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Plasmon modes and screening in double metallic armchair graphene nanoribbons
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We theoretically study the plasmon modes in double parallel metallic armchair graphene nanoribbons (AGNRs)
separated by a distance Lb. Starting with a single doped metallic AGNR at zero temperature, we show the plasmon
dispersion dependence on the Fermi wave vector. By evaluating the static dielectric function for this ribbon, we
find that the usual logarithmic divergence at q = 2kF is absent. This indicates that plasmons in metallic AGNRs
might be the most robust charge-density oscillations occurring in quasi-one-dimensional electron systems. We
also study the influence of the distance Lb and of the carrier densities on the out-of-phase and in-phase plasmon
modes. Finally, we address the intra-intersubband electron-hole transitions in single metallic armchair ribbons
and find a strong influence of doping on the intrasubband plasmon modes.
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I. INTRODUCTION

Graphene has drawn considerable attention due to its
remarkable electronic properties1 which arise as a direct con-
sequence of the linear dispersion relation for energies near the
Dirac points (valleys) K and K′. The high mobility of charges,
high optical transmittance, and the easy way of tuning the
carrier density are important features that should turn graphene
into an excellent material for a wide variety of potential
applications in electronics, plasmonics, and optoelectronics.1–6

On the other hand, plasmons, which are collective or charge-
density excitations, can be found in metals or in bulk materials
and possess a wide applicability in improving some specific
properties of metamaterials7 and photovoltaic devices.8 The
interest in plasmons is a direct consequence of their capability
to confine electromagnetic energy on nanometer scale9 and
thus increase the incident light intensity over the material.
As a matter of fact, the plasmon oscillation in graphene,
which is strongly related to the charge-carrier density, can be
tuned in a wide range of frequencies on the THz scale.10 This
feature seems to be sufficient to produce high field confinement
and long-lifetime plasmons.11 Nevertheless, graphene-based
nanostructures can offer further benefits with respect to the
plasmons, such as strong plasmon localization and extremely
high field confinement.10 In this sense, nanopatterned samples
of graphene, such as graphene nanoribbons (GNRs), are
promising systems and worth further exploration.

The GNRs, made by cutting the graphene sample in strips a
few nanometers wide, have different electronic properties than
the bulk graphene, especially with regard to the strong depen-
dence on the crystallographic orientation,12 the type of edge
termination,13 and the ribbon width.14 In fact, plasmons on
graphene-based nanostructures have been widely investigated
but most of these investigations rely on a classical electro-
magnetic description.15–18 A quantum treatment of plasmons
in some graphene nanostructures has been carried out19–23

but only two pertain to single graphene nanoribbons.19,22

Accordingly, further investigations concerning, for instance,
intersubband electron-hole transitions and especially two
parallel interacting GNRs could provide additional insights
and lead to potential new applications.

In this paper we study the plasmon modes and the dielectric
properties of metallic armchair graphene nanoribbons (AG-
NRs) within the random-phase approximation (RPA).24 Three
configurations of AGNRs are studied in detail: (i) undoped and
doped metallic AGNRs, (ii) two parallel metallic AGNRs, (iii)
doped metallic AGNRs. In (i) and (ii) only the lowest subband
in the conduction band is occupied while in (iii) the lowest and
first excited state in the conduction band are occupied. Our re-
sults show that within the long-wavelength limit the plasmons
in doped metallic AGNRs disperse as (2kF q + q2)1/2√|ln qL|,
and the static dielectric function for these ribbons does not
present the usual logarithmic divergence at q = 2kF . This
allows us to surmise that plasmons in metallic AGNRs might
be the most robust carrier density oscillations occurring in
quasi-one-dimensional (Q1D) systems. Furthermore, when
considering double metallic AGNRs, separated by a distance
Lb and having the same carrier densities, the in-phase and out-
of-phase plasmon modes become degenerate as Lb increases.
Moreover, by considering different carrier densities in the rib-
bons, we observe that the in-phase mode becomes more robust
whereas the out-of-phase mode is sensitive to the doping. Fi-
nally, we study the intra-intersubband electron-hole transitions
in metallic armchair ribbons where our results show a strong
influence of doping on the intrasubband plasmon mode.

The paper is organized as follows. In Sec. II we present
the electronic structure of a single AGNRs. In Sec. III we
present the theoretical formalism and the main results for
the dielectric function and the screening properties of doped
metallic AGNRs and double parallel metallic AGNRs. The
results are elucidated with several pertinent figures. Finally,
in Sec. IV we present our conclusions and in the appendixes
some details for the calculation of the polarizabilities.
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FIG. 1. (Color online) Schematic representation of two parallel
armchair graphene nanoribbons. L1 and L2 are the widths of the
ribbons and Lb is the separation between them.

II. ELECTRONIC STRUCTURE

We focus our attention on a single GNR with armchair
edges, infinitely extended in the y direction and with finite
width L = (N − 1)

√
3a/2 in the x direction. N is an integer

number which is properly chosen to define the metallic or
semiconductor character of the ribbon, and a = 0.142 nm is
the lattice parameter. Such a system can be obtained from Fig. 1
by considering Lb = 0 and L = L1 + L2. Within the low-
lying energy limit near the Dirac points K =(4π/3

√
3a)(1,0)

and K′ = (4π/3
√

3a)(−1,0), the quantum states of
AGNRs can be combined into a four-component spinor
� = [ψA(r),ψB(r),ψ ′

A(r),ψ ′
B(r)]T , where the superscript T

indicates the transpose. These spinors are eigenvectors of the
Hamiltonian

H = γ

[
σ.k 0

0 −σ ∗.k

]
, (1)

where γ = 0.593 nm eV, k = (kx,ky) is the wave vector, and
σ = (σx,σy) is the 2D Pauli vector.

For an AGNR the boundary conditions at the edges demand
the vanishing of the wave-function components at points
x = 0 and x = L. Due to the translational invariance in the
y direction, the wave function for an AGNR can be written as

�(x,y) = eikyy

2
√

LLy

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

se−iθkn eiknx

eiknx

−se−iθkn e−iknx

−e−iknx

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where

kn = nπ/L − 4π/(3
√

3a) (3)

is the wave vector of the nth subband, s = +(−) is the
usual band index for graphene’s band, and θkn

= arctan(ky/kn)
expresses the coupling between ky and kn. The corresponding
eigenvalue is Es

n = sγ [k2
n + k2

y]1/2. Note that while the condi-
tion N = 3m − 1, m ∈ Z is satisfied, the band structure of the

ribbon describes a semimetallic material. Otherwise, the band
structure of the ribbon possesses an energy gap.

III. COLLECTIVE EXCITATIONS

Within the RPA and considering the charge-density oscil-
lations in the y direction, the dielectric matrix for an AGNR
can be written as24

εijmn(q,ω) = δimδjn − υijmn(q)�mn(q,ω), (4)

where i, j, m, and n are the indices for subbands. �mn(q,ω)
is the 1D polarizability given by

�mn(q,ω) = gs

∑
ky ,s,s ′

f
[
Es

m(ky + q)
] − f

[
Es ′

n (ky)
]

Es
m(ky + q) − Es ′

n (ky) − h̄ω

×F ss ′
(ky,ky + q), (5)

where s,s ′ = 1 (−1) are the indices related to the conduction
(valence) band, gs is the spin degeneracy, and f (E) is the
Fermi distribution function. E±

n = ±γ (k2
n + k2

y)1/2 are the
eigenenvalues of the system and F ss ′

(ky,ky + q) is the overlap
of states with value

F ss ′
(ky,ky + q) = (1 + ss ′ cos θ )/2; (6)

here θ is the angle between (kn,ky) and (kn,ky + q). Following
a procedure similar to that commonly used in literature,20,25,26

we perform the summations over s and s ′. Then we can rewrite
the polarizability as the sum of the contribution from doped
and undoped cases,

�mn(q,ω) = �mn
0(q,ω) + �mn

1(q,ω), (7)

where �0
mn(q,ω) = −χ−

mn,∞(q,ω) is the polarizability of only
interband transitions, corresponding to the undoped case
(EF = 0), and �1

mn(q,ω) = χ+
mn,μ(q,ω) + χ−

mn,μ(q,ω) is the
polarizability of the intraband and interband transitions, cor-
responding to the doped case (EF > 0). At zero temperature,
the full expression for each polarizability term can be written
as

χ±
mn,D(q,ω)

= gs

2π

∫
dky

[
1

∓Em(ky + q) + En(ky) + h̄ω + iδ

− 1

±Em(ky + q) − En(ky) + h̄ω + iδ

]
F±(ky,ky + q).

(8)

Note that the superscripts +(−) refer to intraband and inter-
band electron-hole transitions, respectively, and the parameter
D defines the integration limits. On the other hand, the
Coulomb matrix elements are given by

υijmn(q) = 2e2

ε0L2

∫
dx ′

∫
dxK0(q|x − x ′|)

× cos(ki − kj )x cos(km − kn)x ′, (9)

where ki , defined in Eq. (3), is the quantized wave vector
in the transverse direction for the ith subband and K0 is the
modified Bessel function of the second kind. We point out
that the RPA might be improved straightforwardly to include
local-field corrections. This has been done for bulk graphene.27
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FIG. 2. (Color online) Coulomb potential matrix elements, in
units of e2/ε0, as a function of the transferred wave vector q for
a single metallic AGNR of width L = 18.4 nm.

Before we proceed further we analyze the relevant elements
of the Coulomb potential matrix. In Fig. 2 we present the four
Coulomb matrix elements as a function of the transferred wave
vector q. As can be noticed, due to the presence of harmonic
functions in Eq. (9), the Coulomb potential matrix possesses
vanishing elements when the sum i − j + m − n is an odd
integer as the green dash-dotted line shows. The more relevant
transitions, indicated by the black dashed and red solid curves,
satisfy the condition i − j + m − n = 0,2, respectively. As a
matter of fact, the condition i − j + m − n = 0 corresponds to
intrasubband electron-hole transitions, whereas the condition
i − j + m − n = 2 corresponds to intersubband electron-hole
transitions. Because these transitions are the most relevant in
the system, we focus this study on describing a two-subband
model for the dielectric function. It is worth mentioning that
after performing the summation over s,s ′, the subindices of
the dielectric matrix can represent both the subband index
and the ribbon index. Thus, the theoretical formalism used
in this work is valid for describing inter-ribbon transitions as
well as intersubband transitions. If we desire to describe two
parallel metallic AGNRs, then the subindices of the dielectric
matrix assume the values i = j = m = n = 1,2. Accordingly,
the determinant of the dielectric matrix can be written as

det ε(q,ω) = [(1 − υ1111�11)(1 − υ2222�22) − υ1122

× υ2211�11�22][(1 − υ1212�12)(1 − υ2121�21)

−υ1221υ2112�21�12], (10)

and the plasmon modes are given by the zeros of this
determinant. Before studying the plasmon modes of two
interacting AGNRs, we investigate those of a single metallic
AGNR with only the lowest subband occupied by electrons.

A. Single armchair graphene nanoribbon at zero temperature

First, we consider an undoped metallic AGNR of width
L, in which only interband transitions are allowed. Thus,
we focus on plasmons that occur near the lowest subband
(linear dispersion relation). Because we are dealing with a
single AGNR, the polarizabilities �22 = �21 = �12 vanish
so the determinant in Eq. (10) is reduced to the expression
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0

20

40

60

(m
eV

)

q (nm-1)

N=29
N=47

= v
F

q

FIG. 3. (Color online) The plasmon mode of an undoped metallic
AGNR for two different widths L = 28

√
3a/2 (solid line) and L =

46
√

3a/2 (dashed line). The SPE is indicated by the green dotted line
and governed by the equation h̄ω = γ q.

det ε(q,ω) = (1 − υ1111�
0
11). In order to obtain the plasmon

modes, we begin by calculating the imaginary part of the
polarizability given by

Im �0
11 = −

∫
dky[δ(−Eky+q − Eky

+ h̄ω)

− δ(Eky+q + Eky
+ h̄ω)]F−(ky,ky + q). (11)

It can be noticed that F−(ky,ky + q) is responsible for the
absence of backscattering in undoped AGNRs. As a matter
of fact, it can be shown that for the lowest subband energy
the overlap of states satisfies the condition F−(ky,ky + q) =
1.22 Using this condition and the Kramer-Kronig relations we
obtain, cf. Appendix A, the real part of the polarizability

Re �0
11 = 1

γ
ln

(
h̄ω/γ + q

h̄ω/γ − q

)
. (12)

In Fig. 3 we show the plasmon dispersion for an undoped
metallic AGNR (EF = 0) with different widths ∝N . It can
be noticed that as the width is increased the plasmon
energy is reduced. The green dotted line, which follows the
law h̄ω = γ q, represents the electron-hole continuum also
known as single-particle excitations (SPEs), i.e., the region
where the fluctuations of the charge-density dissipate. As a
matter of fact, due to the singular character of Eq. (12), in
general, for long values of q the plasmon energy h̄ω tends
to γ q, but in reality it should satisfy the condition h̄ω 	=
γ q. Furthermore, by considering the long-wavelength limit
(q → 0) we find that the plasmon dispersion becomes h̄ω ≈
[(4e2γ /πε0)q2 |ln(qL)|]1/2, which agrees with the result of
previous calculations.19

Next, we consider a n-doped metallic AGNR (EF > 0).
Notice that for this case both interband and intraband transi-
tions are allowed. For the sake of simplicity, in this calculation
we neglect the intersubband electron-hole transitions. Thus,
we assume that the plasmon oscillation takes place near the
Fermi level which is above only the lowest subband (linear
dispersion). From Eq. (7) it can be noticed that by calculating
the polarizability �1

11 we are able to find the plasmon modes.
Indeed, for a doped metallic AGNR at zero temperature,
the polarizability can be found in a straightforward manner
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FIG. 4. Left panel: Plasmon dispersion for a doped AGNR with
L = 73

√
3a/2 and carrier density n = 1 × 106 cm−1. Right panel:

The plasmon dispersion and the SPE (shaded area) for a conventional
Q1D system with quadratic dispersion relation.

without using the Kramer-Kronig relations. By evaluating the
integral in Eq. (8) and considering only nonzero values of the
overlap F±(ky,ky + q), we find

Re �1
11 = gs

2πγ

(
2kF q

(h̄ω/γ )2 − q2

)
. (13)

On the other hand, the imaginary part of �1
11 can be obtained

if we use, without any essential limitation, the condition
F±(ky,ky + q) = 1. The result is

Im �1
11 = − 1

γ
�(q − ω)

[
�

(
kF − h̄ω/γ + q

2

)

−�

(
kF − q − h̄ω/γ

2

) ]
+ 1

γ
�(ω − q)

×
[
�

(
h̄ω/γ − q

2

)
− kF

−�

(
h̄ω/γ + q

2

)
− kF

]
. (14)

In the left panel of Fig. 4 we present the plasmon dis-
persion (black solid line) calculated by using the condi-
tion 1 − υ1111(�1

11 + �0
11) = 0 for a metallic AGNR with

parameters kF = 0.15 nm−1 and N = 74. If we consider
the long-wavelength limit, we find that the plasmon mode
takes the form h̄ω ≈ [(4e2γ /πε0)(2kF q + q2) |ln(qL)|]1/2.

This result shows that,at zero temperature, the plasmon mode
in doped metallic AGNR depends on the carrier density (n =
2kF /π ). Besides, the shaded regions indicate the electron-
hole continuum, where Landau damping takes place. The
lower region, where intraband transitions are available, is
bounded by the curves γ q − 2EF < h̄ω < γq and h̄ω >

2EF − γ q. On the other hand, the upper region, where
interband transitions are allowed, is delimited by the curves
γ q + 2EF > h̄ω > γqeh̄ω > 2EF − γ q. Note that with q in
the interval ∈ [0, 2kF ] and for ω = 0, the SPE does not exist.
This is a direct consequence of the 1D confinement and the
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FIG. 5. (Color online) Contour plot of the spectral loss function
vs the energy ω and wave vector q. The AGNR has a width L =
73

√
3a/2 and a carrier density n = 2.3 × 106 cm−1.

linear relation dispersion. Moreover, it can also be observed
that the point (kF ,h̄ω) corresponds to the minimum energy
for which intersubband transitions take place in the system. In
order to compare the space phase ω-q of our Q1D system, in
the right panel of Fig. 4 we show the plasmon dispersion and
the SPE for a conventional Q1D electron gas based on GaAs
semiconductor with parabolic dispersion E = h̄2k2/2m.28 In a
conventional Q1D system for ω = 0 and q in the interval ∈ [0,

kF ], there exists a gap which is closely related to the perfect
nesting of the Fermi surface in 1D systems. From the left
panel of Fig. 4 we notice that the plasmon mode enters the
intersubband SPE where it is expected to be damped. In order
to observe such a behavior we study the spectral loss function

S(q,ω) = − Im[ε−1(q,ω)], (15)

which quantifies the Landau damping of the system. In fact,
this function can be measured by experimental techniques
such as inelastic electron spectroscopy. Accordingly, in Fig. 5
we plot the loss function versus the energy ω and the
transferred wave vector q. Because the plasmon mode satisfies
the condition h̄ω > γ q, we expect a damping of this mode
by the interband SPE. The plasmon mode enters into the
interband SPE at a given ω(qc) = 2EF − γ qc and decays by
emitting electron-hole pairs. Then for q > qc the plasmon
mode is damped as shown in Fig. 5. The red color in
the damping region expresses the decay of the plasmon
mode which is much weaker than in 2D graphene.26 At
this moment we should emphasize that the results shown in
Fig. 5 are obtained using the condition F ss ′

(ky,ky + q) = 1.
Nevertheless, a detailed inspection of the real part of �1

11 and
of the overlap F ss ′

(ky,ky + q) (see Appendix B) allows us to
conclude that despite the fact that the interband and intraband
SPE are well-defined regions, there is a possibility of finding,
in Eq. (8), certain ranges of ky values that could effectively
make the overlap of states vanish and, as a consequence, the
SPE regions, shown in Fig. 4(a), to be dramatically reduced
into a single line given by h̄ω = γ q, which is exactly the same
SPE of the undoped case. Thus, henceforth the SPE for doped
AGNRs is represented by the relation h̄ω = γ q.We believe
the plasmon branches shown in the present work can provide
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FIG. 6. (Color online) The inverse static dielectric response
function versus the transferred wave vector q for a doped metallic
AGNR with different Fermi wave vectors. The with of the AGNR is
L = 73

√
3a/2. Inset: The same function but for a doped semicon-

ductor AGNR of width L ≈ 15 nm.

the same features as those in Ref. 29 if the electron-electron
correlation (or self-energy calculation) is taken into account.

1. Static screening

We now study the static dielectric properties of a single
metallic AGNR. For this purpose, we consider an external
charge density, n0 = Zeδ(r), screened by free electrons. Then
the induced charge density can be written as

δn(r) = Ze

2π

∫
dq [ε−1(q,0) − 1]eiqr . (16)

With this expression we are able to study the induced charge
density as a function of the distance r. We begin by studying
the static dielectric function. Note that we are dealing here
with a single ribbon with one occupied subband, so that the
dielectric function is no longer a tensor. In Fig. 6 we show
the inverse dielectric function, ε−1(q,ω = 0), as a function of
the transferred wave vector q for different carrier densities
(Fermi wave vectors). As the n doping in the system is
increased, the inverse of the static dielectric function increases
rapidly to 1. This result indicates that the screening in the Q1D
electron gas increases with the Fermi wave vector. Thus, one
might understand that more induced impurities arise in the
system as a direct consequence of increasing the doping. The
inset shows the same function describing a semiconductor
AGNR. Notice that the doping in this new system induced
similar effects as in the metallic case. However, in metallic
AGNRs the logarithmic singularity at q = 2kF , a principal
characteristic of Q1D systems, is absent. In fact, such a
singularity should arise as a direct consequence of the perfect
nesting of the Fermi surface and is associated with the stability
of the system. Here, it is absent and such an unexpected
phenomenon suggests that at zero temperature, the plasmon
oscillations in metallic AGNRs might be more robust than
those in semiconductor AGNRs. This result allow us to suggest
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FIG. 7. (Color online) Induced charge density, as a function of
the distance, for a AGNR with carrier density n = 1 × 106 cm−1

and width L = 73
√

3a/2. The inset shows how the charge density
changes sign for large distances.

that designing plasmonic devices based on metallic AGNRs
may provide more stable devices which are free from the Fermi
edge singularities.

For the sake of completeness in Fig. 7 we present the
induced charge-density fluctuations as a function of the
distance r. It can be noticed that as the charge density is away
from the impurity the density oscillations are reduced rapidly.
We also notice that the density fluctuations for values in the
range kF r < 15 do not change sign. On the other hand, for
kF r > 15 the induced density fluctuations change sign. This
behavior is shown in the inset. It is worth mentioning that the
Friedel oscillations period in metallic AGNRs is similar to
that in conventional Q1D semiconductor systems. However,
we notice that they decay faster in AGNRs.30

B. Double metallic graphene nanoribbons

In what follows we study the plasmon modes in double,
parallel, and metallic AGNRs separated by a distance Lb,

as shown in Fig. 1. Because the wave functions outside the
nanoribbons vanish, there is no tunneling between the ribbons,
so the polarizabilities should be �21 = �12 = 0. We mention
that the subscripts in the polarizabilities should be understood
as ribbon indices (see Fig. 1). Indeed, we assumed that the
plasmons oscillations take place only near the Fermi level that
lies in the lowest subband. Then Eq. (10) takes the simpler
form

ε(q,ω) = (1 − υ1111�11)(1 − υ2222�22)

−υ1122υ2211�11�22. (17)

In order to obtain the plasmon modes of the system we set the
carrier density as n1 = n2 = 2kF /π, with kF = 0.15 nm−1. In
Fig. 8 we plot the plasmon modes ω± for different values of
the distance Lb. In the four figures the SPE is given by the
curve h̄ω = γ q. The upper left panel of Fig. 8 is for a short
separation between the metallic AGNRs (kF Lb < 1) for which
the frequency of the out-of-phase plasmon mode ω− is very
close to the SPE. On the other hand, the in-phase mode ω+
is located far from the SPE. As a matter of fact, our results
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FIG. 8. (Color online) The out-of-phase ω− and in-phase ω+ plasmon modes of two parallel metallic AGNRs for different distances Lb

with a fixed carrier density n = 1 × 106 cm−1 and widths L1 = L2 = 73
√

3a/2. The dotted line represents the SPE that follows the equation
h̄ω = γ q.

show that, as the distance Lb → 0, the in-phase plasmon mode
ω− becomes degenerate with the SPE. In such a situation,
the two parallel metallic AGNRs become a unique AGNR
of width 2L and carrier density n1 + n2, where only the in-
phase plasmon mode ω+ exists. In addition, as the separation
Lb, increases, the out-of-phase plasmon mode increases its
amplitude and remains close to the in-phase mode. Indeed, our
results show that in the limit, Lb → ∞, the out-of-phase and
in-phase modes become completely degenerate, i.e., a single
in-phase plasmon mode. This limiting situation is equivalent
to studying one metallic AGNR of width L and carrier density
n = n1 = n2.

Furthermore, in Fig. 9 we analyze the plasmon modes
by keeping fixed the distance Lb = 10 nm and considering
different carrier densities in the metallic AGNRs (n1 	= n2).
We observe that, as the ratio n2/n1 decreases, the out-of-phase
plasmon mode ω− approaches rapidly the SPE, whereas
the in-phase plasmon mode ω+ does not seriously suffer
from modifications associated to its intensity. Thus, the weak
dependence of the in-phase mode on the ratio of the carrier
densities might serve as a way to characterize the out-of-
phase plasmon modes, which are more difficult to observe
experimentally.

C. intra-intersubband e-h transitions

Finally, we investigate the plasmon modes in a single metal-
lic AGNR when the Fermi level is above the first excited state
of the conduction band. In this situation the transitions between

these subbands are relevant and the polarizabilities �12 and
�12 possess nonvanishing values. It is worth mentioning that
because our study is focused on transitions between subbands
of the conduction band, we label this kind of excitations
intra-intersubband electron-hole transitions that should not be
confused with interband transitions. Then the plasmon modes
of the system can be found from Eq. (10). In order to make
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FIG. 9. (Color online) The same phase space for two parallel
metallic AGNRs for different carrier densities (n1 	= n2) but the same
inter-ribbon distance Lb and ribbon widths.
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FIG. 10. (Color online) Plasmon modes for (a) n = 0.3 ×
106 cm−1 and (b) n = 0.95 × 106 cm−1. The modes ωI and ω+ is
the intra-intersubband and optical modes, respectively. The inset
shows the electron-hole continuum (SPE) associated with intra-
subband transitions in the first excited state (hyperbolic dispersion
relation).

the intra-intersubband transitions of the system significant,
we must consider a system where the lowest and the first
excited subbands are very close. This can occur if we consider
a metallic AGNR of considerable width. Thus, we set the
width of the ribbon to L = 2033

√
3a/2. Then the energy gap

between the lowest subband and the first excited subband is
� = 7.41 meV. This case is interesting to investigate because
the two different electronic states with different dispersions
(linear and hyperbolic) are interacting. In Fig. 10 we show the
plasmon modes for different dopings. The mode ω+ is closely
related to the intra-intrasubband transitions (polarizabilities
�11 and �22) whereas the plasmon mode ωI is associated to the
intra-intersubband transitions (polarizabilities �21 and �12).
Furthermore, as a direct consequence of the intra-intrasubband
polarizabilities, we find another plasmon mode ω− not shown
in Fig. 10 for the sake of simplicity. As a matter of fact, our
results show that this mode becomes completely degenerate
with the SPE (h̄ω = γ q) related to the polarizability �11.
Moreover, as the doping increases the mode ω+ is strongly
modified, while the mode ωI remains more robust to the
doping effects. In the inset we show the SPE related to the
first excited state (the one with hyperbolic dispersion). Note
that both modes are damped by this SPE associated with
the first subband. This results suggest that the intra-
intrasubband plasmon mode of a two-subband model can be
used for improving plasmonic devices.

IV. CONCLUSIONS

We theoretically studied the plasmon modes and dielectric
properties of metallic armchair graphene nanoribbons within
the RPA and at zero temperature. We found that in a single
doped metallic AGNR and in the long-wavelength limit
the plasmon mode disperses as [(2kF q + q2) |ln qL|]1/2. We
also studied the static dielectric function and found that
the logarithmic divergence at q = 2kF , the main feature

of Q1D systems, is absent. This fact allows us to suggest
that plasmons in metallic AGNRs might be the most robust
density oscillation occurring in Q1D systems. Furthermore, in
double parallel AGNRs with the same doping the optical and
acoustical plasmon modes become degenerate as the distance
Lb increases. In addition, we addressed the intra-intersubband
electron-hole transitions in metallic armchair ribbons and
showed a strong influence of doping on the intra-intrasubband
plasmon mode. Finally, we mention that our results could serve
as a starting point for designing plasmonic devices based on
waveguides armchair graphene nanoribbons.

ACKNOWLEDGMENTS

The authors thank FAPESP and CNPq, Brazil, for financial
support.

APPENDIX A: UNDOPED NANORIBBONS AT ZERO
TEMPERATURE

For undoped graphene nanoribbons the imaginary part of
the polarizability is given by

Im �0
11 = −

∫
dky[δ(−Eky+q − Eky

+ h̄ω)

− δ(Eky+q + Eky
+ h̄ω)]F−(ky,ky + q). (A1)

Performing the integral over ky , −kc � ky � kc, we obtain

Im�0
11 = −π

γ
�(ω − q)

×
[
�

(
h̄ω/γ + q

2
− kc

)

−�

(
h̄ω/γ − q

2
− kc

)]
. (A2)

On the other hand, with the help of the Kramer-Kronig
relations, the real part of the polarizability can be written as

Re �0
11 = 1

γ
ln

(
h̄ω/γ + q

h̄ω/γ − q

)
. (A3)

APPENDIX B: DOPED NANORIBBONS AT ZERO
TEMPERATURE

Starting with Eq. (7) the real part of the polarizability is

�1
11(q,ω) = gs

2π

∫
dky

[
1

−E1
ky+q + E1

ky
+ h̄ω

− 1

E1
ky+q − E1

ky
+ h̄ω

]
F+(ky,ky + q)

+
∫

dky

[
1

E1
ky+q + E1

ky
+ h̄ω

− 1

−E1
ky+q − E1

ky
− h̄ω

]
F−(ky,ky + q). (B1)
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This expression can be simplified by noting
1

−E1
ky+q + E1

ky
+ h̄ω

− 1

E1
ky+q − E1

ky
+ h̄ω

= 2�k

(h̄ω)2 − �2
k

,

(B2)

1

E1
ky+q + E1

ky
+ h̄ω

− 1

−E1
ky+q − E1

ky
− h̄ω

= 2�′
k

(h̄ω)2 − �′2
k

,

(B3)

where �k = γ
∣∣ky + q

∣∣ − γ
∣∣ky

∣∣ and �′
k = γ

∣∣ky + q
∣∣ +

γ
∣∣ky

∣∣. Thus, the polarizability can be rewritten as

�1
11(q,ω) = gs

2π

[∫ kF

−kF

dky

2�k

(h̄ω)2 − �2
k

F+(ky,ky + q)

+
∫ kF

−kF

dky

2�′
k

(h̄ω)2 − �′2
k

F−(ky,ky + q)

]
.

(B4)

Notice that the angle of scattering θky,kn
= arctan(ky/kn) for a

linear dispersion, i.e., for kn = 0, can only take the following
values:

θky,kn
=

{
π/2; ky > 0,

−π/2; ky < 0.
(B5)

Consequently, the overlap of states F±(ky,ky + q) = [1 ±
cos(θky+q,kn

− θky,kn
)]/2 for interband transitions takes the

values

F−(ky,ky + q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1; ky + q > 0 ∧ ky < 0,

0; ky + q > 0 ∧ ky > 0,

1; ky + q < 0 ∧ ky > 0,

0; ky + q < 0 ∧ ky < 0.

(B6)

Similar relations can be found for the intraband transitions.
Then, considering that interband transitions scattered the
particles in opposite directions and intraband transitions
scattered the particles in the same direction, we obtain

�k = γ
∣∣ky + q

∣∣ − γ
∣∣ky

∣∣ = γ q, ky + q > 0, ky > 0, (B7)

�′
k = γ

∣∣ky + q
∣∣ + γ

∣∣ky

∣∣ = γ q, ky + q > 0, ky < 0. (B8)

Using Eqs. (B7) and (B8) we have

�1
11(q,ω) = gs

2π

∫ kF

−kF

dky

[
2�k

(h̄ω)2 − �2
k

F+(ky,ky + q)

+ 2�′
k

(h̄ω)2 − �′2
k

F−(ky,ky + q)

]
. (B9)

Due to the values of the overlap of states for intraband and
interband transitions, the integral (0 � ky � kF ) of the first
term and that (−kF � ky � 0) of the second term vanish; then
the polarizability can be written as

�1
11(q,ω) = 2gs

πγ

[
kF q

(h̄ω/γ )2 − q2

]
. (B10)

The imaginary part of the polarizability, considering the
full range of values of the overlap of states, can be obtained
by making the change h̄ω → h̄ω + iδ in Eq. (B10). Then we
have

�1
11(q,ω) = 2gs

πγ

[
kF q

(h̄ω/γ + iδ)2 − q2

]
. (B11)

Using the relation 1/(x + iδ) = P.V.(1/x) − iπδ(x), where
P.V. stands for Principal Value and some algebra we obtain

�1
11(q,ω) = 2gs

πγ

[
kF q

(h̄ω/γ )2 − q2

]
− i2gskF q

πγ
π

×
[
δ(h̄ω/γ + q)

h̄ω/γ − q
+ δ(h̄ω/γ − q)

h̄ω/γ + q

]
. (B12)

The last two terms of Eq. (B12) clearly give us information
about the imaginary part of the doped polarizability at zero
temperature. Note that the Dirac δ functions δ(h̄ω/γ ± q)
indicate that the SPE is available only for h̄ω = γ q or
h̄ω = −γ q. Thus, we show that the SPE for doped metallic
AGNRs (linear dispersion) follows the relation h̄ω = γ q for
positive energies. It is worth mentioning that Eq. (14) was
obtained without any restriction on the overlap of states, i.e.,
by taking F±(ky,ky + q) = 1 in Eq. (B1).
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