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Spin sensitive electron transmission through helical potentials

A. A. Eremko* and V. M. Loktev†

Bogolyubov Institute for Theoretical Physics of NAS of Ukraine, Kyiv, Ukraine
(Received 20 June 2013; revised manuscript received 29 August 2013; published 14 October 2013)

We calculate the transmission coefficient for electrons passing through the helically shaped potential barrier
which can be, for example, produced by DNA molecules.
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Introduction. In the last years, it was discovered that
electron transmission through ordered thin films of chiral
molecules is highly spin selective.1–5 This effect was termed
the chiral-induced spin selectivity (CISS) effect4 (for details
see the review Ref. 6 and references therein). In experiments,2,4

the transmission of photoelectrons through self-assembled
monolayers (SAMs) of double-stranded DNA (dsDNA) on
gold has been studied. The spin polarization (SP) of electrons
ejected from Au substrate and transmitted through SAM of
dsDNA was measured and the strong SP, which is defined
as4 P = (I↑ − I↓)/(I↑ + I↓) was observed. Here I↑ and I↓
are the intensities of the signals corresponding to the SP
oriented parallel and antiparallel to the electrons’ velocity,
respectively.

Recently, different models have been proposed to explain
experimental results.7–10 A scattering theory in the first Born
approximation has been applied to obtain the SP in the
differential cross section of electrons moving through chiral
molecules with energies above the vacuum level.8 The model
of point charges placed along a helical line is considered in
a tight-binding approximation for electronic structure of the
helix and the transmission of distinct electron spin state is
computed by the Landauer formulation.9 The SP conductance
through a metal-DNA-metal structure is calculated in a tight-
binding picture.10 Although all these studies differ in details,
they possess a similar physical basis. Each of them is based on
accounting of the spin-orbit interaction (SOI) of an electron
that is moving through a helical potential. In other words,
describing different aspects of the problem, approaches are
based on the Schrödinger equation

[
− h̄2

2m
� + V − i

h̄2

4m2c2
(σ × ∇V ) · ∇

]
� = E�, (1)

which describes electron states in a potential V ≡ V (r). Here
�(r) is an electron spinor wave function, m is the electron
mass, and the last term in the brackets describes the SOI:
HSO = λ(σ × ∇V ) · p which enters into the Hamiltonian
from a nonrelativistic approximation to the Dirac equation
(see, e.g., Ref. 11). Here σ is a vector whose components
are the Pauli matrices σj (j = x,y,z), λ = h̄/(2mc)2, and
p = −ih̄∇ is a momentum operator.

In experiments,2,4 the photoelectrons have an energy above
vacuum level as they transmit through the SAM of dsDNA
molecules and then to the detector. These experimental results
are our main motivation to consider the problem of an
electron transmission through the plane-parallel region with
the potential V (r) caused by ordered dsDNA molecules in
a monolayer. Although our study has common physics with

the above papers,8–10 it differs by the general statement of the
problem, and gives complementary features to the SOI role for
the CISS. In particular, we calculate analytically continuous
energy eigenfunctions of Eq. (1) to obtain the transmission
coefficient for electrons passing through the chiral potential
barrier.

Potential with chiral symmetry. In the space one can,
by convention, separate a cylindrical volume with one ds-
DNA molecule whose axis coincides with a molecule’s
symmetry axis. There the electrostatic field arises from the
charge distribution in a molecule and hence the potential
V (r) for external electrons can be written down as V (r) =∑

n Vn(r) with Vn(r) = ∑
j Vj (|r − Rn,j |) where Rn,j =

(R0 + δj ) cos( 2π
N0

n + φj )ex + (R0 + δj ) sin( 2π
N0

n + φj )ey +
( b
N0

n + ζj )ez indicates the position of the j th atomic unit
in the nth repeating cell of a molecule. Here R0 and b are,
correspondingly, the radius and the pitch of the right-handed
for definiteness helix at which centers of repeating cells Rn

are placed, N0 is the number of cells per one pitch, δj , φj , and
ζj indicate an exact position of j th atomic unit in a cell, and
unit vectors ex,ey,ez correspond to laboratory coordinate axis
directions.

In cylindrical coordinates (ρ,ϕ,z), it is easy to show that
V (r) = ∑

n V (ρ,ϕ − 2πn/N0,z − bn/N0). This potential is
invariant under helical translation defined as the translation
along z by the distance bn/N0 with simultaneous rotation
around the z axis by angle 2πn/N0. Under such translation a
point with coordinate (ρ,ϕ,z) moves along the helical curve
r(τ ) represented in a parametrized form

ρ(τ ) = ρ, ϕ(τ ) = ϕ + 2πτ, z(τ ) = z + bτ. (2)

The potential V (r) is invariant at displacement τ = n/N0.
This means that at moving along the helical curves (2) the
potential is periodical, i.e., it is a periodic function of a
parametrization parameter τ with the period T = 1/N0. As
any periodic function, it can be represented by the Fourier
series

V (r) =
∑

g

Vge
igl(ϕ,z), (3)

where

l(ϕ,z) = 1

2

(
z

b
+ ϕ

2π

)
, g = 2π

T
p

with p being integer. Along a helical curve (2) the phase l(ϕ,z)
varies as l(ϕ(τ ),z(τ )) = l(ϕ,z) + τ and V (r) is the periodic
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function of τ . The Fourier coefficients Vg are determined by
the line integral of a scalar field along a helical curve r(τ )
which is a parametrized by (2):

Vg = 1

T

∫
(over a period)

e−igl(ϕ,z)V (r)ds

= N0e
−i[ϕ−(2π/b)z](p/2T )

×
∫ T

0
e−igτV

(
ρ,ϕ − 2π

b
z + 2πτ,bτ

)
dτ. (4)

It is clearly seen that the Fourier coefficients Vg ≡ Vg(ρ,ϕ,z)
are characterized by the following dependance on cylindrical
coordinates:

Vg(ρ,ϕ,z) = Vg

(
ρ,ϕ − 2π

b
z

)
, (5)

and are invariant under continuous helical translation at which
the coordinates are transformed as (2).

Below, considering the electron energy above vacuum level,
we will use the nearly free electrons approximation. In this
case, as the zero approximation, the oscillating part in (3)
can be neglected and zero harmonic V0(ρ,ϕ − 2πz/b) is only
considered as the potential in Eq. (1).

Because of the potential V0(r) is invariant under continuous
helical translation; the curves (2) are the equipotential lines.
Each curve is characterized by a Frenet frame—a moving ref-
erence frame of three orthonormal vectors ej which describes
a curve locally at each point. For the helical curve (2), the
Frenet frame is

et = − 2πρ

a(ρ)
sin ϕex + 2πρ

a(ρ)
cos ϕey + b

a(ρ)
ez,

eb = b

a(ρ)
sin ϕex − b

a(ρ)
cos ϕey + 2πρ

a(ρ)
ez, (6)

eρ = cos ϕex + sin ϕey,

where a(ρ) =
√

b2 + (2πρ)2 is the arc length of one turn of
the helix of pitch b and radius ρ. The orthonormal vectors et ,
eρ , and eb determine, respectively, the tangent, normal, and
binormal directions for the equipotential helical curve at the
point (x,y,z).

Calculation ∇V0 with taking into account (5) and (6) gives
∇V0 = Vρeρ + Vbeb, or

∇V0 = |∇V0|eV with eV = cos θeρ + sin θeb, (7)

where Vρ = ∂V0/∂ρ, Vb = −[a(ρ)/bρ](∂V0/∂ϕ), |∇V0| =√
V 2

ρ + V 2
b , and eV is a unit vector with tan θ = Vb/Vρ .

The electron wave function in a helical potential. To find
a solution of Eq. (1) let us use the semiclassical, or WKB,
approximation,11 i.e., look for a solution

�(r) = e(i/h̄)S�, (8)

where S ≡ S(r) is phase function (action) and � ≡ �(r) is
spinor function (probability density amplitude). Substitution of
(8) into (1) results in the set of equations completely equivalent

to Eq. (1):[
1

2m
(∇S)2 − (E − V0) + h̄

4m2c2
(σ × ∇V0) · ∇S

]
�

= h̄2

2m
��,

(�S)� + 2∇S · ∇� + h̄

2mc2
(σ × ∇V0) · ∇� = 0. (9)

In semiclassics the term with h̄2 in the right-hand part
of the first equation is neglected and there it is an equation
describing the phase fronts of an electron wave. On the analogy
with geometrical optics, an electron ray is a line or curve
that is orthogonal to wave fronts S(r) = const and a ∇S is
proportional to the wave number along this line. For the given
potential V0(r) and the fixed energy E electron trajectories
are equipotential helical lines. We ascribe to these lines the
direction assuming that the positive direction at each point
corresponds to such a direction of z. If a radius-vector r(l) of a
point which is placed on the line (2) is considered as a function
of arc length l of the ray [natural or arc-length parametrization
at which τ = l/a(ρ) in (2)] then for S at this point one can
write down

∇S = h̄k
dr(l)

dl
= h̄ket . (10)

Taking into account (7) and (10) in the first equation of (9)
and neglecting the right-hand part we obtain[

h̄2k2

2m
+ V0 − E − h̄2qSOk

m
(et × eV ) · σ

]
� = 0, (11)

where the wave number

qSO = |∇V0|
4mc2

(12)

characterizes in fact a strength of SOI induced by |∇V0|.
Note, that a SOI, like the last term in the brackets of
Eq. (11) and usually referred to as the Rashba SOI,12 is of
intensive research, experimental and theoretical, in quasi-two-
dimensional semiconductor structures such as quantum wells
and heterostructures.13 The parameter which characterizes a
strength of such SOI, is usually written as αSO = h̄λ|∇V0|.
Therefore, this parameter is connected with parameter (12) by
the relation

αSO = h̄2qSO

m
. (13)

Equation (11) has a solution if � is proportional to the
eigenspinor of the matrix (et × eV ) · σ only. Taking into
account (6) and (7) one obtains

(et × eV ) · σ =
( − cos γ e−i(ϕ+φ) sin γ

ei(ϕ+φ) sin γ cos γ

)
, (14)

where

cos γ = 2πρ

a(ρ)
cos θ, tan φ = b

a(ρ)
cot θ. (15)

Hence � = Aχσ , where scalar multiplyer A as a function
has the same symmetry as the potential V0, and χσ =
(u1 u2)T is the solution of equation (et × eV ) · σχσ = σχσ
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with σ being the eigenvalue. The matrix (14) has eigenvalues
σ = ±1 for two orthonormal spinors

χ+ =
(

e−i[(ϕ+φ)/2] sin γ

2

ei[(ϕ+φ)/2] cos γ

2

)
,

(16)

χ− =
(−e−i[(ϕ+φ)/2] cos γ

2

ei[(ϕ+φ)/2] sin γ

2

)
.

Therefore, the SOI defines the spin quantization axis, and the
explicit form of Eq. (11) becomes, depending on the electron
spin projection,

h̄2k2

2m
− σ

h̄2qSOk

m
+ V0 − E = 0. (17)

This equation gives either the energy dependence upon the
wave number k along the ray,

E±(k) = h̄2(k ∓ qSO )2

2m
− h̄2q2

SO

2m
+ V0 , (18)

or the wave number at the given energy,

kσ = ±
√

2m

h̄2 (E − V0) + q2
SO + σqSO = q + σqSO. (19)

In Eq. (19) we have introduced the running wave number

q = ±
√

2m

h̄2 (E − V0) + q2
SO, (20)

which determines the velocity of an electron propagation along
the helical ray with a given energy. Indeed, for velocity we have
v = (1/h̄)(dE±/dk) = h̄(k ∓ qSO/m = h̄q/m). Signs “±” in
(20) correspond to motion in positive and negative directions,
respectively.

Thus, according to the definitions (10) and (19) there are
two solutions for phase function Sσ . Bearing in mind the
directional derivative of S along the helical trajectory pointed
to by the vector et one can see that dS/dl = ∇S · et = h̄k.
Because kσ are constant along a trajectory, solutions for Sσ

have the form

Sσ = h̄kσ l + F = h̄(q + σqSO )l + F, (21)

where the integration constant F has the same symmetry as
the potential and can be included in A.

So, the desired functions in the helical potential are

�q,σ = Aσei(q+σqSO )lχσ , (22)

where spinors χσ are determined in (16). These eigenfunctions
describe a curvilinear propagation of electrons along helical
rays with definite vectors of the SP: Pσ = 〈χσ |σ |χσ 〉, P− =
−P+.

Therefore the SOI acting on the moving electron in
the helical potential breaks the spin degeneracy: the spin
degenerate one-dimensional (along the electron ray) band
E(k) = h̄2k2/2m splits in the momentum space by 2qSO into
subbands (18). This is general consequence of a Rashba-like
SOI for a quasi-one-dimensional propagation of electrons
along curved lines. While Eq. (18) is the result of the nearly free
electrons approximation, the same conclusion can be obtained
also in the tight-binding approximation.14

In general, the eigenstate of an electron, which propagates
in some direction with the energy E, is described by a superpo-
sition of the functions (22). This superposition can be written
down as �q(l) = A exp(iql)χ (l) where the spinor χ (l) =∑

σ aσ exp(iσqSOl)χσ = [u↑(l) u↓(l)]T describes the spin
orientation, where

∑
σ |aσ |2 = 1. So, if χ (l = 0) does not

coincide with the eigenspinor, the z component of the SP vector
|u↑(l)|2 − |u↓(l)|2 is the oscillating function of the variable l

with the wave number 2qSO . These oscillations with necessity
lead to the CISS effect. To demonstrate this, the electron
transmission through the chiral barrier is considered below.

The transmission coefficient (TC). Let the barrier be located
between z = 0 and z = d. It divides the space in three parts:
left L (z < 0), central C (0 < z < d), and right R (z > d)
ones. In the parts L and R the potential is constant and can be
put to zero, meaning that the electron is (quasi)free. In these
regions, the phase equals S = h̄k · r with arbitrary coordinate
independent spinor. In the part C, the solution of Eq. (1) is given
by the expression (22). To obtain the TC, consider a certain
situation: an electron normally incident upon the barrier from
the left side L. In this case the solution of the Schrödinger
Eq. (1) can be written as

�L = Aince
ikEzχinc + Arefe

−ikEzχref, z < 0,

�C =
∑
ν,σ

Aσ,νe
iSσ,ν/h̄χσ , 0 < z < d, (23)

�R = Atre
ikEzχtr, z > d.

Here Ainc, Aref , and Atr are amplitudes of incident, reflected,
and transmitted electron waves, correspondingly, and the wave
number kE is related to the energy via kE =

√
2mE/h̄2,

Sσ,ν = h̄kσ,ν l with kσ,ν = νq + σqSO where ν = ±1 denotes
the direction of the velocity and q =

√
2m(E − V0)/h̄2 [see

Eq. (20)].
In the functions (23), the coefficients A and the components

of spinors χref and χtr have to be found from the boundary con-
ditions at z = 0, z = d. The wave function and its derivatives
have to be continuous, so

�L(z = 0) = �C(l = 0), ∇�L(z = 0) = ∇�C(l = 0),

�C(l = L) = �R(z = d), ∇�C(l = L) = ∇�R(z = d),

where L = (a(ρ)/b)d. These conditions give equations
for the coefficients. Let Ainc = 1, χinc = (e−iβ/2 cos(δ/2)
eiβ/2 sin(δ/2))T , and u↑ and u↓ are the components of χtr.
Then one can eliminate the coefficients Aσ,ν and Aref from
the equations and solve for unknown components Atru↑ and
Atru↓. In this case |�tr|2 = |Atr|2(|u↑|2 + |u↓|2) = |Atr|2 ≡ T

gives the final TC value,

T = 1

|D|2 
 4k2
Eq2

4k2
Eq2 + (

k2
E − q2

)2
sin2 qL

(24)

with D = cos qL − i[(k2
E + q2 − q2

SO/2kEq)] sin qL and

|u↑|2 = cos2 δ

2
+ �u, |u↓|2 = sin2 δ

2
− �u. (25)

Therefore, at q2
SO � k2

E the expression (24) coincides with
the well-known formula for a TC of a quantum parti-
cle over a potential barrier.11 The SP factor determined
as P = (T↑ − T↓)/(T↑ + T↓) = |u↑|2 − |u↓|2 = cos δ + 2�u
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corresponds to the z component of the polarization vector P of
a transmitting electron which depends on the spin polarization
of an incident electron, the strength of the SOI, and the width
of a monolayer:

P = cos δ + sin δ sin γ sin(ϕ + φ − β) sin 2qSOL
− [cos δ sin2 γ + sin δ sin γ cos γ cos(ϕ + φ − β)]

× sin2 qSOL. (26)

Conclusion. Above we calculated TC for the model situa-
tion when an electron with arbitrary spin orientation (described
by two parameters—polar angles δ and β) is normally incident
upon the plane-parallel region with the helix-shaped potential.
In the experiments,2,4 photoelectrons emitted from the gold
surface are transmitted through the SAM of dsDNA at energies
above vacuum level. The dsDNA molecules are rigid and form
well-organized monolayers of rigid chiral rods closely packed
together.2,4 Hence, in such monolayers, the potential with
well defined helical symmetry can exist for external electrons.
Electron transmission is mostly a one-particle process and
therefore obtained analytical expressions for transmission of
unbounded electrons through the helical potential can describe
some features of such processes.

The solution depends on the explicit form of the potential
V0(r). The electrostatic field in the SAM must arise from
all electrons and nuclei that comprise the dsDNA molecule
and its neighbors. The calculation corresponding potentials is
a complicated problem and usually some simplified models
are used.8,9 To make a phenomenological estimation of the
polarization effect, let us take into account the DNA structure.
The Watson-Crick double helix structure of the DNA molecule
has diameter ≈20 Å and contains two grooves—major and
minor; the major groove being wider than the minor one. Many
proteins which bind to DNA do so through a wide groove.
In what follows, we assume that inequality E − V > 0 takes
place for trajectories which are close to the helical line r0(τ )
(2) with ρ = R0 and ϕ = ϕ0, which passes through the major
groove. For other rays E − V < 0, the quantity q becomes
imaginary and the wave function is exponentially decaying
within such trajectories. In other words, in order to get insights
into the behavior of the SP, we will assume that an electron
as a quasifree particle passes through the SAM along the ray
near the most probable trajectory r0(τ ) in the major grooves
of DNA molecules.

Under such assumptions one can use Eq. (26) with ρ = R0

and ϕ = ϕ0 for very rough estimation of the polarization effect
considering qSO, (12), or αSO, (13), as a phenomenological
parameter.

Equation (26) is in qualitative agreement with exper-
imental observations—the polarization is energy indepen-
dent; the selectivity increases with the width (the length of
dsDNA) of the monolayer and at qSOL � 1 gives linear
dependence on dsDNA length d = �zN with N and �z

being the number of base pairs in dsDNA and the distance
between them along the molecular axis, correspondingly.
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P

FIG. 1. The longitudinal spin polarization of transmitted elec-
trons, Eq. (26), as function of numbers of base pairs in dsDNA,
N , for transverse spin polarized, δ = π/2 (central solid line) and
with small longitudinal component of spin polarization vector, δ =
π/2 ∓ 0.2 (parallel and antiparallel to the direction of propagation),
incident electrons. Filled circles indicate experimental points for
photoelectrons with linearly polarized (central points) and circularly
(clockwise and counterclockwise) polarized light at N = 50 and
N = 78 given in Ref. 4. The effective SO coupling is taken to
be αSO = 1.33 meV nm which corresponds to qSO�z = 6 × 10−3.
Other parameters used are b = 34 Å, �z = 3.4 Å, R0 = 5 Å and also
correspond to DNA molecule.

In Fig. 1 the longitudinal polarization of transmitted
electrons (26) as a function of numbers of base pairs in dsDNA
is present. In the calculations, αSO = 1.33 meV nm is used.
This value is close to a physically meaningful estimation of
the SOI coupling parameter performed in Ref. 9. The values
of αSO = 1.87–2.35 meV nm are obtained. The situation of
highly packed SAMs can be compared to that of semicon-
ductors, in the sense that a molecule such as DNA contains a
large number of atoms per turn. Note that for semiconductor
heterostructures, values of the parameter αSO (referred to as the
Bychkov-Rashba parameter αBR) inferred from experimental
measurements vary in the range up to 40 meV nm.13 In this
sense, the value αSO ∼ 2 meV nm corresponds to moder-
ate coupling. In Fig. 1 filled circles indicate experimental
points taken from Ref. 4. Thus, obtained results show that
such a SOI coupling parameter can provide a rather good
qualitative and quantitative agreement with the experimental
data.4

Of course, the developed theory can be applied to experi-
ments with completely spin-polarized electron beams in which
all electrons are in the same spin state. The description of real
experiments when electrons of the beam have different spin
polarization requires the use of the density matrix formalism,
which is beyond the scope of the approach developed in this
paper.
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