

2�
J

(2,γ λ)
αβ . (102)

This formula is, again, fully consistent with the results derived
here.

VI. NONANALYTIC BEHAVIOR OF THE RESPONSE
FUNCTIONS AT �

In several parts of this work we have stressed that the
long-range electrostatic interactions are responsible for a
nonanalytic behavior of the response functions at the � point
of the Brillouin zone. We have also argued that, for a correct
derivation of the electromechanical coupling tensors, these
macroscopic fields need to be suppressed, either by removing
the G = 0 term in the self-consistent electrostatic potential
(Sec. IV) or by appropriately screening the Coulomb kernel
by means of a low-density gas of mobile charges (Sec. V). In
this section, we shall provide a formal justification for these
two apparently dissimilar prescriptions, and show that they are
indeed equivalent in the context of the piezoelectric or flexo-
electric response of a generic insulator. We shall also clarify
the physical nature of the aforementioned nonanalyticity, and
its impact on the main response functions considered in this
work, the charge density and the interatomic force-constant
matrix.

That the force-constant matrix is nonanalytic at � has been
well known since the early days of lattice-dynamics theory.39

Macroscopic electric fields have a dramatic impact on the
propagation of optical phonons in a neighborhood of the
zone center, as they are responsible for the frequency splitting
between longitudinal and transverse modes (Lyddane-Sachs-
Teller relationship,48 LST henceforth). Cochran and Cowley49

showed, based on phenomenological arguments, that the LST
relationship holds in a generic crystalline insulator. Later, the
microscopic expressions for the interatomic force constants
(together with the Cochran-Cowley formula) were rigorously
derived, based on a fundamental quantum-mechanical frame-
work, by Pick, Cohen, and Martin.33 More recently, the
LST relationship was revisited by Resta50 in the context of
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magnetoelectric materials, where both electric and magnetic
fields were found to be important in the long-wavelength limit.

Unfortunately, all the aforementioned works have limited
their analysis to the nonanalyticities of the force-constant
matrix at the lowest (zero) order in the phonon wave vector
q. This is by far the most important term in the context of
lattice dynamics, but it is insufficient to the scope of this
study, where an expansion of the response functions up to
(and including) order O(q2) is needed to access the relevant
electromechanical tensors. In the following, we shall address
this point by extending the Cochran-Cowley formula to O(q2),
showing that the quadrupolar and octupolar moments of the
charge response enter naturally as higher-order counterparts
of the dynamical Born charge tensors. In particular, they
mediate long-range interatomic force constants that decay
as r−4 and r−5, respectively, as one would expect for
classical dipole-quadrupole and dipole-octupole/quadrupole-
quadrupole terms. Interestingly, we also find an additional r−5

term, of less obvious physical interpretation, that is related to
the q dispersion of the macroscopic dielectric tensor.

A. Dielectric matrix approach

We shall frame the following discussions with an exact all-
electron description of the periodic solid in mind. This means
that the nuclei are described by δ functions, each carrying
a positive charge that corresponds to its atomic number. All
the physical properties of relevance to this work can then be
expressed in terms of the dielectric matrix (or the closely
related polarizability matrix), which describes the response of
the screened electrostatic potential to an external perturbation.
The fundamental law relating the total (screened) potential
V to the external perturbing potential V ext and the induced
potential V ind (related to the rearrangement of the electron
cloud that follows the perturbation) is, in full generality,

V (r) = V ext(r) + V ind(r). (103)

It is most practical to exploit the periodicity of the system and
work in reciprocal space, where the above relationship reads
as

VG(q) = V ext
G (q) + V ind

G (q). (104)

(We assume a monochromatic external perturbation of wave
vector q, and we expand all quantities on the usual reciprocal-
lattice grid, indexed by G.) The induced potential V ind is due to
the electrostatic perturbation produced by the induced charge

V ind
G (q) = 4π

|q + G|2 ρ ind
G (q). (105)

In turn, the induced charge can be written in terms of the total
(screened) potential V by introducing the polarizability matrix

ρ ind
G (q) =

∑
G′

�GG′(q)VG′(q). (106)

[Note that the matrix �GG′(q) defined by Eq. (106) cor-
responds to the symbol π (q + G,q + G′) of Ref. 33.] By
combining the above, Eq. (104) can be written as∑

G′
ε(q + G,q + G′)VG′(q) = V ext

G (q), (107)

where ε is the static dielectric matrix33

ε(q + G,q + G′) = δGG′ − 4π

|q + G|2 �GG′(q). (108)

In the context of this work, we find it convenient to study
the potential response to an external charge perturbation (e.g.,
produced by the displacement of a nucleus from its equilibrium
lattice position), rather than a to potential,∑

G′
�GG′(q)VG′(q) = ρext

G (q), (109)

where we have introduced a new matrix

�GG′(q) = |q + G|2
4π

δGG′ − �GG′(q). (110)

� is related to the dielectric matrix (108) by � = Kε, where
KGG′(q) = δGG′ |q + G|2/4π is diagonal. The matrix �GG′(q)
is Hermitian and analytic at all q since � enjoys both
properties.33

To obtain the electrostatic potential response to ρext, it
suffices to invert �:

VG(q) =
∑
G′

�−1
GG′(q) ρext

G′ (q). (111)

Since � = Kε, one immediately has the following relation-
ship:

�−1
GG′(q) = ε−1(q + G,q + G′)

4π

|q + G′|2 , (112)

where ε−1 is the inverse dielectric matrix. (Most literature
works have used ε−1 as the fundamental dielectric function;
hereafter, we shall instead work with the closely related quan-
tity �−1.) Note that, unlike �, �−1 is generally nonanalytic in
q. To see this, it is instrumental to divide the two matrices into
four blocks

� =
(

A B

B∗ C

)
, �−1 =

(
P Q

Q∗ S

)
. (113)

The “heads” A and P are 1 × 1 matrices, corresponding to
the G = G′ =0 elements; the “wings” B and Q are one-
dimensional vectors, while C and S are square Hermitian
matrices. It is easy to show that

Qi = −P (B · C−1)i , (114)

P = (A − B · C−1 · B∗)−1, (115)

Sij = C−1
ij + (C−1 · B∗)i P (B · C−1)j , (116)

where the indices i and j stand for reciprocal lattice vectors
excluding G = 0. From the above relationships, it is manifest
that all the elements in the �−1 matrix display a nonanalytic
behavior. This is due to the quantity P (q), which constitutes
the head of the matrix, and also appears in Qi and Sij . It can
be shown that, for a generic insulator, P (q) diverges as ∼q−2

in a vicinity of �. Indeed, at the leading order one has33

A(q) ∼ q · A · q, (117)

Bi(q) ∼ q · Bi , (118)
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where A and Bi are, respectively, a 3 × 3 tensor and 3-vectors,
both independent of q. [The matrix elements of C(q), on the
other hand, tend to a finite constant.] The O(q−2) divergence
of P (q) then follows from Eq. (115).

B. Application to the phonon problem

The �−1 matrix is a fundamental property of a crystalline
solid within the adiabatic approximation. To appreciate the
physical meaning of this quantity, consider the “bare” charge
perturbation induced by a collective displacement of the
sublattice κ along the Cartesian direction α:

ρext
καG(q) = − iZκ

�
(qα + Gα)e−iG·τ κ , (119)

where we have made the dependence on κ and α explicit.
(The above formula describes the nucleus as a δ function of
charge Zκ , consistent with the exact all-electron treatment that
is assumed in this section.) The induced charge response to
such a perturbation reads as

ρ̃ ind
καG(q) = �G·(q) · �−1(q) · ρext

κα (q), (120)

where the scalar products indicate summation over repeated
reciprocal lattice indices (G′, G′′, etc.). The force-constant
matrix has also a simple expression in terms of �−1:

�̃
q
κα,κ ′β = �

[
ρext

κα (q)
]∗ · �−1(q) · ρext

κ ′β(q). (121)

The tilde sign emphasizes that the response functions of
Eqs. (120) and (121) are inclusive of the macroscopic fields.
These should be, therefore, distinguished from the closely
related quantities ρq and �q, which have been introduced
in the early sections of this work. In fact, the latter were
defined by prescribing that the macroscopic G = 0 term in
the electrostatics should be switched off, while we did not take
such a precaution in the derivation of ρ̃ ind and �̃.

To make the link with ρq and �q, we proceed to solving
again the Poisson equation (109), this time by imposing that the
G = 0 component of the screened potential (we shall indicate
the resulting “partially screened” potential as W ) vanishes:

�GG′(q)WG′(q) = ρext
καG(q), G,G′ 
= 0 (122)

WG(q) = 0, G = 0. (123)

We obtain analogous expressions for the density- and force-
response functions

ρ ind
καG(q) = �G·(q) · C−1(q) · ρext

κα (q), (124)

�
q
κα,κ ′β = �

[
ρext

κα (q)
]∗ · C−1(q) · ρext

κ ′β(q). (125)

(Note that the scalar products now run over the G 
= 0 compo-
nents, consistent with the array dimensions of C−1.) �

q
κα,κ ′β

coincides with the force-constant matrix (indicated by the same
symbol) that we have used in the remainder of this work,
and whose Taylor expansion yields the electromechanical
internal-strain tensors. On the other hand, the total density
response, inclusive of the external perturbing function,

ρq
κα(G) = ρext

καG(q) + ρ ind
καG(q) (126)

corresponds to the function ρ
q
κβ(G) [the Fourier transform of

ρ
q
κβ(r)] that we have extensively used in the previous sections.

The above derivations provide the rigorous proof that both
functions are indeed analytic, and thus their expansions in
powers of q are formally justified.

So what is it, physically, that causes the nonanalyticity
of the “full” (tilded) response functions? The answer is well
known, and lies in the long-ranged character of the electrostatic
interactions; this makes the behavior of the macroscopic fields
(by “macroscopic” here we really mean the G = 0 component)
nonanalytic in a vicinity of �. To see this, it is useful to
calculate the macroscopic electrostatic potential resulting from
the macroscopic charge density ρq

κα = ρ
q
κα(G = 0):

V
q
κα = �−1

00 (q)ρq
κα. (127)

We can express this more conveniently as

Eq
κα = −i 4πq

ρq
κα

ξ (q)
, (128)

where we have used the fact that the electric field is minus the
gradient of the potential, and we have replaced �−1

00 (q) with a
new symbol

ξ (q) = 1

4πP (q)
= 1

4π�−1
00 (q)

= q2

ε−1(q,q)
. (129)

ξ (q) is an analytic function of q [this property is obvious
from the expression of P given in Eq. (115)]. However, the
fact that ξ (q) appears at the denominator in Eq. (128) makes
the macroscopic electric field strongly nonanalytic at �. To
see this, it is helpful to replace both the numerator and the
denominator with the leading-order term in their respective q
expansion

�ρq
κα ∼ −iqβZ∗

κ,αβ, (130)

ξ (q) ∼ qαεαβqβ, (131)

where Z∗
κ,αβ is the Born dynamical charge tensor (the star here

does not indicate complex conjugation; this is the commonly
used notation to distinguish the Born tensor from the bare
nuclear charge Zκ ), and εαβ is the macroscopic high-frequency
dielectric tensor. One readily obtains

Eq→0
κα = −4π

�
q

(q · Z∗
κ )α

q · ε · q
, (132)

i.e., for small values of q the macroscopic field tends to a
direction-dependent constant, and is therefore discontinuous at
�. Such a nonanalytic behavior propagates to both the charge-
density and force-constant response functions, causing them
to be nonanalytic as well.

C. Higher-order generalization of the Cochran-Cowley formula

It is interesting to work out the example of the force-
constant matrix explicitly, to make contact with the existing
knowledge on its nonanalytic behavior near �. To that end,
consider the function

�
q,NA
κα,κ ′β = �

[
ρq

κα

]∗
P (q) ρ

q
κ ′β, (133)

where the NA superscript indicates that this quantity is
nonanalytic in q because of the factor of P (q). It is a
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straightforward exercise to show that

�̃
q
κα,κ ′β = �

q
κα,κ ′β + �

q,NA
κα,κ ′β. (134)

Such a partition of the force-constant matrix into an analytic
and a nonanalytic part corresponds precisely to that of Ref. 33.
[�q

κα,κ ′β and �
q,NA
κα,κ ′β are, respectively, C̄αβ

κκ ′(q,1) and C̄
αβ

κκ ′(q,2)
of Ref. 33.] Thus, our prescription of removing the G = 0 in
the self-consistent electrostatic potential naturally yields the
analytic part of the force-constant matrix as defined by Pick,
Cohen, and Martin.33 The remainder �

q,NA
κα,κ ′β can be expressed

more conveniently as

�
q,NA
κα,κ ′β = 4π�

[
ρq

κα

]∗
ρ

q
κ ′β

ξ (q)
. (135)

Thus, similarly to the case of the electric field, the nonanalytic
part of the force-constant matrix can be written, in full
generality, as the ratio of two analytic functions of q, either
of which can be expanded in a Taylor series. We shall now
push the Taylor expansion to higher orders in q, including all
terms that are potentially relevant in the present theory of the
flexoelectric response,

�ρq
κα ∼ −iqβQ(1,β)

κα − qβqγ

2
Q(2,βγ )

κα

+ i
qβqγ qλ

6
Q(3,βγ λ)

κα + O(q4), (136)

ξ (q) ∼ qαqβεαβ + qαqβqγ qλε
(4)
αβγλ + O(q6), (137)

where Q(1,β)
κα = Z∗

κ,αβ is again the Born dynamical charge
tensor. The formal proof that the second-order expansion of
ξ (q) corresponds to the macroscopic dielectric tensor can be
found in Ref. 33. ε(4) describes the dispersion in q of the
dielectric response and is uniquely defined by Eq. (137); to the
best of our knowledge, this effect has never been considered
before in the context of lattice dynamics. Note the absence of
the zeroth-order term in the expansion of ρq (because of the
requirement of charge neutrality) and the absence of the odd
terms in the expansion of ξ (q) (because of the requirement of
time-reversal symmetry, we assume that we are dealing with a
nonmagnetic insulator).

In order to lighten the notation, we shall use the following
conventions henceforth:

(q q · Q∗
κ )α = qβqγ Q(2,βγ )

κα ,

(q q q · O∗
κ )α = qβqγ qλQ

(3,βγ λ)
κα ,

(q q · ε(4) · q q) = qαqβqγ qλε
(4)
αβγλ,

where the dynamic quadrupoles and octupoles are indicated as
Q∗ and O∗, respectively, in analogy with the dynamic dipoles
Z∗. At the leading order, we recover the usual Cochran-Cowley
formula

�
q,DD
κα,κ ′β = 4π

�

(q · Z∗
κ )α(q · Z∗

κ ′)β
q · ε · q

, (138)

which involves the well-known dipole-dipole (DD) interac-
tions. This term produces a long-ranged contribution to the
real-space interatomic force constants (IFC) that decays as
1/d3 (with the interatomic distance d).36 The next order in the

expansion,

�
q,DQ
κα,κ ′β = −i

4π

2�

(q · Z∗
κ )α(q q · Q∗

κ ′)β
q · ε · q

+ i
4π

2�

(q q · Q∗
κ )α(q · Z∗

κ ′ )β
q · ε · q

, (139)

contains dipole-quadrupole (DQ) interaction terms. It is
easy to show that this contribution plays an important role
in piezoelectric materials, where it is responsible for the
boundary-dependent macroscopic electric fields that arise
upon deformation. Its contribution to the IFC decays as 1/d4.
Finally, we have three contributions, all at the same order in
q. First, the dipole-octupole (DO) term

�
q,DO
κα,κ ′β = − 4π

6�

(q · Z∗
κ )α(q q q · O∗

κ ′)β
q · ε · q

− 4π

6�

(q q q · O∗
κ )α(q · Z∗

κ ′)β
q · ε · q

, (140)

which can be related to the purely electronic flexoelectric
response (and, in particular, to the macroscopic electric fields
generated by the latter under open-circuit boundary condi-
tions). The second is a quadrupole-quadrupole interaction

�
q,QQ
κα,κ ′β = 4π

4�

(q q · Q∗
κ )α(q q · Q∗

κ ′ )β
q · ε · q

, (141)

which has an impact [via the square brackets Eq. (38)] on
the elastic coefficients (and hence on sound velocity) in
piezoelectric materials. The third term, of less obvious physical
interpretation, is due to the q dispersion of the macroscopic
dielectric tensor, and reads as

�
q,DεD
κα,κ ′β = −4π

�

(q · Z∗
κ )α (q q · ε(4) · q q) (q · Z∗

κ ′)β
(q · ε · q)2

. (142)

Note that, in spite of beingO(q2), this term is irrelevant for both
flexoelectricity and elasticity, as it vanishes upon summation
over one (or both) of the sublattice indices [as required, e.g.,
in Eq. (38)]. In summary, we have

�
q,NA
κα,κ ′β = �

q,DD
κα,κ ′β + �

q,DQ
κα,κ ′β + �

q,DO
κα,κ ′β

+�
q,QQ
κα,κ ′β + �

q,DεD
κα,κ ′β + O(q3). (143)

The DD and DQ terms are nonanalytic at zeroth and first
order in q, respectively; DO, QQ, and DεD are all nonanalytic
at the order q2. This formula describes the long-range
electrostatic interactions in an arbitrary insulator up to the
order 1/d5 (included), and constitutes therefore a higher-order
generalization of the well-known Cochran-Cowley formula
(DD only, valid up to 1/d3).

This completes our discussion of the nonanalytic behavior
of � in a vicinity of the � point. Apart from the direct interest
to the study of electromechanical phenomena, explicitly
incorporating these terms in lattice-dynamical studies may be
instrumental to achieving an accurate sampling of the phonon
dispersion curves (especially at small q), while keeping the
computational workload to a moderate level. This might be
done, for example, by using Ewald summation techniques
similar to those discussed in Ref. 36.
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D. Longitudinal versus transversal charge response

Hong and Vanderbilt,19,32 building on the work of Resta,18

based their treatment of the flexoelectric problem on the
dipolar, quadrupolar, and octupolar response to atomic dis-
placements, in close analogy to the approach taken here.
However, at difference with this work, Refs. 19 and 32
defined the charge-response functions under longitudinal
(fixed electric displacement) boundary conditions. In order
to trace a closer link to their approach, we shall briefly discuss
here the relationship between the transversal (fixed electric
field) quantities defined here and the longitudinal ones.

The charge response in longitudinal boundary conditions
(which are the physically correct ones for the description
of a phonon perturbation in an insulating crystal) can be
simply written by applying Gauss’s law to the nonanalytic
macroscopic electric field:

ρ̃
q
κβ = iq · Eq

κβ

4π
. (144)

By using the formula for the electric field given in Eq. (128),
and by replacing the numerator and denominator with their
Taylor expansion in q, we have

ρ̃
q
κβ ∼ q2

�

−i(q · Z∗
κ )β − (q q·Q∗

κ )β
2 + i

(q q q·O∗
κ′ )β

6

q · ε · q + (q q · ε(4) · q q)
. (145)

This expression can be conveniently written, for a given
direction q̂ = q/q, as

ρ̃
q
κβ ∼ −iqρ̃

(1,q̂)
κβ − q2

2
ρ̃

(2,q̂)
κβ + i

q3

6
ρ̃

(3,q̂)
κβ , (146)

where ρ̃
(n,q̂)
κβ are direction-dependent constants. Their explicit

formulas are

�ρ̃
(1,q̂)
κβ = (q̂ · Z∗

κ )β
q̂ · ε · q̂

, (147)

�ρ̃
(2,q̂)
κβ = (q̂ q̂ · Q∗

κ )β
q̂ · ε · q̂

, (148)

�ρ̃
(3,q̂)
κβ = (q̂ q̂ q̂ · O∗

κ )β
q̂ · ε · q̂

+ (q̂ q̂ · ε(4) · q̂ q̂)(q̂ · Z∗
κ )β

(q̂ · ε · q̂)2
. (149)

Note that the last equation simplifies upon summation over
the sublattice index κ , as required by the formula for the
flexoelectric tensor,

�
∑

κ

ρ̃
(3,q̂)
κβ = (q̂ q̂ q̂ · ∑

κ O∗
κ )β

q̂ · ε · q̂
. (150)

Thus, the two sets of quantities (longitudinal and transversal)
are trivially related by a factor of q̂ · ε · q̂, which describes the
macroscopic dielectric screening along the direction q̂.

E. Thomas-Fermi screening of the macroscopic electric fields

In the previous sections, we have formally justified our
prescription of suppressing the G = 0 component of the
electrostatic potential when calculating the basic response
functions that enter the flexoelectric tensor. Such a prescription
is, however, well defined only in the context of a Taylor
expansion in q around �; it is, therefore, inappropriate
to calculating the localized representation of the response

functions, introduced in Sec. V. In order to achieve a truly
localized real-space representation of the charge density and
polarization response to the displacement of an isolated atom,
we shall follow the strategy of Martin31 and suppose that the
problematic macroscopic fields are “short circuited” by a very
low density of mobile carriers superimposed to the insulating
crystal. We shall demonstrate that, concerning the piezoelectric
and flexoelectric properties of an arbitrary insulating crystal,
the two procedures lead to the same result.

The Poisson problem of Eq. (109) in presence of mobile
charges can be rewritten as

∇2V (r) = −4π [ρext(r) + ρ ind(r) + ρfree(r)], (151)

where V is the doubly screened (i.e., both by ρ ind and ρfree)
potential, ρext and ρ ind have been defined in the previous
section, and ρfree refers to the metallic carriers. Within the
Thomas-Fermi approximation, the carrier density is related to
the potential by

ρfree(r) = −k2
TFV (r)

4π
, (152)

where kTF is the Thomas-Fermi screening wave vector. In
reciprocal space, the external perturbing charge and the doubly
screened potential are then related by a linear problem in the
same form as Eq. (109):

�̄GG′(q)VG′(q) = ρext
G (q), (153)

but with a modified � matrix

�̄GG′(q) = |q + G|2 + k2
TF

4π
δGG′ − �GG′(q). (154)

We shall choose a value of kTF that is much smaller than any
reciprocal-space vector G (except �), in order not to modify
the electronic ground state of the unperturbed system. (This
corresponds to choosing a Thomas-Fermi screening length
λTF = 1/kTF, much larger than any of the three primitive
translation vectors in real space, i.e., a very low-density gas of
carriers.) We shall now proceed to deriving the charge-density
and force-response functions by following the same steps as
in the previous section. First, note that � and �̄ are essentially
identical except for their head

�̄00(q) = �00(q) + k2
TF

4π
, (155)

due to the assumption of small kTF. Therefore, if we suppress
the G = 0 term as we did earlier, we obtain the same response
functions at any q. The full response functions in presence
of the Thomas-Fermi gas include a contribution from the
macroscopic fields, which we shall evaluate in the following.
After a few steps of straightforward algebra, we obtain

Eq
κα = −i 4πq ρq

κα

ξ̄ (q)
� −4π

�
q

(q · Z∗
κ )α

k2
TF + q · ε · q

, (156)

where ξ̄ relates to ξ as �̄00 relates to �00. The macroscopic
electric field is now manifestly analytic in q, consistent with the
metallic screening mediated by the carrier gas. At the lowest
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orders in q we have

Eq=0
α,κβ = 0, (157)

∂Eq
α,κβ

∂qγ

∣∣∣∣
q=0

= 0, (158)

∂2Eq
α,κβ

∂qγ ∂qλ

∣∣∣∣
q=0

= − 4π

�k2
TF

(δαγ Zκ,λβ + δαλZκ,γβ ). (159)

Note that the macroscopic electric field vanishes at O(q0)
and O(q1). This implies that, in presence of the screening
carriers, inclusion of the G = 0 component of the electrostatic
potential has no influence on the polarization and charge-
density response functions up to first order in q. In other words,
P

(0,1)
α,κβ (r) and ρ

(0,1)
κβ (r) are well defined. [In the context of the

present discussion, we indicate a response function as well
defined if it enjoys the following property: By calculating it
with the “G 
= 0” prescription (i.e., without metallic carriers,
but by removing by hand the G = 0 component from the
self-consistent electrostatic potential) one obtains the same
result as in a “TF” calculation (i.e., with the G = 0 electrostatic
term included, but with the long-range fields suppressed by the
metallic carriers in the q → 0 limit). Of course, a well-defined
response function is also independent of the value of kTF.]
Furthermore, since an electric field induces a net polarization
but not a net charge (at the same order in q), also the cell
average of the O(q2) density ρ

(2)
κβ is well defined. This is

consistent with the claims of Ref. 31 that the dipolar and
quadrupolar real-space moments of the induced charge density
upon atomic displacement are independent of kTF. (Note
that the aforementioned real-space moments coincide with
�ρ

(1,γ )
κβ and �ρ

(2,γ λ)
κβ , respectively.) Therefore, the definition

of the electronic response functions that are relevant for the
piezoelectric case is unambiguous and poses no particular
problem.

In the context of flexoelectricity, the fact that there is a
nonzero kTF-dependent field at second order in q might appear
troublesome at first sight, as the flexoelectric polarization is
precisely a O(q2) effect. Indeed, the O(q2) response functions
ρ

(2)
κβ (r) and P

(2)
α,κβ (r) are both affected by such kTF-dependent

field. (As we mentioned above, only the cell average of ρ(2) is
well defined; note that the cell average of P (2) is not.) Recall,
however, that to calculate the flexoelectric tensor, one never
needs the individual (i.e., κ-resolved) P

(2)
α,κβ functions: only

their sublattice sum is relevant. Since the macroscopic electric
field (159) is proportional to the Born charge tensor, it is clear
that its contribution vanishes (because of the acoustic sum
rule) once the O(q2) response functions are summed over κ .
Therefore, the functions

ρ
(2,γ δ)
β (r) =

∑
κ

ρ
(2,γ δ)
κβ (r), (160)

P
(2,γ δ)
αβ (r) =

∑
κ

P
(2,γ δ)
α,κβ (r) (161)

are both well defined, and so is the total dynamical octupole
tensor

Q
(3,γ δλ)
β = �

∑
κ

ρ̄
(3,γ δλ)
κβ . (162)

It is straightforward to show that analogous considerations
apply to the q expansion of the force-constant matrix, which is
relevant for the lattice-mediated contributions to the electrome-
chanical response. In particular, the electric field (159) only
affects the second-order expansion term �(2); as the square
brackets in Eq. (38) require summation of �(2) over one of the
two sublattice indices, the aforementioned field has no effect
(again, because of the acoustic sum rule) on the flexoelectric
force-response (and hence, internal-strain) tensors, which are
therefore well defined. This conclusively proves that, when
performing a long-wave expansion of the electronic response
functions, one can work indifferently with the “G 
= 0”
and the “TF” prescription; the calculated piezoelectric and
flexoelectric tensors are identical. As there is no ambiguity,
we readily identify the latter as “fixed-E”32 electromechanical
coefficients, where the electric field E is assumed to be minus
the gradient of the macroscopic electrostatic potential.

F. Reference potential issue

In the discussion of the Thomas-Fermi screening model
we have made an implicit assumption about the quantum-
mechanical nature of the screening carriers, by writing the
density of mobile charges [Eq. (152)] as a function of the
mean electrostatic potential. This choice is not unique and
needs to be properly justified, as the calculated values of the
flexoelectric tensor components might depend on it. In this
section, we shall briefly elaborate on this important point, and
show that there is indeed an ambiguity in the specification
of the electrical boundary conditions in the case of a strain-
gradient deformation. Such ambiguity relates to a physical
fact: the breakdown of translational periodicity that is inherent
to flexoelectric phenomena makes the notion of “macroscopic
electric field” a bit more delicate than, e.g., in the piezoelectric
case. As we shall see in the following, in presence of a strain-
gradient deformation, the force acting on a charged particle
depends on the nature of such particle, and not only on its
charge. Hence, the condition of “zero macroscopic electric
field” depends on which type of test particle we choose as a
probe to define the field.

Equation (152) refers to a free-electron parabolic band,
whose lower edge locally coincides with the (slowly varying)
macroscopic electrostatic potential of the crystal. This does
not appear very realistic in the general case of a lightly
doped insulator or semiconductor. The carriers (e.g., electron
or holes) typically occupy well-defined energy levels in the
band structure of the solid, rather than responding solely to
electrostatic forces. This implies that, in general, it would
be more appropriate to replace the macroscopic electrostatic
potential V (r) in Eq. (152) with the energy level of the
relevant band feature, e.g., the conduction band minimum
VCBM(r) in the case of intrinsic electronlike carriers. Under
such a modified screening regime, the carriers will no longer
enforce a flat electrostatic potential during a mechanical
deformation, but rather a flat VCBM(r) (following up on the
above example). Of course, this is not a concern in the
piezoelectric case, where the bands always remain parallel
since the periodicity of the lattice is preserved in the deformed
state. This is, however, an issue in the flexoelectric case,
where a strain gradient inevitably produces a gradient in the
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relative position of the band energies, via the so-called relative
deformation potentials. Therefore, we inevitably obtain a
different flexoelectric tensor, depending on what band feature
we use as a reference for the macroscopic field.

It is important to emphasize that the ambiguity described
here is not an artifact of the Thomas-Fermi screening model,
but a physical fact. To prove this, it is useful to translate the
same arguments in the context of the “G 
= 0” prescription,
which we have established in this work as a simpler practical
alternative to the “TF” screening model. At the mathematical
level, there is no fundamental reason to suppress the G =
0 electrostatic term altogether. Strictly speaking, only the
nonanalyticity associated with it needs to be removed. We
are therefore free to replace such G = 0 component of the
electrostatic potential with an arbitrary analytic function of q
that respects the symmetry of the lattice. Evidently, different
choices of such a function will lead to different definitions
of the flexoelectric tensor. Since the relative deformation
potentials are analytic,29 we can relate such a freedom to a
band-structure term, which describes the arbitrariness in the
choice of the reference energy discussed above.

VII. PHYSICAL INTERPRETATION

The goal of this section is to elaborate on the implications of
the results derived in this work, and to describe the microscopic
mechanisms that contribute to the macroscopic flexoelectric
response depending on crystal symmetry. We shall exclusively
focus on type-II tensors from now on, as they lend themselves
to a more intuitive physical interpretation in all cases. The
linear flexoelectric response to a type-II strain gradient is

P α = μII
αλ,βγ εβγ,λ, (163)

where the total flexoelectric tensor, symmetric in βγ , can be
written, in full generality, as

μII
αλ,βγ = μ̄II

αλ,βγ + μ
II,mix
αλ,βγ + μ

II,latt
αλ,βγ . (164)

μ̄II
αλ,βγ is the purely electronic (frozen-ion) response, which

is active in all insulators,18,19 regardless of symmetry or
composition. This term was discussed at length in Refs. 18
and 19, and we will not comment on it any further here.
μ

II,latt
αλ,βγ is the lattice-mediated contribution, analogous to the

“dynamical” flexoelectric tensor discussed by Tagantsev,15 but
expressed here in type-II form. μII,mix

αλ,βγ is the remainder, which
is neither purely electronic in origin, neither lattice mediated in
the usual sense; we shall refer to it as “mixed” term henceforth.
In the following, we shall discuss the explicit expressions of
these latter two terms in the context of the theory developed
so far, starting with the more intuitive lattice-mediated part.

A. Lattice-mediated contribution

Based on the results of Sec. IV, the lattice-mediated
flexoelectric tensor is

μ
II,latt
αλ,βγ = Z∗

κ,αρ

�
�̃

(0)
κρκ ′χ Ĉκ ′

χλ,βγ . (165)

Recall that Z∗
κ,αρ is the Born effective charge tensor of

species κ , symmetric in the Cartesian indices αρ, and the
mass-compensated force-response tensor Ĉκ ′

χλ,βγ consists of

three parts

Ĉκ
αλ,βγ = C̄κ

αλ,βγ + (αλ,βγ )κ − �mκ

M
Cαλ,βγ . (166)

The mass-dependent contribution [third term on the right-
hand side of Eq. (166)] is trivially proportional to the elastic
tensor Cαλ,βγ , and therefore uninteresting from the point of
view of a microscopic analysis (see Sec. IV for details on the
physical implications of this term).

The contribution that depends on C̄κ
αλ,βγ is present on all

compound crystals where the Born effective charges do not
vanish, including simple rocksalt insulators such as MgO
or NaCl. The interpretation of this term is fairly simple.
Consider, for example, a rocksalt crystal with a longitudinal
strain gradient along the (100) axis. Each atomic plane will
“see” a broken symmetry environment, with the two nearest-
neighboring planes located at slightly different distances. This,
in turn, will produce (via the interatomic force constants)
inequivalent longitudinal displacements of the two sublattices,
and hence a macroscopic polarization oriented along (100).

The contribution depending on the round brackets can be
readily understood by recalling the explicit expression of the
latter

(αλ,βγ )κ = �
(1,λ)
κα,κ ′ρ�

κ ′
ρβγ . (167)

This contribution is nonzero only in compound crystals where
�κ ′

ρβγ 
= 0, i.e., (at least partially) ionic materials that undergo
internal cell relaxations under a uniform applied strain. (We
shall exclude piezoelectric crystals for the time being, and
restrict the analysis to cases where such internal relaxations are
nonpolar in character.) Important members of this category are
all centrosymmetric perovskite oxides that are characterized
by antiferrodistortive (AFD) tilts of the oxygen octahedral
network, e.g., SrTiO3. In these materials, the local amplitude
of the AFD order parameter linearly depends on strain, an
effect that is known in the literature as “rotostriction.”20,21 A
strain gradient can thus produce a gradient in the AFD order
parameter, which in turn couples to the zone-center optical
modes and generates a polarization. Equation (167) describes
such a coupling in terms of the interatomic force constants
of the crystal. Note that this mechanism was first proposed
in the context of phenomenological theories20,21 to explain
the puzzling behavior4 of the flexoelectric response of SrTiO3

below its AFD transition temperature (105 K).

B. “Mixed” contribution

The mixed response involves the first moment of the
polarization response to atomic displacements and the internal-
strain response tensor �κ

ρβγ :

μ
II,mix
αλ,βγ = −P (1,λ)

α,κρ �κ
ρβγ . (168)

This term is nonzero only in crystals that display internal
relaxations under uniform strain, analogously to the lattice-
mediated contribution depending on the round brackets. On
the other hand, unlike the latter term, μ

II,mix
αλ,βγ does not

involve the Born effective charges, and therefore can be
(in principle) present even in covalent crystals. In fact, in
diamond-structure semiconductors such as Si or Ge, μ

II,mix
αλ,βγ

was already predicted and calculated from first-principles29 in
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the framework of the theory of absolute deformation potentials
(which can be regarded as a precursor to the present theory
of flexoelectricity). The effect, governed by the quadrupolar
charge-density response to the Raman-active optical mode of
the diamond lattice (the latter responds linearly to a shear
strain) was found to be important in both Si and Ge, giving
a contribution that largely dominates the (purely electronic)
octupolar response.29

C. Piezoelectric materials

Piezoelectrically active crystals deserve a separate dis-
cussion: As we shall see in the following, they present an
ambiguity in the definition of the flexoelectric tensor. To
see why this is the case, we rewrite μII

αλ,βγ by grouping the
individual contributions in a slightly different way:

μII
αλ,βγ = μ̃II

αλ,βγ + eκ
αλρ�

κ
ρβγ , (169)

where in μ̃II
αλ,βγ we have collected all contributions that do not

depend on �κ
ρβγ , and

eκ
αλρ = Z∗

κ ′,αζ

�
�̃

(0)
κ ′ζ,κ ′′χ�

(1,λ)
κ ′′χ,κρ − P (1,λ)

α,κρ . (170)

The notation eκ
αλρ is motivated by the relationship

eαλρ =
∑

κ

eκ
αλρ, (171)

i.e., eκ
αλρ can be thought as a “sublattice-resolved piezoelectric

coefficient.” Now, recall the translational arbitrariness in
the definition of the internal-strain response tensor: �κ

ρβγ is
specified only modulo a κ-independent constant. In nonpiezo-
electric crystals, such arbitrariness is harmless, as the basis
sum of the eκ

αλρ tensors vanishes. Here, on the other hand, we
have a clear ambiguity

�μII
αλ,βγ = eαλρ ��ρβγ , (172)

where ��ρβγ , of the dimension of a length, reflects the
aforementioned arbitrariness.

In a hand-waving way, one can relate this ambiguity to
the difficulty of calculating the dipole moment of a charged
object; the answer depends on the choice of the origin. Indeed,
as we have argued in Sec. V D, strain gradients may generate
a net charge in a piezoelectric material, and the polarization
is (loosely speaking) a dipole moment per unit volume. It can
be verified that, in presence of a noncentrosymmetric �κ

ρβγ

and a strain gradient, the precise point in the crystal where
the local strain vanishes is not well defined, hence the origin
dependence and the ambiguity in the definition of μII

αλ,βγ .

D. Dependence on the static dielectric constant

It has been pointed out, both in the context of experiments3

and phenomenological models,15 that the flexoelectric coeffi-
cients should be roughly proportional to the static dielectric
constant of the material. In the following, we shall briefly
comment on this statement in light of the formalism presented
here. To this end, it is useful to express the matrix �̃(0) as

�̃
(0)
κακ ′β = 1√

mκ

∑
n

′ ξn
κα ξn

κ ′β

ω2
n

1√
mκ ′

, (173)

where ξn and ω2
n are the eigenvectors and eigenvalues of the

zone-center dynamical matrix

D
(0)
κακ ′β = 1√

mκmκ ′
�

(0)
κακ ′β =

∑
n

ξn
κα ω2

n ξn
κ ′β.

[Note the primed sum in Eq. (173), indicating that the zero-
frequency rigid translations are excluded.] Using Eq. (173) we
can rewrite the lattice-mediated flexoelectric tensor as

μ
II,latt
αλ,βγ = 1

�M0

∑
n

′ Z∗
αn Ĉnλ,βγ

ω2
n

, (174)

where we have introduced the dynamical charge associated to
the nth mode51 (M0 is an arbitrary mass constant)

Z∗
αn =

∑
κρ

Z∗
κ,αρ

√
M0

mκ

ξn
κρ,

and the projection of the flexoelectric force-response tensor on
the nth mode eigenvector

Ĉnλ,βγ =
∑
κρ

ξn
κρ

√
M0

mκ

Ĉκ
ρλ,βγ .

Ĉnλ,βγ describes the coupling between the strain gradient and
the individual zone-center optical modes; it can be thought,
therefore, as a “geometric field” pushing the polar phonons
out of their centrosymmetric equilibrium configuration in
presence of an inhomogeneous deformation. The inverse
frequency squared, acts, as usual, as a restoring force, while
Z∗

αn describes the polar activity of the phonon mode. This
implies that materials with dielectrically “soft” optical modes
are most likely to produce a large response, consistent with
the experimental observations3 and the conclusions of earlier
phenomenological models.15

E. Relationship to the theory of deformation potentials

In Sec. VI F, we have shown that there is an ambiguity
in the definition of the flexoelectric tensor, which can be
traced back to the choice of an arbitrary reference energy
when imposing short-circuit electrical boundary conditions.
To make these considerations more quantitative, suppose that
we choose a single-particle eigenvalue εnk (n is a band index
and k is the crystal momentum; assume that the eigenvalue
is nondegenerate), as a reference for the flat-band condition.
Then, the new flexoelectric tensor acquires an additional
contribution (compared to the “standard” definition, based on
the average electrostatic potential V ) that can be readily written
in terms of bulk material properties

�μII
αλ,βγ = χ st

αλ

∂Vnk

∂εβγ

, (175)

where Vnk = εnk/e + V is the relative potential of εnk with
respect to V (the quantity ∂Vnk/∂εβγ is known as relative
deformation potential), and

χ st
αλ = εst

αλ − δαλ

4π

is the static dielectric susceptibility of the material. The physics
behind Eq. (175) is easily understood: The relative deformation
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potential induces an additional electric field, which is directed
along λ (i.e., where the macroscopic strain undergoes a linear
variation). This electric field, in turn, induces a polarization
via χ st

αλ.
Such an arbitrariness in μ might seem disturbing at first

sight, as it threatens the very interpretation of the flexoelectric
tensor as a well-defined bulk property. We shall see in the
following that there is no such danger, and that the arbitrariness
always cancels out when μ is applied to real physical problems.
Consider the case of a slab that is centrosymmetric at rest, and
suppose to bend it; we have a macroscopic strain gradient
that increases linearly along the direction perpendicular to the
slab surfaces. On general physical grounds, the total dipole
moment induced by the deformation must be a well-defined
physical observable. How do we reconcile this fact with the
aforementioned arbitrariness in the bulk μ tensor? Answers to
this question must be looked for at the surface, the only feature
in the system which is neither bulk nor vacuum. Hong and
Vanderbilt19 indeed observed that there are surface-specific
contributions to the flexoelectric polarization of the slab,
and that these consist in the derivative of the surface work
function with respect to a uniform strain ∂φ/∂εβγ . The key
point here is that the surface work function φ suffers from the
same ambiguity as the flexoelectric tensor: to define a surface
potential offset one needs to choose a reference energy inside
the material. It is easy then to verify that the arbitrariness
exactly cancels out when calculating the total dipole moment
of the bent slab. (Note that, in a uniform strain gradient, the
contribution of the slab surface to the total dipole moment
scales proportionally to the slab thickness.19) The message
is that any attempt at quantitatively comparing the calculated
bulk μ tensor with experimental measurements is necessarily
thwarted by the inherent arbitrariness of the former; such
ambiguity disappears only when the surface-specific part is
accounted for.

As this work is exclusively concerned with macroscopic
bulk effects, we will not pursue the discussion of surface-
related issues any further here. Instead, in the remainder of
this section we shall discuss a genuine bulk phenomenon
where the above arbitrariness is potentially worrisome, i.e., the
flexoelectric response induced by a sound wave. Obviously, in
an acoustic phonon there are no surfaces: the bulk flexoelectric
tensor (possibly combined with other bulk properties) must
give a complete description of the electrical response at order
O(q2). Furthermore, such description must be unambiguous:
the charge density and lattice response to a phonon is uniquely
determined by a set of well-defined quantum numbers. It is,
therefore, necessary to prove that the arbitrariness �μ causes
no harm in this respect.

Consider a long-wave acoustic phonon of wave vector
q. The strain-gradient tensor is given by η

q
β,γ δ = −Uβqγ qδ ,

where Uβ is an eigenvector of the sound-wave equation (40).
The macroscopic polarization associated to such a strain
gradient would be, in short-circuit boundary conditions,

P SC
α = μII

αλ,βγ ε
q
βγ,λ, (176)

where ε
q
βγ,λ is related to η

q
β,γ δ via Eq. (3). In an acoustic

phonon, however, the electrical boundary conditions (EBC)
differ from the short-circuit (SC) fixed-E EBC that are implicit

in Eq. (176), in that a zero electric displacement field D is
enforced along the propagation direction q̂ = q/q. Then, the
total polarization reads as

Pα = P SC
α + χ st

αλEλ, (177)

where Eλ is the longitudinal electric field that arises from the
open-circuit, or fixed-D, EBC:

E = −4π q̂
q̂ · PSC

q̂ · εst · q̂
. (178)

It follows by combining Eqs. (177) and (178) that the
longitudinal component of the total polarization reads as

q̂ · P = q̂ · PSC

q̂ · εst · q̂
, (179)

confirming that the longitudinal component of the displace-
ment field D = E + 4πP indeed vanishes. [Note that, in
general, for an anisotropic dielectric, the open-circuit electric
field in Eq. (177) induces components of P that are also
directed perpendicular to the propagation direction; this
observation is important for what follows.]

What happens now if we choose a different reference for the
definition of the flexoelectric tensor? The induced short-circuit
polarization acquires a term due to �μII

αλ,βγ , as defined in
Eq. (175). Along the longitudinal direction q̂, it is easy to
verify that the only consequence of �μII is a redefinition of
the macroscopic electric field

Enk
λ = Eλ − ∂Vnk

∂εβγ

ε
q
βγ,λ. (180)

This result can be interpreted as follows. The acoustic phonon
perturbation breaks the periodicity of the lattice along the
propagation direction. Therefore, along q̂ one no longer
expects the band energies (or other references such as the
average electrostatic potential) to be parallel to each other.
Instead, their relative position varies along q̂, proportionally
to the local strain, via the band-structure term ∂Vnk/∂εβγ .
Nevertheless, the absolute variation of each individual band
Enk

λ is a well-defined bulk property, and is exactly given
by the electrostatic contribution Eλ plus the corresponding
band-structure part, according to Eq. (180). Thus, we for-
mally identify the quantity Enk

λ as an absolute deformation
potential29 (ADP), hereby extending the scopes of the ADP
theory to a general nonpiezoelectric crystal lattice, including
ionic solids (the latter were excluded from the analysis of
Ref. 29).

The only remaining task in this section is to prove that
the polarization along the direction normal to q is unaffected
by the arbitrariness �μ. Along the direction normal to
the propagation direction (which we shall indicate as a
vector ŵ such that ŵ · ŵ = 1 and ŵ · q̂ = 0), the short-circuit
polarization acquires a term due to �μII:

ŵ · �PSC = ŵαχ st
αλ

∂Vnk

∂εβγ

ε
q
βγ,λ. (181)

Upon inspection of Eq. (180), it is straightforward to verify that
the additional contribution to the open-circuit field Enk

λ − Eλ

produces a polarization [via Eq. (177)] that exactly cancels
ŵ · �PSC. This demonstrates that ŵ · P, unlike ŵ · PSC, is well
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defined and independent of the arbitrary reference used to
define the flexoelectric tensor, concluding our proof.

VIII. CONCLUSIONS

We have performed a rigorous derivation of the full
flexoelectric tensor in an arbitrary crystalline insulator. Based
on this result, we have discussed a number of topics relevant for
the physics of the flexoelectric effect, in particular concerning
the electrical boundary conditions, the relationship between
the static and dynamic response, and the microscopic mecha-
nisms that may be at play in a variety of materials classes.

We expect this work to open several exciting avenues for
future research. From the materials design point of view,
the first priority is to apply the present method to perform
first-principles calculations of real materials, and understand
what mechanisms are most promising for delivering a large
response. (At the time of writing, we are aware of an
independent work32 where the full flexoelectric properties of

several cubic materials were calculated from first principles,
by means of methodologies that are similar to those developed
here.) On the methodological front, it will be interesting to
work out the analytic derivation of the Sternheimer equation
in the long-wave limit, and hence avoid the finite-difference
derivation of the response quantities. Also, achieving a first-
principles implementation of the quantum-mechanical current
density operator would be desirable, in order to access the
full microscopic polarization response functions. Preliminary
work along these directions is under way.
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41Strictly speaking, �κ
αβγ is defined as the response to an unsym-

metrized strain ε̃βγ . However, due to the invariance of �κ
αβγ with

respect to β ↔ γ exchange, we can readily identify it as the force
response to a symmetrized strain εβγ .

42Note that in piezoelectrically active materials, the long-range
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