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We have employed parameter-free density functional theory calculations to study the thermodynamic stability
and structural parameters as well as elastic and electronic properties of Ni4N in eight selected crystallographic
phases. In agreement with the experimental findings, the cubic structure with Pearson symbol cP5, space group
Pm3̄m (221) is found to be the most stable and it is also the only thermodynamically stable structure at
T = 0 K with respect to decomposition to the elemental Ni crystal and N2 gas phase. We determine structural
parameters, bulk moduli, and their pressure derivatives for all eight allotropes. The thermodynamic stability
and bulk modulus is shown to be anticorrelated. Comparing ferromagnetic and nonmagnetic states, we find
common features between the magnetism of elemental Ni and studied ferromagnetic Ni4N structures. For the
ground-state Ni4N structure and other two Ni4N cubic allotropes, we predict a complete set of single-crystalline
elastic constants (in the equilibrium and under hydrostatic pressure), the Young and area moduli, as well as
homogenized polycrystalline elastic moduli obtained by different homogenization methods. We demonstrate that
the elastic anisotropy of the ground-state Ni4N is qualitatively opposite to that in the elemental Ni, i.e., these
materials have hard and soft crystallographic directions interchanged. Moreover, one of the studied metastable
cubic phases is found auxetic, i.e., exhibiting negative Poisson ratio.
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I. INTRODUCTION

Nickel nitrides are binary compounds of great importance
for numerous industrial applications, e.g., when manufacturing
electronic devices with GaN contacts1–4 or producing Ni-
containing stainless steels (see, e.g., Refs. 5 and 6). As far as the
production of electronics is concerned, nickel nitrides appear
in nickel thin films when manufacturing electronic chips and
may have major influence on their conductivity. During the
fabrication, nickel metal is first evaporated and afterwards
deposited onto the basal surface, and the apparatus is irrigated
by inert nitrogen atmosphere. As a result, nitrides may
substantially alter technological properties of surface layers.

In the steel production, surfaces can be nitrided in order
to increase their hardness via forming a variety of nitrides
(see, e.g., Refs. 7–10). They improve, e.g., the strength of
austenitic steels by forming nitrides at grain boundaries due to
the very low solubility of nitrides. Motivated by these industrial
applications, properties of nickel nitrides have been studied
employing various experimental methods, including ordering
tendencies of N atoms by neutron diffraction11 or (100) surface
reconstructions by scanning tunneling microscopy.12

A direct synthesis of nickel nitrides from nickel and
nitrogen in laboratory conditions has not yet been reported. The
value of the equilibrium pressure can be only estimated and
is assumed to be very high.11 Chemically pure nickel nitrides
can be prepared at high temperatures, e.g., by the reduction of
ammonia and nickel monoxide. The first reported synthesis
of hexagonal Ni3N was performed at 450 ◦C and nickel
powder and liquid ammonia were used.11 When applying the
disproportionation on Ni3N at 650 K, two other nickel nitrides
can be synthesized,13 namely cubic Ni4N and face-centered
Ni8N (with the elementary unit cell Ni32N4).

Alternatively, when employing the thermal decomposition
of metal precursors in a supercritical ammonia-methanol
mixture, nanostructured nitrides can be produced.14 Using
nickel amidinate precursor and either ammonia (NH3) or a
mixture of NH3 and hydrogen (H2) gases as coreactants,
smooth and continuous films of NixN (with the Ni/N atomic
ratio ranging from 3:1 to 15:1) with excellent step coverage
were deposited.15

As another synthesis route, nickel nitrides can be produced
by sputtering of a nickel target with a beam of nitrogen
ions that results in the formation of crystalline nickel nitride,
which is deposited on cold surfaces surrounding the target.16

When adding also Ti atoms, titanium-nickel nitride coatings
(Ti-Ni-N) by unbalanced magnetron sputtering with a pulsed
dc discharge at the targets may be produced.17 Similarly, nickel
layers can be implanted with nitrogen using plasma-based ion
implantation in order to form Ni nitrides.18 Using state-of-
the-art preparation techniques, nitrides of other metals (such
as Fe4N or Co4N) were prepared19 including even the first
binary nitride of the noble metals group (PtN) that was recently
synthesized.20

Despite the experimental studies partly summarized above,
relatively very little is known about materials characteristics
of these nitrides. Therefore, we employ quantum-mechanical
calculations in order to shed more light on thermodynamic,
electronic, structural, magnetic, and elastic properties of this
important class of materials. In the present study we focus
on Ni4N. This compound is considered metastable based on
previous thermodynamic assessments of Ni-N system.21–23

When synthesized, Ni4N was experimentally found13,24–26 to
crystallize in a simple cubic structure with a five-atom basis
(Pearson’s symbol cP5, space group Pm3̄m (221), prototype
Fe4N or CaO3Ti). The nitrogen atom is situated at the position
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FIG. 1. (Color online) Schematic figure of the experimentally
observed ground state of Ni4N cubic allotrope (referred to as α-Ni4N
in the text below). The Ni atoms are shown as larger green and the N
ones as smaller blue spheres.

1a (0, 0, 0) and the Ni atoms at the positions 1b (1/2, 1/2,
1/2), and 3d (1/2, 0, 0), (0, 1/2, 0) a (0, 0, 1/2); see Fig. 1.
Alternative to this crystallographic phase, Ni4N in another
cubic phase as well as in a tetragonal allotrope has been
described in Refs. 27 and 28.

In this paper we extend our previous study of nickel
nitrides,29 where the focus was on the experimental cubic
Ni4N ground-state phase, to seven metastable structural phases
with the same stoichiometry. We examine the thermodynamic
stability of various Ni4N allotropes (Tables I and II), determine
their structural parameters, and compare them with the results
of previous theoretical and experimental studies. Subsequently
we predict both single-crystalline elastic constants and homog-
enized polycrystalline moduli of three cubic Ni4N allotropes
(the ground-state phase Ni4N and of two other cubic phases)
and their electronic structure characteristics.

The paper is organized as follows. After Introduction, the
Methodology section describes our computational method,
provides computational parameters, summarizes crystallo-
graphic characteristics of all studied allotropes, and introduces
our approach to the determination of both single-crystalline
and polycrystalline elastic properties. In Sec. III we first

TABLE I. Crystallographic description of the six studied Ni4N
allotropes (labeled by Greek symbols from α to θ ) including space
groups and their corresponding numbers as well as Wyckoff positions
and prototype compounds. Also added is the number of k points used
for each compound in our ab initio calculations. Two other allotropes
studied, i.e., Lifshitz structures β-Ni4N and δ-Ni4N, are visualized
below in Figs. 3 and 2 and described separately in Table II (before
the structural optimization). The optimized atomic positions in the
β-Ni4N and δ-Ni4N phases are given in Tables X and XI (see the
Appendix).

Ni4N α γ ε ζ η θ

Group Pm3̄m Pnma Pmmm P 43m I43m P 4/nmm

Group no. 221 62 47 215 217 129
Pearson cP5 oP20 oP5 cP5 cI10 tP10
Positions N 1a 4c 1h 1a 2a 2c
Positions Ni 1b, 3d 4c, 8d 1a, 1b, 2l 4e 8c 2a, 2c, 4f
No. of u 0 7 1 1 1 3
Prototype Fe4N B4Mg Ta4O Fe4C F4Si Be4B
k points 40 000 38 400 40 320 40 000 40 960 38 880

TABLE II. Unrelaxed atomic positions (before full structural
optimization) in the two cubic Lifshitz structures β-Ni4N and δ-Ni4N
that differ in Wyckoff positions of N atoms but have equal Wyckoff
positions of Ni atoms. Internal atomic positions that are not dictated
by symmetry are defined by internal parameters. For these we use the
following general form AuB-C where A specifies atom (Ni or N), B

is for the direction x, y or z, and C is the name of a given Wyckoff
sublattice. If B is not specified, the internal parameter is valid for
both Ni and N atoms. If C is not used, the Wyckoff sublattice does
not have a standardized name. Relaxed values of internal parameter
of β-Ni4N and also of other allotropes are listed in Table XI. The
exact atomic positions of Ni atoms (after full structural optimization)
in δ-Ni4N allotrope are listed in Table X.

β-Ni4N δ-Ni4N

Nitrogen Wyckoff positions
(1/4, 1/4, 1/4) (0, 0, 0)
(3/4, 3/4, 1/4) (1/2, 1/2, 1/2)
(3/4, 1/4, 3/4) (1/4, 3/4, 1/4)
(1/4, 3/4, 3/4) (3/4, 1/4, 3/4)

Nickel Wyckoff positions (same in β-Ni4N and δ-Ni4N)
(1/4, 0, 0); (1/4, 1/2, 0)
(3/4, 0, 0); (3/4, 1/2, 0)

(1-Niux , 1/4, 1/4); (Niux , 3/4, 1/4)
(1/2+Niux , 1/4, 1/4); (1/2-Niux , 3/4, 1/4)

(1/4, 0, 1/2); (1/4, 1/2, 1/2)
(3/4, 0, 1/2); (3/4, 1/2, 1/2)

(Niux , 1/4, 3/4); (1-Niux , 3/4, 3/4)
(1/2-Niux , 1/4, 3/4); (1/2+Niux , 3/4, 3/4)

compare thermodynamic, structural, and elastic properties of
studied allotropes and analyze relations between thermody-
namic stability and the bulk modulus. Subsequently we focus
on calculated properties of the Ni4N in the ground state. After
studying its magnetic properties (also in comparison with fcc
Ni), we further provide its electronic-structure characteristics
and then analyze elastic properties at both zero pressure as well
as at hydrostatic pressures ranging from tensile to compressive
loads. The elastic characteristics, including Poisson ratios, of
the ground-state phase are then compared to two other studied
cubic phases. Section IV then summarizes the results and
concludes the paper.

II. METHODOLOGY

A. Computational details

Our ab initio calculations are based on density functional
theory (DFT)30,31 using the generalized gradient approxima-
tion (GGA)32 and the projector augmented wave approach
(PAW) as implemented in the VASP code.33–35 The plane-wave
cutoff energy is 360 eV and the Monkhorst-Pack36 scheme is
used to sample the Brillouin zone. Convergence with respect to
cutoff energy and k-point sampling has been explicitly checked
(for details, see Table I). In all cases studied, we started our cal-
culations with the Ni atoms ferromagnetically spin polarized
and we allowed for a full structural relaxation, i.e., the total
energy was minimized as a function of both internal atomic
positions, the unit-cell shape as well as the volume. We chose
the Methfessel-Paxton scheme37 for the Fermi level smearing
and the corresponding smearing parameter equals to 0.1 eV.
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FIG. 2. (Color online) Schematic visualization of the Lifshitz
structural allotrope δ-Ni4N before structural relaxation (left) and after
full geometry optimization of both the cell shape and internal atomic
positions (right) with the Ni atoms shown as larger green and the N
ones as smaller blue spheres.

B. Description of crystal structures

The ab initio calculations have been performed for a series
of different crystallographic variants that are labeled according
to their formation energy (see a detailed discussion below)
with respect to the experimentally observed ground-state
phase using the Greek alphabet (the ground-state phase is
then denoted as α-Ni4N). Our choice of the structures (see
Tables I and II) was motivated by experimental findings of
another unidentified cubic Ni4N phase and one tetragonal
Ni4N allotrope. We thus propose a few possible candidates
and hope that our theoretical study will trigger an experimental
investigation of these yet unidentified phases.

C. Ab initio calculations of elastic constants

Single-crystal elastic constants Cij can be routinely ob-
tained from ab initio calculated changes of the total energy as a
function of specific lattice distortions applied to the undistorted
ground state (see, e.g., Refs. 38 and 39). For a cubic crystal
(such as cP5 or cI10 phases of Ni4N) three elastic constants are
needed, i.e., three different distortions have to be simulated.
The first one is the isotropic volume change providing the
energy-volume dependence, where the second derivative at
the minimum of the energy-volume curve determines the bulk
modulus B. Here we employ the Murnaghan equation of
state.40 The bulk modulus can also be expressed as a linear
combination of two elastic constants:

V

(
∂2E

∂V 2

)
Veq

= 1

3
(C11 + 2C12) = B. (1)

As the phase with the alternative cubic structure has
not been clearly described in literature, we have analyzed
a few frequently occurring binary structures with the 4:1
stoichiometry as well as two Lifshitz structures (see, e.g.,
Refs. 41–43) β-Ni4N and δ-Ni4N as structural models of
interstitial solid solutions of N in Ni. In Tables I and II (and
also in Tables X and XI in the Appendix) we summarize
crystallographic characteristics of all studied allotropes that
are also depicted in Figs. 1–5. Atomic positions in Lifshitz
structures β-Ni4N and δ-Ni4N prior structural optimization
are summarized in Table II. As the structure optimization
resulted in rather significant changes in these atomic positions
in the case of δ-Ni4N, the structure-optimized (relaxed) atomic
positions are given in Table X in the Appendix.

FIG. 3. (Color online) Lifshitz structural allotrope β-Ni4N (upper
panel) and the γ -Ni4N phase (lower panel). The Ni atoms are shown
as larger green and the N ones as smaller blue spheres.

The other two deformations were chosen as uniaxial
distortions along the [001] and [111] directions and these can
be expressed by the following strain matrices:

ε[001] =

⎛
⎜⎝

δ/2 0 0
0 δ/2 0

0 0 1
(1+δ/2)2 − 1

⎞
⎟⎠ , (2)

FIG. 4. (Color online) Structural allotropes η-Ni4N (upper left),
ζ -Ni4N (upper right), and ε-Ni4N (lower panel) with the Ni atoms
shown as larger green and the N ones as smaller blue spheres.
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FIG. 5. (Color online) Visualization of structural allotrope θ -
Ni4N before structural relaxation (upper panel) and after full
geometry optimization of both the cell shape and internal atomic
positions (lower panel) with the Ni atoms shown as larger green and
the N ones as smaller blue spheres.

ε[111] =
⎛
⎝ 0 δ/2 δ/2

δ/2 0 δ/2
δ/2 δ/2 0

⎞
⎠ , (3)

where δ is a parameter characterizing the magnitude of strain.
In this study, the maximum lattice distortion was limited to
±0.04 in order to avoid nonlinearities. The corresponding
changes of the total energy E(δ) with respect to the energy
of the ground state E0 are then divided by the volume V in
order to calculate the elastic energy density U (δ). This density
is linked for each kind of distortion to specific elastic constants
as

∂2U [001]

∂δ2
= 3

2
(C11 − C12) = 3C ′, (4)

∂2U [111]

∂δ2
= 3C44. (5)

Since in essentially all synthesis routes polycrystalline
rather than single-crystalline material is produced, single-
crystal elastic constants are homogenized in a scale-bridging
manner. To predict elastic moduli, such as the shear modulus
G or Young modulus Y , various homogenization approaches
have been proposed in the past. The Voigt scheme44 assumes
that the local strain is equal in all the grains of a polycrystal
and the corresponding polycrystalline shear modulus GV is
then expressed as

GV = C11 − C12 + 3C44

5
= 2C ′ + 3C44

5
. (6)

The Reuss homogenization45 is based on the assumption of
a constant local stress and the corresponding polycrystalline
shear modulus GR can be expressed as a function of elastic
compliances Sij :

GR = 5

4(S11 − S12) + 3S44
. (7)

Here the relationship between Sij and Cij for materials with
cubic symmetry is

S11 = C11 + C12

(C11 − C12)(C11 + 2C12)
, (8)

S12 = −C12

(C11 − C12)(C11 + 2C12)
, (9)

S44 = 1

C44
. (10)

Equation (7) can be rewritten in terms of Cij as

GR = 5(C11 − C12)C44

4C44 + 3(C11 − C12)
= 10C ′C44

4C44 + 6C ′ . (11)

For the Hershey method, the homogenized polycrystalline
shear modulus GH is given as a root of a polynomial. Two
different expressions of this polynomial are available in the
literature. The original paper by Hershey46 gives the following
quartic equation:

64G4
H + 16(4C11 + 5C12)G3

H + [3(C11 + 2C12)

× (5C11 + 4C12) − 8(7C11 − 4C12)C44]G2
H

− (29C11 − 20C12)(C11 + 2C12)C44GH

− 3(C11 + 2C12)2(C11 − C12)C44 = 0. (12)

This fourth-order polynomial is used in the majority of
recently published papers (see, e.g., Refs. 38, 47, and 48), but it
can be transformed to a third-order polynomial (Refs. 49–51),

G3
H + 1

8 (5C11 + 4C12)G2
H − 1

8C44(7C11 − 4C12)GH

− 1
8C44(C11 − C12)(C11 + 2C12) = 0, (13)

proposed by Ledbetter.52 For systems fulfilling the conditions
of mechanical stability, i.e., B > 0, C44 > 0, C ′ > 0, both
Eqs. (12) and (13) change the sign of their coefficients only
once and therefore have only one real root for a given set
of elastic constants. This single root is identical in Eqs. (12)
and (13).

Another computationally very simple method has been
proposed by Hill53 and Gilvarry.54 This is the Reuss-Voigt-
Hill-Gilvarry (RVHG) method according to which the poly-
crystalline shear modulus is assumed to be the arithmetic mean
of the Reuss and Voigt values:

GRVHG = 1
2 (GR + GV). (14)

The homogenized bulk modulus B0 for systems with cubic
symmetry as considered here is given by the same expression,
Eq. (1), in all four methods.

Once the homogenized elastic constants are known, other
homogenized elastic quantities, such as the Young modulus Y

or Poisson ratio ν, can be easily obtained:

Y = 9B0G

3B0 + G
, ν = 1

2

3B0 − 2G

3B0 + 2G
. (15)

Here, G is equal to GV, GR, GH, or GRVHG.

III. RESULTS AND DISCUSSION

The computed dependences of the differences in the total
energy ETOT ( in eV per atom) as a function of volume V for
different structural variants are displayed in Fig. 6. The phase
with the lowest value of the total energy in its equilibrium
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FIG. 6. (Color online) Total energy with respect to the minimum
of the ground-state energy ETOT as a function of volume V (in Å3 per
atom) for different ferromagnetic (FM) and nonmagnetic (NM) Ni4N
allotropes. Curves η∗ and ζ ∗ correspond to states with the internal
parameters kept constant and equal to 0.25 (see the explanation in
Sec. III).

state, and therefore the most stable structure, is the α-Ni4N
allotrope in agreement with experimental findings; all total
energy differences are computed with respect to this energy.
Let us note that in case of the θ -Ni4N, we have encountered
convergence problems in the region of volumes of 11-12 Å

3

where we detected a phase transition from the FM state (at
higher volumes) into an NM one (at lower volumes). This
prevented us from determining the total energy minimum for
the FM state. Therefore, unless explicitly mentioned, in the
following we discuss properties of the NM θ -Ni4N phase only.
Further, the local magnetic moments of Ni atoms in the δ-Ni4N
phase are so small and so close to our numerical accuracy that
we consider this state as effectively non-magnetic. Here the
energies of both FM and NM states are nearly identical.

The calculated structural characteristics are summarized in
Tables III and IV for each structure in its minimum-energy
state. In particular, the equilibrium volume Veq (in Å3 per
atom), the lattice parameter a (in Å) and the b/a and c/a

ratios in the case of noncubic phases, as well as relaxed internal
parameters of Ni (N) atomic positions Niu (Nu) are listed. The

TABLE III. Ab initio calculated equilibrium values of the atomic
volume Veq, lattice parameter a, the ratios between lattice parameters
b/a and c/a, and calculated values of the magnetic moment μ per Ni
atom of ferromagnetic (FM) states. The δ-Ni4N phase is effectively
non-magnetic (NM).

Ni4N Veq (Å3/atom) a (Å) b/a c/a μ (μB/Ni)

α (FM) 10.40 3.73 1 1 0.396
α expt.13 10.72 3.77 1 1
β (NM) 10.16 5.75 1 1.07
γ (NM) 10.28 5.02 1.2 1.36
δ (NM) 10.37 6.07 0.96 0.96 0.038
ε (FM) 10.35 6.44 0.44 0.44 0.247
ζ (NM) 10.82 3.78 1 1
η (NM) 11.33 4.84 1 1
θ (NM) 10.14 3.55 1 2.27

TABLE IV. Ground-state values of internal structural parameters
determining atomic positions (see Table XI in the Appendix for
details) on different Wyckoff sublattices (these are indicated by
superscripts).

Ni4N β γ ε ζ η θ

Nux 0.04c

Nuz 0.04c 0.164 2c

Niux 0.034 0.1974c 0.219 2l 0.2684c 0.2878c

Niuz 0.54c 0.5 2c

Niux 0.58d

Niuy 0.58d

Niuz 0.717 8d 0.2864f

volumetric dependences of internal parameters Niu and Nu

defined for the β-Ni4N, γ -Ni4N, ε-Ni4N, ζ -Ni4N, η-Ni4N,
and θ -Ni4N structural variants are shown in Figs. 7 and 8.

Inspecting the volumetric dependences in Figs. 7 and 8 we
see that the internal parameter Niu in the η-Ni4N structural
variant is rather constant for lower volumes, equal to the value
0.25 that corresponds to the Ni atoms being located in exactly
one-quarter along the body diagonal of the elementary unit
cell (see the upper left part of Fig. 4). This trend changes at
about 8.5 Å3 per atom and the internal parameter Niu increases
for higher volumes. In order to examine the impact of these
changes on the energetics of the η-Ni4N allotrope (see a similar
analysis in the case of MoSi2 in Refs. 55 and 56), we have
performed also a series of calculations with Niu = 0.25 and
these data points are marked as η∗ in Fig. 6. Apparently, rather
small changes in the value of the internal parameter Niu result
in quite significant reduction of the total energy of the η-Ni4N
compound.

Similarly, a geometrically ideal position with Niu = 0.25
may occur in the ζ -Ni4N phase that, in contrast to the trend
detected in the η-Ni4N allotrope, reaches this value only for the
highest studied volumes. Also in this case we fixed the internal
parameter Niu to 0.25 and the corresponding data points are

FIG. 7. (Color online) Ab initio calculated volumetric depen-
dences of internal atomic-position parameter Nu and Niu (see also
Table IV) in β-Ni4N, ε-Ni4N, ζ -Ni4N, γ -Ni4N, η-Ni4N, and θ -Ni4N
allotropes.
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P. HEMZALOVÁ et al. PHYSICAL REVIEW B 88, 174103 (2013)

FIG. 8. (Color online) Ab initio calculated volumetric depen-
dences of internal atomic-position parameter Niu (see also Table IV)
in γ -Ni4N and θ -Ni4N allotropes.

labeled ζ ∗ in Fig. 6. Again, a significant reduction of the total
energy is seen when compared with the unconstrained states.

Employing the Murnaghan equation of state40 for the total
energy E,

E(V ) = E0 + B0V

B ′
0

(
(V0/V )B

′
0

B ′
0 − 1

+ 1

)
− B0V0

B ′
0 − 1

,

we can express the energy E as a function of the pressure p

applying the analysis performed recently by Holec et al.,57

E(p) = E0 + B0V0

B ′
0 − 1

⎡
⎣ p

B0
+ 1

B′
0

√
B ′

0
B0

p + 1
− 1

⎤
⎦ ,

using the pressure dependence derived from the Murnaghan
equation of state:

p = −∂E

∂V
⇒ V (p) = V0

B′
0

√
B ′

0
B0

p + 1
.

The pressure dependences of the atomic volume for all studied
phases determined in this way are shown in Fig. 9. Based on
this relation, the enthalpy H (p) = E[V (p)] + pV (p) can be
evaluated analytically and the corresponding pressure depen-
dences are visualized in Fig. 10. The results indicate that within
the considered pressure range the order of thermodynamic
stability is not altered with the only exception being the two
phases with the highest energies considered in our study, η and
θ , for which enthalpies cross at ≈8 GPa.

As far as elastic parameters are concerned, selected com-
puted values are summarized in Table V for each structure. In
particular, the bulk modulus B (in GPa) and its pressure deriva-
tive B ′ (as a representative of third-order elastic constants) are
listed. It is worth noting that the most stable α-Ni4N allotrope
(see a detailed analysis below) possesses also the highest value
of the bulk modulus B = 197 GPa. In contrast, the lowest
value is predicted for η-Ni4N.

In order to obtain energy-related quantities characterizing
the thermodynamic stability, such as the formation energy
of the studied nickel nitrides, the ground-state energies of

FIG. 9. (Color online) Atomic volume V (in Å3 per atom) as
function of pressure of the various Ni4N phases.

the elemental constituents must be known. Therefore, we
calculated the energy-volume dependence for ferromagnetic
(FM) and nonmagnetic (NM) fcc and bcc nickel. To obtain an
upper bound for the nitrogen chemical potential, we employ
a large cube-shaped supercell (with the lattice parameter
a = 11 Å) with a two-atomic nitrogen molecule N2 inside
and optimized the N-N interatomic distance so as to minimize
the total energy. The calculated lattice parameter of FM
fcc Ni (3.52 Å) agrees excellently with the measured value
(3.524 Å58). Similarly, good agreement is reached between
computed (1.117 Å) and measured (1.097 Å) interatomic
distance in the N2 molecule.59

Having obtained the energies of the elemental constituents,
we determined the thermodynamic characteristics such as
(i) the values of total energy differences ETOT with respect
to the most stable structure (the α-Ni4N allotrope) and (ii)
energies of formation Ef at T = 0 K. The formation energy
Ef of the studied compounds was calculated using the formula

Ef(NimNn) = E(NimNn) − mENi − nEN

m + n
,

FIG. 10. (Color online) Ab initio computed pressure dependence
of the enthalpy H for the various Ni4N phases visualized for each
pressure relatively with respect to the enthalpy of the FM α-Ni4N.
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TABLE V. Ab initio calculated values of the bulk modulus B (in
GPa) and its pressure derivative B ′ obtained from the Murnaghan
equation40 for Veq (in Å3 per atom).

Ni4N B (GPa) B ′

α (FM) 197 4.9
β (NM) 193 4.4
γ (NM) 182 5.6
δ (NM) 176 5.2
ε (FM) 189 4.2
ζ (NM) 168 5.8
η (NM) 120 4.6
θ (NM) 195 4.9

where Ef(NimNn) is the total energy (per formula unit) of
the NimNn compound containing m Ni atoms and n N atoms
and EN and ENi are the total energies per atom of N and Ni
in their ground-state phases, i.e., in the N2 molecule and in
ferromagnetic fcc Ni, respectively. These results are listed in
Table VI.

Focusing on the T = 0 K properties, in particular on the
above discussed relation between the thermodynamic stability
and the bulk modulus, we can extend our previous discussion
about the maximum bulk modulus B found for the most stable
compound α-Ni4N (value of 197 GPa). We therefore combine
the bulk modulus values in Table V with the total energy dif-
ferences ETOT with respect to the α-Ni4N listed in Table VI;
we can also connect the lowest bulk modulus B predicted for
the η-Ni4N phase with the highest value of the total energy
differences ETOT, or equivalently with the lowest stability,
predicted for the η-Ni4N compound. In Fig. 11 we draw the
dependence of ETOT as a function of the bulk modulus B for
all studied compounds. An almost linear relation is observed.
The only deviating data point corresponds to the nonmagnetic
θ -Ni4N allotrope. Here we speculate that this compound is so
distinctly different from the other studied phases due to its very
peculiar cell shape described by a c/a ratio equal to 2.27. Since
this phase is also thermodynamically highly unfavorable, we
exclude this phase from our subsequent analysis.

Considering the results for the seven remaining compounds,
the level of anticorrelation can be mathematically quantified
by evaluating the sample correlation coefficient r . For two data

TABLE VI. Ab initio calculated values of total-energy differences
ETOT with respect to the most stable structure (α-Ni4N), energy of
formation Ef , and for NM phases, the total densities of states (DOS)
at the Fermi level.

ETOT Ef DOSNM

Ni4N (meV/atom) (meV/atom) at EF

α (FM) 0 −48 1.50
β (NM) 53 5 3.50
γ (NM) 70 21 0.96
δ (NM) 77 29
ε (FM) 84 35 1.12
ζ (NM) 106 57 0.81
η (NM) 255 206 1.47
θ (NM) 306 258 1.55

FIG. 11. (Color online) Relation between the total energy differ-
ence ETOT with respect to the most stable structure α-Ni4N and the
bulk modulus B (in GPa).

sets fi and gi , this coefficient is defined as

r = n
∑n

i=1 figi − ∑n
i=1 fi

∑n
i=1 gi√

n
∑n

i=1 f 2
i − ( ∑n

i=1 fi

)2
√

n
∑n

i=1 g2
i − ( ∑n

i=1 gi

)2
.

If fi and gi are strongly anticorrelated, the coefficient
approaches −1.

It is seen that the thermodynamical stability (expressed by
the total energy difference ETOT with respect to the total
energy of the ground-state phase) depends linearly on the bulk
modulus B and both quantities are strongly anticorrelated
with the sample correlation coefficient r equal to −0.972.
The slope of this linear dependence is −3.2 meV/atom per
GPa, i.e., an increase of the total energy difference ETOT

(or of the formation energy Ef) by 3.2 meV/atom results in a
reduction of the bulk modulus B by 1 GPa. This finding is in
agreement with recent results related to Ti-Nb bcc alloys60

or fcc alloys.61 We note, however, that only the α-Ni4N
compound has negative formation energy Ef indicating that
only this phase is thermodynamically stable, whereas all other
allotropes are unstable with respect to a decomposition into
elemental nickel and nitrogen. This finding is consistent with
experimental observations.

After examining selected thermodynamic and elastic prop-
erties of the studied Ni4N allotropes, we further analyze their
magnetic characteristics. The calculated values of the atomic
magnetic moment μ (per Ni atom) of ferromagnetic (FM)
states are listed in Table III. Inspecting the values in Table III
we find that only for the ground state α-Ni4N phase and,
to a lesser extent ε-Ni4N allotrope, a significant magnetic
moment occurs. As we can see from Fig. 6, the ground
state of θ -phase is probably also FM. Unfortunately, due to
convergence problems, we were not able to determine this
ground state accurately enough. We can also compare the
magnetic moments from Table III with electronic densities
of states at the Fermi level (DOS(EF)) computed for NM
phases (see Table VI) and consider the Stoner criterion for
the occurence of magnetism. Interestingly, we do not find any
reasonable correlation between a high NM DOS(EF) and the
onset of magnetism.
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FIG. 12. (Color online) Ab initio calculated dependences of
magnetic moments μ (per Ni atom) in ferromagnetic (FM) Ni4N
allotropes and fcc and bcc FM Ni as functions of the first-nearest
neighbor interatomic distance Ni-N (in case of nickel nitrides) or
Ni-Ni (in case of cubic nickel).

In order to compare magnetism in the above mentioned
three FM Ni4N compounds with the FM bcc and fcc Ni
phases, we analyze the dependence of the local Ni magnetic
moment μ as a function of the distance between the nearest
neighboring atoms, i.e., either N-Ni (in Ni4N compounds)
or Ni-Ni (in fcc and bcc FM Ni). The trends are depicted
in Fig. 12. It turns out the onset of magnetism in the Ni4N
FM compounds and in elemental Ni is connected with the
interatomic distances between 1.6 and 1.9 Å with the lower
value found mostly for nickel nitrides and the upper value in
the elemental FM fcc Ni. The trends in Fig. 12 are qualitatively
quite similar for nickel nitrides and pure Ni, though not
identical. Both bcc and fcc Ni exhibit a well-pronounced
kink on the dependence of the local magnetic moment on the
nearest-neighbor interatomic distance that is shifted to a lower
value in the case of hypothetical bcc Ni. In contrast to that,
dependences obtained for nickel nitrides exhibit also changes
of the slope but these are less pronounced.

Having found common features in the magnetism of Ni4N
compounds and Ni states, we continue our study with a
detailed description of single-crystalline elastic properties of
the ground-state cubic α-Ni4N phase. The comparison of
these results with single-crystalline elastic constants computed
for fcc FM Ni is given in Table VII (results for noncubic

TABLE VII. Summary of ab initio calculated and experimental
second order single-crystal elastic constants C11,C12,C44 and the
Zener anisotropy ratio AZ = 2C44/(C11 − C12) of ferromagnetic
(FM) fcc nickel and α-Ni4N, ζ -Ni4N, and η-Ni4N.

C11 (GPa) C12 (GPa) C44 (GPa) AZ

Ni this work 268 151 129 2.20
Ni expt.58 248 155 124 2.67
α-Ni4N (FM) 348 121 43 0.38
ζ -Ni4N (NM) 181 161 114 11.4
η-Ni4N (NM) 251 55 50 0.51

TABLE VIII. Ab initio calculated polycrystalline shear moduli
G, Young moduli Y , and Poisson ratios ν of the cubic α-Ni4N, ζ -
Ni4N, and η-Ni4N phases. Voigt (V), Reuss (R), Hershey (H), as
well as Reuss-Voigt-Hill-Gilvarry (RVHG) homogenization schemes
are used. Specifically for the Hershey’s homogenization method we
also list B/G ratios. For the sake of completeness, Cauchy pressures
C12-C44 are given, too.

α-Ni4N ζ -Ni4N η-Ni4N fcc FM Ni

GV (GPa) 71 72 69 101
YV (GPa) 191 190 174 257
νV 0.306 0.276 0.223 0.239

GH (GPa) 64 49 65 94
YH (GPa) 173 133 166 243
νH 0.322 0.338 0.234 0.251

B/GH 3.09 3.44 1.84 2.01
C12-C44 78 47 5 22

GRVHG (GPa) 64 47 66 94
YRVHG (GPa) 174 130 167 242
νRVHG 0.321 0.342 0.233 0.252

GR (GPa) 57 22 62 87
YR (GPa) 156 63 159 227
νR 0.338 0.419 0.244 0.266

tetragonal-symmetry β-Ni4N are summarized in Table XII in
the Appendix for a future reference). For nitrides possessing
a cubic symmetry, we calculated all three single-crystalline
elastic constants as well as homogenized polycrystalline
elastic moduli and compared the results with those obtained
for fcc FM Ni (see Table VIII). As seen in Table VII, our
theoretically predicted single-crystalline elastic constants of
FM fcc Ni agree very well with the measured ones.58

The anisotropic single-crystalline elastic response is conve-
niently visualized by calculating the directional dependence of
the Young modulus Y (r) and our results are shown in Fig. 13.
Apparently, the α-Ni4N compound is both quantitatively and
qualitatively different from the elemental fcc Ni. The maxi-
mum values (indicated by dark blue-red color) are comparable
but the crystallographic directions are complementary, i.e., the
[001] is the softest and the [111] the hardest direction in the
case of α-Ni4N phase, but it is the other way around in FM
fcc Ni. The difference may also be conveniently characterized
by Zener’s anisotropy AZ ratio that for the three cubic Ni4N
allotropes reaches rather extreme values. In contrast to FM
fcc Ni with the Zener’s ratio equal to 2.20, its value is as
low as 0.38 and 0.51 for α-Ni4N and η-Ni4N, respectively,
but as high as 11.4 in case of ζ -Ni4N. The very low values
predicted for α-Ni4N and η-Ni4N are clearly due to rather low
values of C44 (see Table VII) similarly as, e.g., in the case of
α-Po crystallizing in the simple cubic structure (for details, see
Refs. 62–64). Exactly in opposite manner, the very high value
of 11.4 computed for ζ -Ni4N is due to an extremely low value
of C ′ = 1/2(C11 − C12).

Additionally, we also list in Table VIII the ratio of the
bulk and shear moduli employing Hershey’s homogenization
method as well as the Cauchy pressures. The former parameter,
the B/G ratio, was found to be correlated with the ductility
of materials.65 We find all phases to have the ratio above the
threshold of 1.75 separating materials behaving in a brittle
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FIG. 13. (Color online) Ab initio predicted directional depen-
dence of single-crystalline Young modulus for FM α-, NM ζ -, and
NM η-Ni4N, as well as for ferromagnetic fcc Ni.

manner (B/G < 1.75) from those that are ductile (B/G >

1.75) and we thus expect these compounds to be ductile rather
than brittle.

Also the positive Cauchy pressure supports this prediction
as negative values are commonly interpreted as a fingerprint of
covalent bonds66 appearing in brittle materials. Recently, how-
ever, it was demonstrated that the Cauchy pressure is negative
not because of covalent bonding as originally suggested but
because of long-range electrostatic potential contributions.67

To study the elastic response of Ni4N cubic phases to biaxial
strains, we have also analyzed directional dependence of the
area modulus A(r) as recently introduced, e.g., in Refs. 68
and 69. The area modulus is a two-dimensional counterpart
of the Young’s modulus. In a similar manner as the Young’s
modulus describes uniaxial loadings along a vector r, the area
modulus describes the change of the area within a plane with
the plane normal vector r. Specifically, for cubic systems, the
area modulus A(r) may be obtained from the relation

1

A(r)
= 1

Y (r)
+ 1

3B
. (16)

The area modulus is a useful visualization of the amount
of elastic energy that is necessary, for example, for epitaxial
deposition of a studied material on a substrate in a fully
coherent manner. Figure 14 can be thus interpreted that the
elastic energy will be lowest when α-Ni4N is grown to interface
a substrate by its {111} planes and highest for {100} planes.
Similar conclusions can be drawn for the η-Ni4N allotrope.
For the ζ -Ni4N phase, due to its qualitatively opposite elastic
anisotropy as compared with α-Ni4N, planes minimizing and
maximizing the elastic energy in case of epitaxial growth will
be exactly inverted.

Due to the fact that both thin films and grain-boundary
precipitates typically exist in rather complex stress/strain
states, we also calculated the pressure dependence of single-

FIG. 14. (Color online) Computed directional dependences of
single-crystalline area modulus A of FM α-Ni4N, fcc FM Ni, NM
ζ -Ni4N, and NM η-Ni4N.

crystalline elastic constants. As shown in Figs. 15, 16,
and 17 C11 and C44 increase with increasing hydrostatic
pressure but C12 decreases. The computed trends allow for
comparison with those predicted by ab initio methods in
other nitrogen-containing cubic intermetallics and alloys, such
as zinc-blende III-N nitrides,70,71 cubic boron nitrides,72–74

superhard semiconducting C3N2,75 cubic spinel SiGe2N4,76

cubic antiperovskites (i) ANSr(3) (A = As, Sb, and Bi),77

(ii) AsNBa3 and SbNBa3,78 and (iii) MNNi3 (M = Zn, Cd,
Mg, Al, Ga, In, Sn, Sb, Pd, Cu, Ag, and Pt),79 cubic TiN
and AlN,80 cubic phases of NbN81 and GaN,82 zinc-blende
and rocksalt BN,83 ultraincompressible bimetallic interstitial

FIG. 15. (Color online) Ab initio calculated pressure dependences
of single-crystalline elastic constants of the FM α-Ni4N phase.
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FIG. 16. (Color online) Ab initio calculated pressure dependences
of single-crystal elastic constants of the NM ζ -Ni4N phase.

FIG. 17. (Color online) Ab initio calculated pressure dependences
of single-crystal elastic constants of the NM η-Ni4N phase.

FIG. 18. (Color online) Calculated pressure dependences of
homogenized elastic moduli (Young Y and shear G) together
with the Poisson ratio ν of the FM α-Ni4N phase as obtained
employing Voigt, Reuss, and Reuss-Voigt-Hill-Gilvarry (RVHG)
homogenization schemes. The data points using the Hershey’s method
are not shown as they are very similar to the RVHG ones.

TABLE IX. Extremal values of Poisson ratio ν(n,m) for a uniaxial
loading along the vector n and perpendicular strain in the direction m.

νmin n m νmax n m

α-Ni4N 0.127 [1 1 0] [0 0 1] 0.635 [1 1 0] [1 1̄ 0]
ζ -Ni4N −0.625 [1 1 0.388] [1 1̄ 0] 1.43 [1 1 0] [0 0 1]
η-Ni4N 0.115 [1 1 0] [0 0 1] 0.476 [1 1 0] [1 1̄ 0]

nitrides Ni2Mo3N, Pd2Mo3N, Pt2Mo3N, Co3Mo3N, and
Fe3Mo3N,84 or C3N2,85 Zr3N4, and Hf3N4.86

By applying homogenization techniques, the pressure
dependence of polycrystalline Young and shear moduli as
well as of the Poisson ratio ν have been obtained for FM
α-Ni4N allotrope and are visualized in Fig. 18. It can be seen
that polycrystalline elastic moduli increase with increasing
hydrostatic pressure while the Poisson ratio decreases.

We have also tested stability conditions based on these
single-crystalline elastic constants at different hydrostatic
pressures p (for details see, e.g., Refs. 87–90),

C11 − C12 − p > 0, (17)

C11 + 2C12 + 2p > 0, (18)

C44 − p/2 > 0, (19)
within the studied pressure range. These stability conditions
are the same as, e.g., relations (C.5) from Ref. 89 or the lowest
set of relations (48) from Ref. 90. For the α-Ni4N phase all
conditions are obeyed and we can conclude that it is predicted
to be mechanically stable.

Finally, our extended analysis of single-crystalline elastic
constants for all three cubic variants allows one to examine
Poisson ratios for loadings along different directions. Fol-
lowing the analysis by Norris,69 extremal values have been
determined and these are summarized in Table IX. Seeing
negative values of Poisson’s ratio in the case of ζ -Ni4N we can
conclude that, if this phase could be prepared (e.g., in thin films
under external constraints), it would have auxetic properties
on the single-crystalline level, i.e., due to an uniaxial tension
along the [1 1 0.388] direction, this material would expand in
the [11̄0] direction perpendicular to the loading axis.

IV. CONCLUSIONS

With the help of ab initio methods, we studied thermody-
namic, structural, magnetic, elastic, and electronic properties
of eight allotropes of Ni4N. Our theoretical results confirm, in
agreement with experimental findings, that the cubic allotrope
[Pearson symbol cP5, space group Pm3̄m (221)] is the most
stable one within the studied set. It is also the only one
thermodynamically stable at T = 0 K with respect to the
decomposition to the elemental Ni and the N2 gas phase. For
all eight allotropes, we determined the lattice and internal
structural parameters, as well as the bulk moduli and their
pressure derivatives. The thermodynamic stability and bulk
modulus were found to be anticorrelated.

By analyzing both spin-polarized ferromagnetic and non-
magnetic states we find similarities between the behavior of
magnetic moment as a function of Ni-N and Ni-Ni nearest
neighbor distance in the elemental Ni and studied ferromag-
netic phases of Ni4N. Aiming mostly at the ground-state Ni4N
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allotrope, a complete set of single-crystalline elastic constants
is calculated at both zero and gigapascal hydrostatic pressures.
These values are further homogenized in order to predict poly-
crystalline elastic moduli employing Voigt, Reuss, Hershey,
and Reuss-Voigt-Hill-Gilvarry homogenization methods.

Finally, we demonstrate that the elastic anisotropy of
the ground-state Ni4N allotrope is both quantitatively and
qualitatively different from that in elemental fcc Ni as
they have opposite hard and soft crystallographic directions.
Further, for one of the cubic phase we show that it possesses
a negative Poisson ratio, indicating an auxetic material on the
single-crystalline level. As there is very little experimental
information on metastable phases of Ni4N that can possibly
exist at elevated temperatures as well as on their materials
properties, most of the present results are theoretical predic-
tions which may motivate future experimental work.
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APPENDIX

Tables X, XI, and XII contain optimized atomic positions,
crystallographic description of the studied phases, and ab initio

TABLE X. Optimized atomic positions in the δ-Ni4N Lifshitz
structure after full relaxation. Let us note that the relaxed nickel
Wyckoff positions are quite different from the “ideal” unrelaxed ones
that are given in Table II.

Wyckoff positions Ni

(0.3028, −0.0211, 0.0211); (0.2500, 0.5219, 0.0219)
(0.6972, 0.0211, −0.0211); (0.7500, 0.4781, −0.0219)
(0.0000, 0.2281, 0.2281); (−0.0528, 0.7711, 0.2289)
(0.5000, 0.2719, 0.2719); (0.5528, 0.7289, 0.2711)

(0.2500, −0.0219, 0.4781); (0.1972, 0.5211, 0.4789)
(0.7500, 0.0219, 0.5219); (0.8028, 0.4789, 0.5211)
(0.0528, 0.2289, 0.7711); (0.0000, 0.7719, 0.7719)
(0.4472, 0.2711, 0.7289); (0.5000, 0.7281, 0.7281)

calculated single-crystalline elastic constants of the β-Ni4N
phase, respectively.

TABLE XI. Crystallographic description of the studied phases (without
the Lifshitz structure δ-Ni4N, which is given in Table II). For the notation of
the internal parameter u, see the caption of Table II.

Ni4N Wyckoff positions N Wyckoff positions Ni

α 1a (0, 0, 0) 1b (1/2, 1/2, 1/2)
3d (1/2, 0, 0)

(0, 1/2, 0)
(0, 0, 1/2)

β (1/4, 1/4, 1/4) (1/4, 0, 0)
(3/4, 3/4, 1/4) (3/4, 0, 0)
(3/4, 1/4, 3/4) (1/4, 1/2, 0)
(1/4, 3/4, 3/4) (3/4, 1/2, 0)

(1/4, 0, 1/2)
Niux = 0.034 (1/4, 1/2, 1/2)

(3/4, 0, 1/2)
(3/4, 1/2, 1/2)

(1 − Niux , 1/4, 1/4)
(Niux , 3/4, 1/4)

(1/2 + Niux , 1/4, 1/4)
(1/2 − Niux , 3/4, 1/4)

(Niux , 1/4, 3/4)
(1 − Niux , 3/4, 3/4)

(1/2 − Niux , 1/4, 3/4)
(1/2 + Niux , 3/4, 3/4)

γ 4c (ux , 1/4, uz) 4c (ux , 1/4, uz)
(1/2 − ux , 3/4, 1/2 + uz) (1/2 − ux , 3/4, 1/2 + uz)

(1 − ux , 3/4, 1 − uz) (1 − ux , 3/4, 1 − uz)
(1/2 + ux , 1/4, 1/2 − uz) (1/2 + ux , 1/4, 1/2 − uz)

4c (ux , 1/4, uz)
Nux−4c = 0.0 (1/2 − ux , 3/4, 1/2 + uz)
Nuz−4c = 0.0 (1 − ux , 3/4, 1 − uz)

Niux−4c = 0.197 (1/2 + ux , 1/4, 1/2 − uz)
Niuz−4c = 0.5 8d (ux , uy , uz)
Niux−8d = 0.5 (1 − ux , 1 − uy , 1 − uz)
Niuy−8d = 0.5 (1/2 − ux , 1 − uy , 1/2 + uz)

Niuz−8d = 0.717 (1/2 + ux , uy , 1/2 − uz)
(1 − ux , 1/2 + uy , 1 − uz)

(ux , 1/2 − uy , uz)
(1/2 + ux , 1/2 − uy , 1/2 − uz)
(1/2 − ux , 1/2 + uy , 1/2 + uz)

ε 1h (1/2, 1/2, 1/2) 1a (0, 0, 0)
1b (1/2, 0, 0)

Niux−2l = 0.219 2l (ux , 1/2, 1/2)
(1 − ux , 1/2, 1/2)

ζ 1a (0, 0, 0) 4e (ux , ux , ux )
(1 − ux , 1 − ux , ux )

Niux−4c = 0.268 (1 − ux , ux , 1 − ux )
(ux , 1 − ux , 1 − ux )

η 2a (0, 0, 0) 8c (ux , ux , ux )
(1/2, 1/2, 1/2) (1 − ux , 1 − ux , ux )

(1 − ux , ux , 1 − ux )
Niux−8c = 0.287 (ux , 1 − ux , 1 − ux )

(1/2 + ux , 1/2 + ux , 1/2 + ux )
(1/2 − ux , 1/2 − ux , 1/2 + ux )
(1/2 − ux , 1/2 + ux , 1/2 − ux )
(1/2 + ux , 1/2 − ux , 1/2 − ux )

θ 2c (0, 1/2, z) 2a (0, 0, 0)
(1/2, 0, 1 − uz) (1/2, 1/2, 0)

2c (0, 1/2, uz)
Nuz−2c = 0.164 (1/2, 0, 1 − uz)

Niuz−2c = 0.5 4f (0, 0, uz)
Niuz−4f = 0.286 (1/2, 1/2, uz)

(1/2, 1/2, 1 − uz)
(0, 0, 1 − uz)
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TABLE XII. Ab initio calculated single-crystalline elastic constants of β-Ni4N (following the computational approach published in Ref. 91).

C11 C12 C13 C33 C44 C66

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

Cij β-Ni4N 230 153 156 235 64 40

*mafri@ipm.cz
1J. Guo, F. Pan, M. Feng, R. Guo, P. Chou, and C. Chang, J. Appl.
Phys. 80, 1623 (1996).

2J. Kim, J. Je, J. Lee, Y. Park, and B. Lee, J. Electrochem. Soc. 147,
4645 (2000).

3J. Kim, J. Je, J. Lee, Y. Park, T. Kim, I. Jung, B. Lee, and J. Lee, J.
Electron. Mater. 30, L8 (2001).

4C. Kim, J. Kim, J. Lee, J. Je, M. Yi, D. Noh, Y. Hwu, and P. Ruterana,
in 4th International Conference on Nitride Semiconductors (ICNS-
4), Denver, Colorado, 2001 [Phys. Status Solidi A 188, 379 (2001)].

5R. Valencia, R. Lopez-Callejas, A. Munoz-Castro, S. Barocio,
E. Chavez, and O. Godoy-Cabrera, in 10th Latin American
Workshop on Plasma Physics/7th Brazilian Meeting on Plasma
Physics, Sao Pedro, Brazil, 2003 [Braz. J. Phys. 34, 1594 (2004)].

6H. Savaloni and M. Habibi, Appl. Surf. Sci. 258, 103 (2011).
7E. Menthe, A. Bulak, J. Olfe, A. Zimmermann, and K. T. Rie, Surf.
Coat. Technol. 133, 259 (2000).

8L. Zagonel, C. Figueroa, R. Droppa, Jr., and F. Alvarez, Surf. Coat.
Technol. 201, 452 (2006).

9B. Larisch, U. Brusky, and H. J. Spies, Surf. Coat. Technol. 116,
205 (1999).

10L. Zagonel, C. Figueroa, and F. Alvarez, Surf. Coat. Technol. 200,
2566 (2005).

11A. Leineweber, H. Jacobs, and S. Hull, Inorg. Chem. 40, 5818
(2001).

12C. Q. Sun, Vacuum 52, 347 (1999).
13I. M. Neklyudov and A. N. Morozov, Physica B 350, 325 (2004).
14S. Desmoulins-Krawiec, C. Aymonier, A. Loppinet-Serani, F. Weill,

S. Gorsse, J. Etourneau, and F. Cansell, J. Mater. Chem. 14, 228
(2004).

15Z. Li, R. G. Gordon, V. Pallem, H. Li, and D. V. Shenai, Chem.
Mater. 22, 3060 (2010).

16D. L. Kuznetsov, G. G. Ugodnikov, and I. E. Filatov, Tech. Phys.
Lett. 34, 87 (2008).

17H. R. Stock, M. Diesselberg, and H. W. Zoch, Surf. Coat. Technol.
203, 717 (2008).

18D. Vempaire, S. Miraglia, A. Sulpice, L. Ortega, E. K. Hlil,
D. Fruchart, and J. Pelletier, J. Magn. Magn. Mater. 272-276, e843
(2004).

19Y. Takahashi, Y. Imai, and T. Kumagai, J. Magn. Magn. Mater. 323,
2941 (2011).

20E. Gregoryanz, C. Sanloup, M. Somayazulu, J. Badro, G. Fiquet,
H.-K. Mao, and R. J. Hemley, Nat. Mater. 3, 294 (2004).

21A. F. Guillermet and K. Frisk, Int. J. Thermophys. 12, 417 (1991).
22H. A. Wriedt, Bull. Alloy Phase Diagrams 6, 558 (1985).
23C. Guillaume, J. P. Morniroli, D. J. Frost, and G. Serghiou, J. Phys.:

Condens. Matter 18, 8651 (2006).
24N. Terao, Naturwissenschaften 46, 204 (1959).
25S. Nagakura, N. Otsuka, and Y. Hirotsu, J. Phys. Soc. Jpn. 35, 1492

(1973).
26S. Nagakura, N. Otsuka, and Y. Hirotsu, Acta Crystallogr. Sect. A

28, S100 (1972).

27P. N. Terao, J. Phys. Soc. Jpn. 15, 227 (1960).
28Y. Kong, J. Pelzl, and F. Li, J. Magn. Magn. Mater. 195, 483

(1999).
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61S. B. Maisel, M. Höfler, and S. Müller, Nature (London) 491, 740
(2012).
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