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Directed-polymer systems explored via their quantum analogs: General polymer interactions
and their consequences
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The impact of polymer-polymer interactions of various types on the thermodynamics, structure, and
accommodation of topological constraints is addressed for systems comprising many directed polymers in two
spatial dimensions. The approach is predicated on the well-known equivalence between the classical equilibrium
statistical mechanics of directed polymers in two spatial dimensions and the imaginary-time quantum dynamics
of particles in one spatial dimension, originally exploited by P.-G. de Gennes [P.-G. de Gennes, J. Chem. Phys. 48,
2257 (1968)]. Known results concerning two exactly solvable microscopic models of quantum particles moving
in one spatial dimension—the Lieb-Liniger model of contact interactions and the Calogero-Sutherland model
of long-range interactions—are used to shed light on the behavior of the corresponding polymeric systems. In
addition, the technique of bosonization is used to reveal how generic polymer interactions give rise to an emergent
polymer fluid that has universal collective excitations. Additionally, the response of the system to topological
constraints such as pins though which polymers cannot pass is explored. Immediately on the compressed side
of a pin there is a divergent pile-up in polymer density, while on the other side there is a gap of finite area in
which polymer density is negligible. Comparison of this response to that of a system of simply noncrossing (i.e.,
noncrossing but otherwise noninteracting) directed polymers, explored in a companion paper, reveals that generic
interactions leave the structure quantitatively unchanged on the line transverse to the pin, and leave it qualitatively
unchanged throughout the two dimensions of the system’s extent. Furthermore, the free-energy cost associated
with a pin that partitions a system having generic interactions is found to be proportional to the pin-partitioning
cost for a system of simply noncrossing polymers.
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I. INTRODUCTION

In two-dimensional settings, the statistical-mechanical
properties of macroscopic systems composed of long, flexible,
directed polymers are determined largely by the interactions
of the polymers with one another. Due to the reduced di-
mensionality, polymers encounter one another with enhanced
probability as they undergo thermal fluctuations in their
conformations. As a result, even numerically weak interactions
suffice to give rise to an emergent polymer fluid having
physical characteristics that are essentially collective, rather
than being primarily of the single-polymer type. In the present
paper, we explore how the form and strength of interactions
modifies the statistical properties of the polymer fluid. We do
this by making use of a familiar analogy between the classical
equilibrium statistical physics of directed-polymer systems
and the quantum physics of particle systems, according
to which the thermal fluctuations of the polymer system
are the analogs of the quantum fluctuations of the particle
systems.

The ensemble of configurations of a set of directed, linelike
objects embedded in (D + 1)-dimensional space can be
reinterpreted as the ensemble of world lines of a corresponding
set of quantum-mechanical point particles evolving in time in
D spatial dimensions. A well-known mapping then relates
the classical equilibrium statistical mechanics of the set of
directed one-dimensional objects in the canonical ensemble to
the imaginary-time evolution of the state of the corresponding
set of quantum particles. De Gennes1 first introduced and

exploited this mapping in order to describe the equilibrium
structure of directed noncrossing polymers confined to two
dimensions, thus providing a scheme that accounts nonpertur-
batively for the strong local polymer-polymer interactions that
serve to prevent polymer crossings. This quantum-classical
mapping has been used to shed light on a diverse set of
statistical systems, from step edges on miscut crystalline
surfaces,2 vortex lines in planar type-II superconductors,3–8

biomembranes,9 and the growing interfaces of the Kardar-
Parisi-Zhang universality class.10

In a companion paper,11 hereafter referred to as I, we
considered the statistical mechanics of such a system of
noncrossing polymers, but whose accessible configurations
were subject to one of various topological constraints. Here,
we consider systems of fluctuating linelike objects that are
subject to more general classes of interactions, and address the
response of these systems to topological constraints on their
configurations. In particular, we consider polymer systems that
have finitely (rather than infinitely) strong contact repulsion,
so that crossings of the polymers do occur but with energetic
penalty, and we furthermore allow the systems to have certain
specific forms of long-range polymer-polymer interactions,
in part chosen for their tractability. Additionally, we use the
many-body technique of bosonization to analyze systems of
polymer that are subject to a generic interaction.

The systems under consideration are all amenable to the
general framework discussed in detail in I, in which a system
configuration, given by a set of polymer profiles {xn(τ )}Nn=1,
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FIG. 1. The paths {xn(τ )} describe a possible configuration of the
directed polymer system. Thermal fluctuations permit the system to
adopt energetically disfavored configurations. When polymers appear
to intersect in the (x,τ ) plane, in reality one crosses over the other by
exploiting the presence of a third dimension. (This figure originally
appeared in I.)

as depicted in Fig. 1, has configurational energy

U [{xn(·)}] = A

2

N∑
n=1

∫ L

0
dτ (∂τ xn(τ ))2

+ 1

L

N∑
n=1

∫ L

0
dτ �(xn(τ ))

+ 1

L

∑
1�n<n′�N

∫ L

0
dτ V (xn(τ ) − xn′ (τ )),

(1.1)

in which A is the effective polymer tension, �(·) is a one-
body potential, and V (·) is the two-body interaction between
polymers.12 The system has length L in the longitudinal
direction (τ ) preferred by the polymers and width w in the
lateral direction (x). In addition to polymer systems, a number
of other statistical systems can effectively be modeled as
consisting of interacting, directed, linelike degrees of freedom.

The present paper is organized as follows. In Sec. II, we
consider a system of crossing polymers having a finitely strong

contact repulsion. In Sec. III, we consider a system of non-
crossing polymers that interact via a long-range interaction.
In Sec. IV, we use bosonization to describe a polymer system
subject to generic interactions. In Sec. V, we consider the effect
of topological constraints on the polymer systems considered
in the two prior sections. In Sec. VI, we summarize our results
and give some concluding remarks.

II. CROSSING POLYMERS

In a previous paper, I, we enforced the noncrossing
condition xn(τ ) �= xn′ (τ ) for n �= n′ by including an infinitely
strong repulsive contact potential. Let us consider now a
system in which the contact repulsion between polymers is
finite, so that polymer lines may cross one another, albeit with
an energetic penalty:

U [{xn(·)}] = A

2

N∑
n=1

∫ L

0
dτ (∂τ xn(τ ))2

+ 2c
∑

1�n<n′�N

∫ L

0
dτ δ(xn(τ ) − xn′ (τ )), (2.1)

where δ(·) is the one-dimensional Dirac delta function and
c (> 0), which has units of energy, describes the effective
contact repulsion between polymers.

A. Origin of contact repulsion

Real polymer systems exist in three dimensions. Let
us therefore parameterize the polymer configurations by
paths through three-dimensional space: r(τ ) ≡ x(τ )x̂ + y(τ )ŷ,
where {x̂,ŷ,τ̂ } form an orthogonal triad. The polymers are
confined by hard walls so that x(τ ) ∈ (−w/2,w/2) and y(τ ) ∈
(−ε/2,ε/2), with ε � w; see Fig. 2. Suppose further that
polymers have an effective diameter d such that the ensemble
permits only configurations for which, for all n,n′ and at all τ ,
we have

|rn(τ ) − rn′ (τ )|2 � d2. (2.2)
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FIG. 2. (Color online) (a) A configuration of two directed lines of finite thickness d less than the thickness ε of the system in the y direction.
The polymers are envisioned to interact via the excluded-volume effect. (b) The projection of the configuration shown in (a) onto the x-τ
plane. Because the width of the system in the x direction is much greater than its thickness in the y direction, we may neglect the additional
tension energy associated with deflections in the y direction. (c) Cross-sections of the configuration in the plane transverse to the preferred
direction of the polymers. Because of the excluded volume effect, there are fewer ways to vary the y coordinates of the polymer segments in the
configuration in the bottom panel than in the configuration in the top panel. This leads to a finite effective entropic repulsion between polymer
configurations in the x-τ plane.

165417-2



DIRECTED-POLYMER SYSTEMS EXPLORED VIA THEIR . . . PHYSICAL REVIEW B 88, 165417 (2013)

We wish to integrate out the small third dimension and
restore our effectively two-dimensional picture of polymer
configurations. In particular, let us integrate out two polymer
coordinates yn and yn′ at some particular value of τ . If xn �≈ xn′ ,
each of the two polymer coordinates may occupy any point in
(−ε/2,ε/2) [ignoring edge effects at y = ±ε/2]. In contrast,
if xn ≈ xn′ then any value of yn restricts yn′ to a length ε − d in
the y direction. Thus, upon integrating out the third dimension,
we ought to reduce the weight of a polymer configuration
{xn(·)} by one factor of

ε(ε − d)

ε2
(2.3)

for each time one polymer crosses another. We may take the
number of polymer crossings to be proportional to∑

n<n′

∫ L

0
dτ δ(xn(τ ) − xn′ (τ )), (2.4)

provided that, as discussed in Appendix A, we assume some
short-distance cutoff length-scale � such that ẋ(τ ) remains
finite at a crossing. Then we obtain an effective contact
repulsion from this entropic effect, with parameter

2c = −T ln(1 − d/ε), (2.5)

where T denotes the temperature in units of energy.13 Note
that, in the limit in which polymer width approaches the width
of the system in the third dimension, the condition that no
polymer crossings occur is recovered.

B. Quantum analog

The analog of the polymer system subject to a contact
repulsion is a one-dimensional gas of Bose particles interacting
via a contact repulsion. Such a system is governed by the
Lieb-Liniger Hamiltonian Ĥ , given by

Ĥ = − h̄2

2m

∑
n

∂

∂xn

+ 2c
∑
n<n′

δ(xn − xn′ ), (2.6)

where n = 1, . . . ,N labels the particles. This describes an
integrable system, with each eigenstate of the Hamiltonian
being characterized by a set of N quasimomenta {ki} (see
Ref. 14). In the limit c → +∞, the system may be mapped
exactly onto a system of free fermions. For finite values of
c, the quasimomenta lie in some band (for periodic boundary
conditions) ki ∈ (−K,K), where K is less than or equal to
the Fermi momentum of the corresponding system of free
fermions. This means that the logarithmic divergence in the
x-ray form factor, found for a system of simply noncrossing
polymers by de Gennes at wave number k = 2πN/w,1 will
instead occur at some lesser value that is dependent on the
interaction strength c.

As discussed in I, the free energy-densityF/wL of the long
polymer system may be obtained from the ground-state energy
of the quantum system; the result is

F
wL

= 1

2

(
N

w

)3 1

β2A
e(γ ), (2.7)

where e(·) is the dimensionless energy function that Lieb and
Liniger derive by means of the Bethe Ansatz. In terms of
polymer parameters, the dimensionless interaction parameter
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FIG. 3. (Color online) Basic (scaled) characteristic quantities of
the polymer system, as a function of the dimensionless parameter
γ that describes the strength of polymer-polymer interactions. Both
the free-energy density (blue line) and the reduction in the squared
polymer slope 〈ẋ2(τ )〉 (red line) monotonically approach their values
for simply noncrossing polymers as γ is increased. The yellow line,
depicting the areal density of polymer crossings, diverges for small
γ and approaches its own simply noncrossing value (i.e., zero) for
large γ .

γ is given by

γ = 2c

(
w

N

)
β2A (2.8a)

= −
(

w

N

)
Aβ ln(1 − d/ε). (2.8b)

In the limit γ → +∞, one has e(γ ) → π2/3, which correctly
reproduces the result for simply noncrossing polymers. For
c = 0, the polymers behave independently and the O(N3)
contribution to the free energy vanishes. Note that γ → +∞
is not the high-density limit. Although the free-energy density
increases with increasing polymer density, increasing polymer
density decreases γ , indicating that the free energy of the
high-density system depends more on the polymer deflections
than the polymer crossings. Given the entropic origin of
the contact repulsion [cf. Eq. (2.3)], we also have that γ is
inversely proportional to temperature. At low temperatures, the
polymers are frozen into a configuration having few crossings,
whereas for high temperatures they cross more freely, although
still less often than truly noninteracting polymers would.
The free energy is shown in Fig. 3. For a sufficiently long
system, any interpolymer interaction, no matter how weak or
short-ranged, suffices to modify strongly the behavior of the
system as compared to a system of free polymers. As we saw
in I for simply noncrossing polymers, the physics of polymers
that are subject to generic interactions is profoundly different
in reduced dimensions from that of free polymers.

For a long system, we can readily obtain the areal density
of inter-polymer crossings, i.e.,

1

wL

〈 ∑
n<n′

∫
dτ δ(xn − xn′ )

〉

= − 1

2β

1

wL

∂

∂c
lnZ = 1

2

(
N

w

)2

e′(γ ). (2.9)
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In the limit of strong interactions, the number of polymer
crossings drops to zero, recovering the simply noncrossing
system considered in I.

One may also obtain the mean-squared polymer slope for
the interacting polymer system:

〈ẋ2(τ )〉 = − 2

β

1

NL
∂A lnZ

= 1

Aβ�
− 1

β2A2

(
N

w

)2

[e(γ ) − γ e′(γ )]. (2.10)

The first term on the right-hand side is inversely proportional
to the cutoff length �, as discussed in Appendix A. The
interactions strictly decrease the average polymer slope, as
greater slopes result in more polymer crossings and thus
receive energetic penalties.

One may also obtain the pressure on the walls containing
the polymers at x = ±w/2 and y = ±ε/2. In the x direction,
the pressure Px is given by

Px = 1

εL

1

β
∂w ln Z =

(
N

w

)3 1

β2Aε
e(γ ). (2.11)

In the y direction, on the other hand, the effect of interactions
is to generate a pressure Py given by

Py = 1

wL

1

β
∂ε ln Z

= 1

β
N

L

�
+ 1

2β

(
N

w

)2

e′(γ )
d

ε(ε − d)
. (2.12)

The first term on the right-hand side is simply the one
associated with confining NL/� polymer segments to a finite
thickness (see Appendix A). The second term is the expected
number of polymer crossings, from Eq. (2.9), multiplied by
the entropic cost of ensuring that the polymers pass around
rather than through one another at each crossing.

III. LONG-RANGE INTERACTIONS

In the previous section we considered an interaction that
was softer than the noncrossing condition considered in I. Now
we wish to consider an interaction between polymers that is
more powerful—in the sense that polymers repel (or attract)
one another at a distance.

A. Finite-diameter effects

Previously, we considered polymers of finite diameter that
were narrow enough to cross over one another, i.e., d < ε.
Alternatively, one could return to the case of noncrossing
polymers, i.e., d = ε, whilst still taking into account the
finite thickness of the polymers. In this case, the noncrossing
condition becomes the requirement that no polymer may come
within a distance d of another, or a distance d/2 of the walls
of the system:

−w/2 < x1 − d/2 < . . .

< xj − d(j − 1/2) < . . . < (w/2) − Nd. (3.1)

This issue is readily addressed by mapping the problem onto
one of simply noncrossing zero-diameter polymers via x ′

j =
xj − d(j − 1/2). Then, the finite-diameter polymer system
is equivalent to a zero diameter one having a system width
narrower by Nd. This leads to the free energy density

F
wL

= π2

6

N3

w(w − Nd)2

1

β2A
. (3.2)

B. Power-law repulsion

Next, we wish to consider a form of long-range effec-
tive interaction between polymers that, as with the simply
noncrossing case, corresponds to an integrable and exactly
solvable quantum system. Such an interaction is given by

V0(xn − xn′ ) = 1

2Aβ2

λ(λ − 1)

(xn − xn′ )2
. (3.3)

Here, the parameter λ (>0) gives the strength of the interaction,
either attractive or repulsive. For the attractive case (λ < 1),
we nevertheless retain the noncrossing condition by assuming
some additional short-range repulsion of sufficient strength.
Electrical dipole moments, if present on the lines, would
lead to an interaction of this form, as has been noted in the
context of crystalline step edges (where the edges between the
crystal steps are the thermal linelike degrees of freedom).15

In addition, for the crystalline step edges the elasticity of
the crystal gives rise to an effective repulsive interaction
between step edges of this long-range form.16 The form of the
interaction in Eq. (3.3) is suitable for a system of infinite width.
For a system having periodic lateral boundary conditions, one
must include image terms for xn at xn ± w,xn ± 2w, . . .. In
the presence of hard walls, as we consider here, images must
also be included at −xn ± w, − xn ± 2w, . . .. Then, using the
mathematical identity (see, e.g., Ref. 17)

j=∞∑
j=−∞

1

(j + a)2
= π2

sin2(πa)
, (3.4)

one has the polymer interaction appropriate to the finite system
with hard walls at x = ±w/2:

V (xi − xj ) = 1

2Aβ2

(
π

w

)2{
λ(λ − 1)

sin[π (xn − xn′ )/w]2

+ λ(λ − 1)

sin[π (xn′ + xn′ )/w]2

}
. (3.5)

The corresponding quantum system is known as the Calogero-
Sutherland model,18,19 and it is exactly solvable. In particular,
the ground-state wave function is, for a system with hard-wall
boundary conditions,20

ψgs({xn}) =
(

N∏
n=1

∣∣∣∣ cos
πxn

w

∣∣∣∣
λ
)

×
( ∏

1�n<n′�N

∣∣∣∣ sin
πxn

w
− sin

πxn′

w

∣∣∣∣
λ
)

, (3.6)

and the cost in polymer system free-energy density of the
interaction, as derived from the ground-state energy of the
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quantum system, is

F
wL

= π2

6

(
N

w

)3 1

β2A
λ2. (3.7)

This model admits both repulsive (λ > 1) and attractive
(0 < λ < 1) regimes, provided that the polymers nevertheless
retain a short-range repulsion that prevents them from crossing.
In addition to the free-energy density, other thermodynamic
quantities, such as the reduction in the mean-squared polymer
slope and the pressure on the system walls, also generally scale
as λ2.

Via the quantum analogy, we may also use the ground-
state wave function to relate polymer density correlations to
quantum correlators. In particular, the polymer density-density
correlator (in an infinitely long system) is given by

〈ρ(x)ρ(0)〉
=

∫
dx3 dx4 . . . dxn |ψgs(x,0,x3,x4, . . . ,xN )|2. (3.8)

For certain values of λ, this correlation may be obtained ex-
actly; the results are shown in Fig. 4. The random matrix theory
results used to obtain this correlator, and their application to
the Calogero-Sutherland system, are discussed by Sutherland
in Ref. 21.

As suggested by Fig. 4, for all values of λ the probability of
two particles coinciding vanishes. The noncrossing condition,
along with thermal fluctuations, overwhelms even attractive
long-range interactions. For attractive interactions, no oscil-
latory behavior occurs. For long-range repulsion or for no
long-range interactions, oscillations in the density correlation,
of period w/N , are present. In the former case, near separations
x = ±w/N, ± 2w/N, . . . polymers are actually more likely
to be found than one would have for noninteracting (i.e., freely
crossing) polymers.

1

1 2

2

2 wN
w
N 0 w

N 2 wN 3 wN
x

0.2
0.4
0.6
0.8
1.0
1.2

x 0

FIG. 4. (Color online) Density correlations 〈ρ(x)ρ(0)〉 [in units
of the squared average density (N/w)2], as a function of the lateral
separation [in units of the average polymer spacing (w/N )] for
various values of the interaction parameter λ. For λ = 1/2 (i.e.,
attractive long-range interactions), there is no oscillatory behavior.
For λ = 1 and 2, corresponding respectively, to no long-range
interaction and to long-range repulsion, there are oscillations in
the correlations, in the latter case leading to negative correla-
tions for x ≈ ±w/n, ± 2w/n, . . .. In all cases, the correlations
decay as x−2.

IV. BOSONIZATION

Bosonization is a powerful technique in the study of one-
dimensional quantum many-body systems. In it, the micro-
scopic degrees of freedom are eliminated and the low-energy
behavior of the system is characterized by its dominant, long
length-scale, density fluctuations. By means of the mapping
between polymer lines and quantum particles, bosonization
can also be used to analyze the behavior of systems of
interacting directed polymers in two dimensions.22

The bosonization technique applies generally to quantum
Hamiltonians of the form

H =
∫

dx
h̄2

2m
(∂x�

†(x)) (∂x�(x))

+1

2

∫ ∫
dx dx ′ �†(x)�(x)V (x − x ′)�†(x ′)�(x ′),

(4.1)

where �†(x) represents either a bosonic or fermionic particle
creation operator. For a full description of bosonization, see,
e.g., Giamarchi,23 whose notation we adopt. The original
bosonic creation operator may be expressed as

�
†
B(x) =

(
N

w
− 1

π

∂φ

∂x

)1/2 ∞∑
p=−∞

e2ip(Nπx/w−φ(x)) e−iθ(x),

(4.2)

in terms of the emergent fields φ(x) and θ (x), which,
respectively, correspond to changes in the polymer density
and slope (or, in the quantum case, to the amplitude and phase
of the one-particle creation operator). These emergent fields
obey the bosonic canonical commutation relations

[∂xφ(x),∂x ′θ (x ′)] = iπδ′(x − x ′), (4.3)

where δ′(·) is the first derivative of the Dirac delta function.
The polymer density takes the form

ρ(x,τ ) = [(N/w) − (∂xφ(x)/π )]
∞∑

p=−∞
e2ip(Nπx/w−φ(x,τ )),

(4.4)

where the p �= 0 terms correspond to the short-distance
polymer structure.

The benefit of this bosonization procedure is that for a wide
variety of interactions in Eq. (4.1) the Hamiltonian governing
the low-energy excitations may be expressed in terms of the
emergent bosonic fields as

H = 1

2π

∫
dx

[
uK

h̄
(∂xθ (x))2 + u

Kh̄
(∂xφ(x))2

]
, (4.5)

where the two Tomonaga-Luttinger parameters, u and K ,
depend on the microscopic model. The first, u, plays the role of
a renormalized “Fermi velocity,” which would relate the time
and space dimensions of the quantum system. In the polymer
system, it is unitless and relates the lateral and longitudinal
coordinates. The second parameter, K , can be treated via a
rescaling of the fields [φ(x) → φ(x)/

√
K , θ (x) → √

Kθ (x)],
which maps the system back onto the K = 1 case, which
corresponds to simply noncrossing systems. In this way,
systems having a wide range of interactions, including those
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considered in Secs. II and III, can be mapped onto the simply
noncrossing system of polymers—the very system considered
in I. The cost to this rescaling of the fields is that it destroys
the relatively straightforward relationship between the fields
θ (·) and φ(·) [which describe the emergent polymer fluid and
the microscopic degrees of freedom (i.e., the original polymer
lines) given in Eq. (4.2)].

Although the bosonized Hamiltonian lacks the interpolymer
length-scale w/N explicitly, the definitions of the fields
in Eq. (4.2) retain the short-distance behavior. From this
Hamiltonian, the bosonized action S follows as well:

S = h̄

2πK

∫
dx dτ

[
1

u
(∂τφ)2 + u(∂xφ)2

]
, (4.6)

associated with which there is a polymer partition function Z ,
given by

Z =
∫

Dφ(x,τ )

× exp

[
− 1

2πK

∫
dx dτ

(
1

u
(∂τφ)2 + u(∂xφ)2

)]
.

(4.7)

This partition function characterizes the polymer system
in terms of the configurations of the field φ(x,τ ), which is
related to polymer density via Eq. (4.4). The normalization
condition that the system contain N polymers then leads to
periodic boundary conditions on φ(x,τ ):

φ(w/2,τ ) − φ(−w/2,τ ) = 0. (4.8)

Alternatively, we could obtain an action solely in terms of
the field θ (x,τ ), which is related to the polymer slope field.
Because of the lack of polymer free ends in the interior of the
system, either polymer density or polymer slope fully defines
a given configuration of the system.

The characterization of the polymer system in terms of a
harmonic fluid allows one to obtain the polymer correlations.
In particular, the density correlations of a large, disorder-free
polymer system are given by

〈ρ(x + x0,τ + τ0) ρ(x0,τ0)〉

=
(

N

w

)2

+ K

2π2

(uτ )2 − x2

[x2 + (uτ )2]2
+

∞∑
m=1

Am

cos(2πmNx/w)

[x2 + (uτ )2]2m2K
.

(4.9)

Note that although the partition function appears to be
isotropic, the polymer correlations are in fact sharply
anisotropic, owing to the preferred direction of the polymer
lines. In particular, the first nonconstant term in Eq. (4.9) indi-
cates positive (negative) density correlations over longitudinal
(lateral) displacements. The other terms, with nonuniversal
coefficients Am, describe oscillatory changes in the density
correlations over lengths on the scale of the average interpoly-
mer spacing w/N , analogous to Friedel oscillations. When
K < 1, as holds for polymers with long-range repulsion, this
oscillatory behavior dominates over long lengths cales. For
K > 1, as holds for polymers having a finite contact interac-
tion, the non-oscillatory component dominates instead. These
long-range correlations are characteristic of the disorder-free
polymer system. Introducing disorder into the system leads

to a characteristic length-scale for correlations, beyond which
they are exponentially suppressed (see, e.g., Giamarchi23).

Bosonization is an approximate technique that is rooted
in the linearity of the spectrum of low-lying excited states.
As such, Eq. (4.9) does not accurately capture correlations
over short longitudinal distances, as we shall see in comparing
the density profile around a topological constraint as ob-
tained via bosonization and via exact methods. Nevertheless,
bosonization accurately describes the longer-distance behavior
and the transverse correlations, and the Tomonaga-Luttinger
parameters may be related to the parameters of either the
Lieb-Liniger or the Calogero-Sutherland models, as has been
demonstrated in the quantum context.24 Bosonization also
omits reference to the ground-state energy, and as such does
not capture the O(N3) contribution to the free energy and other
thermodynamic quantities.

V. TOPOLOGICAL OBSTRUCTIONS

In I, we considered the inclusion, into a system of simply
noncrossing polymers, of a topological obstruction (a “pin”)
located at (xp,τp), which some number of polymers NL passed
to the left of, with the remaining polymers passing to its right.
The thermal ensemble was restricted to those configurations
that met this condition. We showed that the polymer structure
around the pin and the free-energy cost of the pin were entirely
determined by the polymer correlations encoded in the ground-
state wave function. Specifically, the free-energy cost of the
pin, which is dominated by the O(N2) contribution coming
from the polymer-polymer interaction, is given by

exp(−βF) =
∫
C
d{xn}|ψgs({xn})|2, (5.1)

where C indicates that the integration over polymer coordinates
{xn} obeys the topological constraint that exactly NL polymers
pass to the left of the pin:

−(w/2) < x1, . . . ,xNL
< xp < xNL+1, . . . ,xN < (w/2).

(5.2)

Because the wave function given in Eq. (3.6) for the polymers
with long-range interactions is simply the λth power of the
wave function associated with simply noncrossing polymers,
it is straightforward to use Eq. (5.1) to show that the dominant
density profile ρ̄(x,NL,xp,λ) on the line τ = τp is the same
for generic values of λ (see Sec. III of I for details of the λ = 1
case):

ρ̄(x,NL,xp,λ)

= ρ̄(x,NL,xp,1)

=

⎧⎪⎨
⎪⎩

1
w

√
sin(πx/w)−sin(πxg/w)
sin(πx/w)−sin(πxp/w) , for − w/2 < x < xp

or xg < x < w/2;

0, for xp < x < xg .

(5.3)

Note the essential features of this polymer density profile:
(i) a gap, i.e., a region of zero polymer density (provided
density fluctuations are omitted), exists between xp and some
xg on the rarefied side of the pin; and (ii) the polymer density
diverges immediately to the compressed side of the pin, and
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remains elevated all the way to the edge of the system (and
reduced all the way to the edge on the rarefied side). For
simply noncrossing polymers, the entire density profile ρ(x,τ )
was obtained in I, where it was found that the gap has not
only a finite width but a finite length in the longitudinal
direction. Based on prior studies of the quantum analog25,26—a
Calogero-Sutherland system undergoing a large fluctuation—
the full density profile should remain qualitatively unchanged
by the presence of long-range interactions. Furthermore, the
free-energy cost of the pin simply scales as λ:

�F(λ) = λ �F(λ = 1). (5.4)

A. Large fluctuations of the bosonized fluid

We next ask: what is the effect of the pin on the bosonized
polymer fluid? More generally, we seek to determine the
probability of a given polymer density profile ρ̄(x,τp). Let
us impose some value φ̄(x) of the field φ(x,τ ) on the line
τ = τp, and require that φ(x,τ ) vanishes (corresponding to
uniform polymer density) far from this line. Likewise, φ(x,τ )
must vanish at x = ±w/2 so that no polymer lines cross the
walls of the system.

As we did in applying the wave function formalism, we
search for the dominant polymer configuration, i.e., the one
that minimizes the free energy, subject to the pin constraint.
This requires that φ(x,τ ) obeys the condition(

u−2∂2
τ + ∂2

x

)
φ(x,τ ) = 0 (5.5)

for τ �= τp. Thus determining the polymer configuration and
free-energy cost associated with the pin is equivalent to solving
an electrostatic boundary-value problem, which we proceed
to do in Appendix B. The result is a free-energy cost Fp

associated with the polymer density profile ρ̄, given by

Fp = − 1

βK

(
π

w

)2 ∫ w
2

− w
2

∫ w
2

− w
2

dx dx ′ρ̄(x) ρ̄(x ′)

× ln | sin(πx/w) − sin(πx ′/w)|. (5.6)

Strikingly, this is precisely the expression we found for Fp

for the case of simply noncrossing polymers, scaled by the
interaction parameter 1/K . This result indicates that polymers
having a wide class of generic interactions undergo large
fluctuations in essentially the manner found for simply non-
crossing polymers. Furthermore, the density profile obtained
in I and given in Eq. (5.3) is found to apply to polymers with
generic interactions.

However, as discussed earlier, there are limits to the
validity of the bosonization procedure when considering large
fluctuations. If one considers fluctuations in which ρ(x) differs
substantially from its equilibrium value N/w, such high-
energy excitations should lead to behavior that differs from that
predicted via bosonization. In particular, we know for simply
noncrossing polymers that higher-order terms in the free
energy lead to behavior such as a gap of finite area around
a pin or barrier. In contrast, the bosonization procedure lacks
these terms, and hence predicts that polymer density grows
linearly for τ > τp; cf. Eq. (B1a).

Despite this deficiency in the case of the pin, there are
particular strong constraints that one can impose on the

polymer system for which bosonization remains reliable. For
example, bosonization may legitimately be used to describe
the polymer “evolution” in the longitudinal direction around
a constraint requiring ρ(x,τp) = (N + (δρ)x)/w with δρ �
(N/w). In such a situation, where the polymer density remains
close to its equilibrium value, bosonization is strictly justified.

VI. CONCLUDING REMARKS

In the present paper, we have described the implications of
general interactions on systems of directed polymers in two
dimensions. We have found that the type and strength of the
interaction modifies the polymer structure and thermodynam-
ics. To a noteworthy extent, the phenomena described in I in
the setting of polymers having an infinite contact repulsion
extend, at least qualitatively, to polymer systems subject to a
much wider range of interactions.

We have used bosonization to describe the universal prop-
erties of emergent polymer fluids having generic interactions.
We have shown that there are long-range correlations in
disorder-free polymer systems, regardless of the range of
inter-polymer interactions. Depending on the value of the
Tomonaga-Luttinger liquid parameter K , the dominant cor-
relations at long distances may or may not include oscillations
in the lateral direction.

We have also studied the effect of topological obstructions
on the polymer fluid. We have found that the qualitative
features of the response are unchanged by the form of the
interaction. There is a sharp increase in the density of polymers
immediately on the compressed side of a pin, and the increase
in polymer density persists over a long distance. On the
decompressed side, a two-dimensional gap region opens up; in
it the density of polymers is negligible. The restoring force on
the pin is proportional to N2, indicating that the dominant
response results from interaction effects. Finally, we have
described the way in which the density profile, gap region,
and restoring force depend on polymer interactions.

ACKNOWLEDGMENTS

We thank Jennifer Curtis, Thierry Giamarchi, Sarang
Gopalakrishnan, Michael Pustilnik, Andrew Zangwill, and
Shina Tan for valuable discussions. One of us (P.M.G.) thanks
for its hospitality the Aspen Center for Physics, where part
of the work reported here was carried out. This work was
supported by Grants Nos. NSF DMR 09-06780 and DMR
12-07026 (P.M.G.), and by an NDSEG Fellowship (D.Z.R.).

APPENDIX A: SHORT-DISTANCE BEHAVIOR OF THE
POLYMER SYSTEM

The polymer partition functions that we consider in this
paper contain certain pathologies in their continuum limit that
can be controlled via a short-distance regularization. Consider,
e.g., the partition function for a single polymer not subject to
interactions or external potential, which formally reads

Z =
∫

Dx(·) exp

[
− Aβ

2

∫
dτ (∂τ x(τ ))2

]
. (A1)
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l

x0

x5

m=1m=0 m=2 m=3 m=4 m=5…

FIG. 5. A configuration of the first five primitive segments of
a single polymer. Although the polymer configurations over longer
distances do not depend on the cutoff length �, the root mean-squared
polymer slope is proportional to �−1.

To make sense of this formal object, let us divide the longitu-
dinal coordinate into M + 1 discrete segments as depicted in
Fig. 5, so that Z is approximated by

Z(M) =
∫

dx0 dx1 · · · dxM

× exp

[
− Aβ

2

M∑
m=0

M

L
(xm − xm−1)2

]
. (A2)

Note that, here, the {xm} are the coordinates of longitudinally
separated segments of a single polymer. Proceeding in the
manner of time-slicing for a quantum path integral (see, e.g.,
Refs. 27 and 28), one may make use of the following Gaussian
integral to eliminate the interior degrees of freedom:∫ ∞

−∞
dy exp{−C[(x − y)2 + (y − z)2]}

=
√

π

2C
exp[−C(x − z)2/2]. (A3)

By using this relationship, we see that the partition function
for a single polymer line that travels from x0 to xf and has
M − 1 interior segments is given by

Z(M) = 1√
M!

(
2πL

AβM

)(M−1)/2

exp

[
− Aβ

2L
(xf − x0)2

]
.

(A4)

We see thus that the free polymer fluctuates with a Gaussian
distribution that does not depend on the number of internal
segments. The polymer structure over long distances does not
depend on this short-distance behavior.

However, this does not mean that the short-distance
behavior can be ignored entirely in the determination of
thermodynamic properties of the polymer fluid. Let us define
the short-distance cutoff length � ≡ L/M . Then, the N -
polymer partition function in Eq. (A2) contains the factor

Z� ≡
(

2π�

Aβ

)NL/2�

, (A5)

which describes the short-distance behavior of the polymers.
This factor is not connected to the structure of the polymer lines
{xn(τ )} over distances long compared to �, but it does influence
thermodynamic observables that depend on temperature or the
tension parameter. For example, the mean-squared deflection
〈ẋ(τ )2〉 of a free long polymer line is given by

〈ẋ(τ )2〉 = − 2

βLN
∂A lnZ = 1

Aβ�
. (A6)

Thus, if we try to take the � → 0 limit, we find that short-
distance polymer deflections diverge. That is, the more closely
we examine an ideal polymer line within the model, the steeper
its slope seems to be. More generally, the polymer partition
function depends on polymer interactions V (x − x ′) and on
one-body potentials �(x) and so the entire partition function
for interacting polymers is given by

Z = Z� × ({
xf

n

}|e−Ht/h̄|{xi
n

})
= Z� ×

∑
k
e−Ekt/h̄ ψk

({
xf

n

})
ψ∗

k

({
xi

n

})
. (A7)

Here, {ψk({xn})} and {Ek} are the normalized eigenfunc-
tions and eigenvalues of the associated quantum system, as
discussed in I. Thus we see that the short-distance cutoff-
dependence is isolated in the interaction-independent portion
of the partition function Z� and can be separated from the
interaction-dependent physics.

APPENDIX B: FREE-ENERGY COST OF RARE
CONFIGURATIONS OF BOSONIZED POLYMERS

We now determine the dominant configuration φp(x,τ )
of the bosonized field and associated polymer free-energy
cost resulting from the general boundary condition φ(x,τp) =
φ̄(x); see Fig. 6. The Fourier series solution of the Laplace
equation of Eq. (5.5) consistent with this and the other
boundary conditions is (choosing for simplicity units so that
w = π )

φp(x,τ ) =
∞∑

j=1

an sin

(
j

[
x + π

2

])
e−ju|τ−τp |, (B1a)

x

FIG. 6. The bosonized field φ(x,τ ) vanishes at the walls of
the system x = ±w/2 and τ = L (and at τ = 0). A fluctuation
in the polymer configuration at τ = τp leads there to a nonzero
value of the field φ(x,τp) = φ̄(x). The curved lines are contours of
constant φ(x,τ ) for the configuration that corresponds to the boundary
condition ρ(x,τ ) = (N/w) + δρ sign(x).
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aj = 2

π

∫ π/2

−π/2
dx φ̄(x) sin

[
j

(
x + π

2

)]
. (B1b)

The polymer free energy Fp associated with this configuration
[which has the same form as the bosonized action of Eq. (4.6)]
is given by

Fp = 2

βKπ

∫ π/2

−π/2

∫ π/2

−π/2
dx dx ′ φ̄(x) φ̄(x ′)

×
∞∑

j=1

j sin

[
j

(
x + π

2

)]
sin

[
j

(
x ′ + π

2

)]
. (B2)

The sum over j may straightforwardly be performed, e.g.,
by expressing the summand in terms of exponentials and

performing the infinite geometric sums. The result is

Fp = − 1

βKπ

∫ π/2

−π/2

∫ π/2

−π/2
dx dx ′ φ̄(x) φ̄(x ′)

× cos x cos x ′

(sin x − sin x ′)2
. (B3)

Next, we transform the result for the free-energy cost
expressed in terms of φ̄(x) into one in terms of the polymer
density ρ̄(x) on the line τ = τp. In the continuum limit,
in which one considers only length scales greater than
the interpolymer length, one may invoke the bosonization
correspondence of Eq. (4.4), retaining only the p = 0 term,
[(N/w) − (∂xφ(x)/π )] ∼ ρ(x). Then, via integrating by parts
in x1 and x2 separately, we obtain the free-energy cost of the
large fluctuation in terms of the polymer density on the line
τ = τp (restoring physical units of length) given in Eq. (5.6).
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