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Sensitivity of micromechanical actuation on amorphous to crystalline phase
transformations under the influence of Casimir forces
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Amorphous to crystalline phase transitions in phase change materials (PCM) can have strong influence on
the actuation of microelectromechanical systems under the influence of Casimir forces. Indeed, the bifurcation
curves of the stationary equilibrium points and the corresponding phase portraits of the actuation dynamics
between gold and AIST (Ag5In5Sb60Te30) PCM, where an increase of the Casimir force of up ∼25% has been
measured upon crystallization, show strong sensitivity to changes of the Casimir force as the stiffness of the
actuating component decreases and/or the effective interaction area of the Casimir force increases, which can also
lead to stiction. However, introduction of intrinsic energy dissipation (associated with a finite quality factor of
the actuating system) can prevent stiction by driving the system to attenuated motion towards stable equilibrium
depending on the PCM state and the system quality factor.
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I. INTRODUCTION

Nowadays, fluctuation induced electromagnetic (EM)
forces between neutral bodies become increasingly important
in microelectromechanical systems (MEMS).1 These forces
between two objects arise due to perturbation of quantum
fluctuations of the EM field,1–12 as it was predicted by H.
Casimir in 19482 assuming two perfectly reflecting parallel
plates. Following Casimir’s calculation, Lifshitz and co-
workers in the 50’s (Ref. 3) considered the general case of
real dielectric plates by exploiting the fluctuation-dissipation
theorem, which relates the dissipative properties of the plates
(optical absorption by many microscopic dipoles) and the
resulting EM fluctuations. The theory correctly describes
the attractive interaction due to quantum fluctuations for all
separations covering both the Casimir (long-range) and van
der Waals (short-range) regimes.1,3

The dependence of the Casimir force on materials is an
important topic since, in principle, one can tailor the force by
engineering the boundary conditions of the electromagnetic
field with a suitable choice of materials.5–12 The latter allows
the exploration of new concepts in actuation dynamics of
MEMS. This is because MEM engineering is conducted at the
micrometer to nanometer length scales. As a result Casimir
forces become of increasing interest1 because MEMS have
surface areas large enough but gaps small enough for the
Casimir force not only to draw components together but also
to lock them permanently.1,4,13–25 This effect is known as
stiction causing device malfunction. On the other hand, the
irreversible adhesion of moving parts resulting in general from
Casimir and electrostatic forces can be exploited to add new
functionalities to MEMS architectures.1 Therefore Casimir
interactions will inevitably need to be faced with particular
attention to the troublesome pull-in instabilities, for example,
in microswitches.1,13–25

In fact, microswitches are essential MEMS components
that are typically constructed from two electrodes of which
one is fixed, and the other is suspended by a mechanical spring
governed by Hooke’s law.19 The application of a bias voltage
between the electrodes actuates them towards each other, but
it is possible that the moving component to become unstable

and collapse (pulls-in) onto the other.13,16 Residual stress and
fringing field effects have also been shown to have great influ-
ence on the behavior of microswitches and strongly influence
their failure characteristics.17,18 Recently, using the measured
optical response and surface roughness topography as input;25

realistic calculations have been performed to account for
Casmir and electrostatic forces on actuation dynamics of micro
switches. It was found that surface roughness ensured that
stable equilibrium can be reached more easily than in the case
of flat surfaces,25 stimulating further understanding of MEMS
stability issues operating at separations �100 nm.

So far, however, a detailed study of the sensitivity of
actuation dynamics on a systematic variation of the measured
optical properties of interacting materials without variation
of their composition is missing. This motivated our attempts
to explore MEMS actuation dynamics with phase change
materials (PCMs),8,9 which are renowned for their use as active
media in rewritable optical data storage (e.g., CD, DVD, and
blu-ray disks), and their optical properties can be changed
reversibly in response to a simple stimulus (e.g., local heating
by a laser) leading to reversible switching between amorphous
and crystalline phases. This is stimulated by the fact that
we have already demonstrated that PCMs are promising to
achieve significant force contrast ∼25%8,9 without compo-
sition changes, paving the way for a high repetition rate
switchable force device with possible applications in MEMS.

II. FORCE THEORY AND MODELLING

As Fig. 1(a) illustrates, we consider for our study a
moving sphere coated with gold (Au) interacting with a fixed
plate coated with thick PCM film (optically bulk; thickness
�100 nm) with optical properties, as depicted in Fig. 1(b) those
of AIST (Ag5In5Sb60Te30).8,9 The force in the sphere-plate
geometry (widely used in force measurements by atomic
force microscopy-AFM and MEMS4–10) is given by FC(z) =
2πREC(z) with R being the sphere radius, z is the sphere-plate
separation (assuming z � R), and EC(z) is the Casmir energy
in the parallel plate configuration that is calculated via Lifshitz
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FIG. 1. (Color online) (a) Schematics of an actuated MEM
system at initial separation L0 = 200 nm with the acting forces.
(b) Absorptive part Im[ε(ω)] of dielectric function vs frequency ω

for the optically active AIST film measured by ellipsometry for both
the amorphous (A) and crystalline (C) phases. The inset shows the
Casimir force vs separation for both PCM phases.

theory.3 Therefore we have3

FC(z) = kbT R
∑
n=0

′ ∑
ν=s,p

∫ ∞

0
q ln

(
1 − rν

1 rν
2 e−2|k0|z)dq. (1)

The sum over the v index is for the transverse electric and
magnetic field modes (s = TE, p = TM). rs,p

i (i = 1, 2) are the
Fresnel reflection coefficients rs

i = (k0 − ki)/(k0 + ki), r
p

i =
(εik0 − ε0ki)/(εik0 + ε0ki), and km =

√
εm(ω)(ω2/c2) − q2

(m = 0, 1,2) with q an in-plane wave vector. The summation
over the n index is over the Matsubara frequencies ωn =
j (2πnkT )/h̄ with n = 0,1,2. . ., where the n = 0 term is taken
only half.3 The ε1(≡Au)(ω) are the measured dielectric data
of Au,11 and ε2(≡AIST)(ω) those of AIST8,9 [ε0(ω) = 1 since
vacuum is the intervening medium]. It should be mentioned
also that in the sphere-plane geometry, we consider here the
residual contact potential dependence on separation can lead
to undesirable effects. Measurements of the contact potential
difference vs. separation for PCMs8 indicated a residual
electrostatic contribution 1–6% for 50–150 nm. Therefore,
for a force contrast of ∼25%,8 this is not expected to
play significant role, however, one has to remain cautious
concerning electrostatics.

The inset of Fig. 1(b) shows calculations of FC(z) for
both PCM states. Tests with three different optical data sets
of Au11 show also that the preparation conditions of the

passive actuating material is playing minor role on the force
contrast. To achieve, however, the force contrast with PCMs the
area that undergoes phase transformation must be larger than
the effective interaction area AC ≈ L2

C of the Casimir force
between sphere plate. For a sphere-plate separation z (�R),
we have LC

√
(2/3)Rz.26 Moreover, the minimum thickness

of the PCM film must be larger than the skin depth δ in the IR
range where the crystalline PCM has strong absorption due to
free carriers and contribute ∼50% of the force contrast.9 For
AIST, we obtain δ = c/ωp∼100 nm with c being the velocity of
light and ωp the free carrier plasma frequency.9 For a minimum
thickness dPCM ≈ δ (∼100 nm), the energy necessary for
crystallization is given by EA→C = (L2

CdPCM)
∫ Tcr

TRT
Cp(T )dT

with Cp the specific heat capacity, TRT = 300 K, and Tcr =
451 K the crystallization temperature for AIST.27,28 The energy
necessary for amorphization (via melting at Tme = 807 K) is
given by EC→A = (L2

CdPCM)
∫ Tme

TRT
Cp(T )dT + Lv where Lv

is the latent heat released during the phase transformation.
Using the data of Refs. 27 and 28 and a separation z = 50 nm,
which is comparable to the minimum separation in the force
measurements with R = 10.1 μm,8 we obtained respectively
EA→C =38 pJ and EC→A =337pJ. These energies are much
larger than the work performed by the Casimir force over
the closed path A → C → A,

∮ F

C
(z)dz ∼ 10−18 J, limiting the

possibility to tap energy from vacuum fluctuations as the sole
source to drive actuation.

Furthermore, the motion of the MEMS in Fig. 1(a) is
described by the second law of Newton (assuming an initial
impulse to trigger continuous actuation from an initial separa-
tion Lo), where the elastic restoring force Fk = −K(L0 − z)
of a spring with stiffness K (Hooke’s law)19 counterbalances
the attractive Casimir force FC(z):22,24,25

m
d2z

dt2
= −K(L0 − z) + kBT R

×
∑
n=0

′ ∑
ν=s,p

∫ ∞

0
q ln

(
1 − rν

1 rν
2 e−2|k0|z)dq. (2)

For operation in air, an additional dissipative hydrodynamic
force has to be taken into account.29 Here, we will consider
motion in vacuum and ignore any dissipation via the support
base of the actuating element [a high-quality factor system
Q>104 (Ref. 30)]. Moreover, we consider actuators with res-
onance frequency ω = 300 kHz (typical for AFM cantilevers
and other MEMS).31

III. RESULTS AND DISCUSSION

In order to obtain the equilibrium points of motion
from Eq. (2), we define the bifurcation parameter λ =
FC(A)(L0)/KL0,14,22,24 which is the ratio of the minimal
Casimir force (in the amorphous PCM) and the maximal elastic
restoring force, representing the relative importance of one
force competing to the other. The locus of equilibrium points
“x” is obtained from Eq. (2) if we set FT = −K(L0 − z∗) +
FC(x) = 0.22,24,25 The solution yields for the bifurcation
parameter λ,

λ = (FC(A)(L0)/FC(z∗))(1 − z∗/L0). (3)
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FIG. 2. (Color online) (a) Bifurcation diagrams for the amor-
phous and crystalline phases of the AIST-Au system. For comparison,
we show also the bifurcation diagram of the Au-Au system. For
illustration purposes, we indicate two possible solutions if λ < λmax

for AIST (A). (b) Phase portraits for AIST (A, C) and different
(relatively weak) spring constants K . For all calculations we used
Lo = 200 nm, which is a typical surface separation for nanoscale
actuation. (c) Phase portraits for AIST (C) states for different spring
constants K (N/m) as indicated, R = 10.1 μm, where the transition
from stable (closed orbits) to unstable motion (open orbit) is shown.

The critical equilibrium points where stiction occurs are char-
acterized also by the condition dFT /dz∗(=K + dFC/dz∗) =
0.22,24,25 The dependence of the parameter λ on the locus of
equilibrium points z∗ is shown in Fig. 2(a) for both PCM
states, and in comparison to the Au-Au system that is widely
used in Casimir force measurements.4–10 It is evident that the
bifurcation parameter λ is sensitive to phase transitions of the
PCM from the amorphous to crystalline state.

The maximum of the bifurcation parameter λmax is approx-
imately on the same location for both curves at z∗

max ≈ 0.75Lo.
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FIG. 3. (Color online) (a) Contour plots of the bifurcation
parameter λ (indicated by the color bar) for the crystalline phase.
The radius and the spring constant are varied independently. (b) As
in (a), for the amorphous phase. (c) Phase portraits for AIST (A,
C) and two different sphere radii R that are used in Casimir force
measurement systems.4–10

This is because the Casimir force shows an average power-law
scaling FC(x) ∼ z−p with p ≈ 2.4–2.6 (for z< 200 nm),32

and it is known that if a force-field scales as ∼ z−P then the
position of the maximum bifurcation parameter is given by
z∗

max ≈ p/(1 + p)Lo.21 Moreover, as Fig. 2(a) shows, if the
spring constant is strong enough so that λ < λmax, there will
be two equilibriums: the stationary point closest to Lo is
a stable center around which periodic solutions exist. In
Fig. 2(a), the locus of points for z∗ > z∗

max corresponds to stable
actuation leading to closed orbits [see Figs. 2(b) and 3(c)].
However, if the spring constant is sufficiently weak so that
λ = λmax then in this case there is only a single equilibrium,
known as a center-saddle point,33 which is always unstable. For
an even weaker spring constant K so that λ > λmax the motion
is unstable, which is an example of a saddle-node bifurcation.33

The solutions of Eq. (2) can be further investigated with
the so-called phase portraits,33 which are plots of the velocity
dz/dt of the actuating element versus the displacement z. In
this case, we can have (i) a periodic orbit around an equilibrium
point and (ii) unstable open orbit for a saddle point leading to
pull-in instability or stiction [see Figs. 2(a) and 4(b)]. The
existence of periodic solutions indicates that the spring is
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FIG. 4. (Color online) (a) Phase portraits for crystalline and
amorphous PCM states, K = 10−4 N/m, R = 10.1 μm, and two
distinct Q factors: Q = 10 000 (main plot) and 300 (inset). The
arrows indicate the direction of the vector field. (b) Phase portraits
of AIST (C) for different Q factors at a critical spring constant as
indicated, R = 10.1 μm, where the S ↔ AM transition (at zcr =
117.4 nm) occurs. The behavior for amorphous AIST is similar. The
arrows indicate the direction of the vector field.

strong enough to counterbalance the attractive surface forces
and prevent stiction. In this case, the stable center around
which periodic solutions exist will be accompanied by an
unstable saddle-point equilibrium.33 This is clearly manifested
in Fig. 2(b) where closed orbits are shown for both amorphous
and crystalline PCM, and soft spring constants K ∼ 10−3–
10−4 N/m, which are used in ultrasensitive systems.31 The
difference between the amorphous and crystalline phases is
amplified for the part of the orbit that comes in close proximity
to the plate where the Casimir force is the strongest, thus
enhancing the possibility for stiction to occur. This will happen
if the spring constant weakens further (entering the regime
of the saddle-node bifurcation) and stiction can no longer
be avoided [see Fig. 2(c)]. For relatively large separations,
z/L0 > 0.6, the actuating component follows a stable move-
ment, which changes to a rapid pull-in for z < 0.6L0, having
high sensitivity to small changes of the spring stiffness K .

Another parameter that can be varied independently of K

is the radius R of the sphere. Figs. 3(a) and 3(b) are contour
plots of the bifurcation parameter λ ∝ 1/K for the crystalline
and amorphous phases, respectively. Since FC(z) ∝ R, the
magnitude of the Casimir force can be modulated with
the size of the sphere. It is clear that increasing the radius
enhances the sensitivity to the phase transition, but the tradeoff
is that this requires higher values of K to prevent stiction. An

example of solutions for a sufficiently large value of K is
shown in Fig. 3(c).

It should be noted that for a real system where the PCM
undergoes a phase change from the amorphous to crystalline
states a volume compression corresponding to ∼5–8% of the
PCM film thickness can occur,34 which translates to additional
force changes with surface separation. As a result proper
feedback is required to readjust the actuating components
at the same separation as performed during the dynamic
force measurements in Refs. 8 and 9. Moreover, explicit time
dependence (e.g., forcing of the oscillations) would change
the dynamics of the system considerably, because it would
introduce an independent variable in phase space. The phase
portraits and bifurcation diagrams presented in this manuscript
would no longer be valid. Such a generalization would involve
a different kind of mathematics, which is beyond the scope
of this manuscript. However, qualitatively we can state that
PCMs can be switched very fast ∼10−7–10−8 s,34 while typical
actuation times for the phase maps shown here (see Figs.2–4)
are ∼10−6 s. Therefore it is possible to alter the system
dynamics efficiently by phase change transformations.

Finally, up to now, we assumed absence of dissipation,
or equivalently having a MEMS of high quality factor
Q> 104 (dissipation∼1/Q). To investigate the effect of
intrinsic dissipation, we considered in Eq. (2) the presence
of a dissipative term of the form (mω/Q)(dz/dt) with K =
mω2(see Ref. 31) yielding m(d2z/dt2) + (mω/Q)(dz/dt) =
−K(L0 − z) + FC(z). Figure 4(a) shows that for Q� 104 the
motion approaches that of a stable orbit, while as the Q factor
decreases [inset Fig. 4(a)] it attenuates drastically faster for the
amorphous PCM state. However, it is intriguing to investigate
what is happening if the spring constant is sufficiently weak
(below a critical value Kcr) to drive the system to stiction
(S) under conditions of strong dissipation favoring attenuated
motion (AM) towards stable equilibrium. This is shown in
Fig. 4(b) where, as Q decreases, the S ↔ AM transition occurs
rather sharply. For crystalline PCM, the S↔AM transition
occurs for QC≈480 [K(C)cr = 9 × 10−5 N/m], while for
amorphous PCM at a lower QA ≈ 380 [K(A)cr = 7.5 ×
10−5 N/M]. The critical QC factor where the S ↔ AM
transition occurs (at separation zcr just before the Casimir
force becomes stronger than the elastic force) is given by
Eq. (1) if we consider m(d2z/dt2) ≈ 0 and (mω/QC)|ż| ≈ | −
K(L0 − zcr) + FC(zcr)| with |ż| ≈ ωLo: substitution yields

QC = (mω2L0)/|FC(zcr) − K(L0 − zcr)|. (4)

The latter yields for both PCM states QC(C) = 498 and
QC(A) = 392, which compare well with the numerical results
for QA,C above.

IV. CONCLUSIONS

In conclusion, the reversible amorphous to crystalline phase
transitions in PCMs can have strong influence on nanoscale
actuation of MEMS under the influence of Casimir forces.
Although we considered here flat surfaces, this is justified for
actuation separations >100 nm, since our former studies8,25

indicated morphology contributions only at lower separations.
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The phase portraits that characterize the actuation dynamics
show strong sensitivity to changes of the Casimir force as the
stiffness of actuating component decreases, which can also
lead to stiction. On the other hand, introduction of energy
dissipation can prevent stiction by driving the system to
attenuated motion towards equilibrium depending on the PCM
state and system quality factor Q. Therefore the use of PCMs
that allow modulation of their optical properties can provide

new schemes of actuation, where introduction of dissipation
can prevent stiction of soft components.
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