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In this work, we revisit the problem of predicting the surface segregation trends in binary transition metal
alloys from the knowledge of the basic features of the pure component d-band electronic structure within tight-
binding approximation. In contrast to previous trend studies, the present one includes, within the fourth-moment
approximation (FMA) of the tight-binding scheme, both the difference in the average band energies (diagonal
disorder) and the difference in the band widths (off-diagonal disorder) of the two components. We show that
treating on the same footing these two effects is essential for a correct prediction of surface segregation. The
presented study, giving a natural link between the electronic structure and mixing/segregation properties, is
particularly interesting and useful in the context of the possibility of building efficient new energy models based
on FMA for use in large (time) scale atomistic simulations.
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I. INTRODUCTION

Surface segregation in transition metal alloys is a recurrent
problem which has given rise to intensive investigations both
theoretically1–7 and experimentally8–10 in the last twenties.
This phenomenon finds a renewed interest with the bimetallic
nanoparticles, also called nanoalloys, where the surface plays
an important role as it can represent almost as many sites as
the core of the cluster. Since the first studies mainly devoted to
their catalytic properties,11 these nanoalloys have also shown
many other potential applications, amongst others in magnetic
information storage or in plasmonic.12 Nanoalloys present
new technological and fundamental problems, which are now
revisited through modern tools and adaptation of the classical
tools, both from an experimental and a theoretical point of
view, and in the first place devoted to surface analysis.13

A first aim of the present work is to derive and understand
the trends in surface segregation properties of binary transition
metal alloys from the knowledge of the basic features of the
pure element electronic structure, in particular, the difference
in the average d-band energy, called diagonal disorder, and
in the d-band widths, that is off-diagonal disorder, of the
two species involved. Obviously, such an understanding is
extremely useful when it comes to invent new materials with
desired properties.

Previous works on metallic surfaces6,14 have been devoted
to predict the nature of the segregation species or described
the main driving forces of surface segregation phenomena.15,16

Among all the theoretical approaches that exist to model
the cohesion in transition metals and their alloys, ab initio
density functional theory (DFT) methods are certainly the
most accurate and can also give some insights for new materials
design as demonstrated by Johannesson and co-workers17 who
used DFT calculation coupled with an evolutionary algorithm
to search efficiently for the most stable alloys among all
the binary alloys. Nevertheless, such approach is still very
computer time consuming. On the contrary, semiempirical
models have been developed, based on tight binding within
the second-moment approximation (SMA), which enable the

study of large, complex structures of alloys and notably the
statistical mechanics of their chemical configurations using
(semi)grand canonical simulation techniques.18,19 However,
such models are sometimes too simple to satisfy a desired
level of accuracy. In particular, the SMA model only includes
off-diagonal disorder, whereas it has been shown20 that the
difference in the atomic levels (diagonal disorder) is of
crucial importance for the ordering/demixing tendency in
transition metal alloys. The impact of diagonal disorder has
therefore been studied within yet another approach, based on
the so-called tight-binding Ising model (TBIM),21–23 but this
approach does not take into account nondiagonal disorder.

It is to solve this contradiction that we have used a tight-
binding approach based of the fourth-moment approximation
(FMA) in order to quantify the effects of both diagonal and
off-diagonal disorder and give exhaustive ordering trends in
bulk alloys.24 Indeed, the mentioned study based on the TBIM,
including only diagonal disorder, predicts a demixing tendency
for low band filling (early transition metals) or high band
filling (late transition metals), and ordering in between.21,22

This trends is globally correct but there are exceptions notably
in the late transition metals, such as CuAu or CoPt, which
display a clear ordering tendency. We have shown that these
cases are solved (or partially solved in the case of CoPt) by
including nondiagonal disorder.24 Concerning CoPt, we note
that a possible effect from magnetism,27 due to Co, was not
considered in our study. Here, we extend our previous work by
studying the effects of both diagonal and off-diagonal disorder
on the surface segregation tendency along the transition metals
series. For surface segregation, it was found within the TBIM
that surface segregation trends are rather strongly related to
the difference in surface energies of the two pure elements, at
least when the other driving forces (alloying effect and size
mismatch effects) are not so important, the element with the
lowest surface energy segregating to the surface in many cases.
These trends are compatible with most of the experimental
observations when available,8,14 albeit again with exceptions,
possibly (and partly) related to the neglection of nondiagonal
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disorder. All these results have shown that, complementary to
the predictions of DFT calculations,3,5,6 the identification of
the driving forces behind ordering/demixing and segregation
trends from more simple models and ingredients, as initiated
by the TBIM studies, is an interesting topic providing useful
results. They also prompt to an extension by including
nondiagonal disorder, as given here.

From the point of view of surface alloys and nanoalloys
modeling, the FMA is a natural and ideal starting point for
constructing computationally efficient total energy models for
use in large scale, atomistic simulations. FMA goes beyond the
well-known and widely used models based on or equivalent
to the SMA,25,26 such as embedded atom models28–32 or
bond order potentials,33–36 and has already been successfully
parameterized and used for carbon-nickel systems.37,38 By
construction, the computational effort for FMA scales linearly
with the system size, like SMA. In practice, FMA is not much
slower (typically less than an order of magnitude) than SMA
based models and therefore allows for large scale atomistic
simulation well beyond the reach of ab initio methods (within
DFT) or even standard tight-binding. Improvements of the
SMA models in this direction, known as analytical bond order
potentials,39–42 have been proposed earlier, but these models
do not give an explicit link between the total energy expression
and details of the electronic structure. Instead, the FMA model
includes a description of the electronic structure, which is
essential for the present work.

In the present trend study, we will use the FMA model with
canonical rules for the tight-binding parameters, i.e., omitting
the parameter fine-tuning required for an optimally accurate
description of a particular pair of elements. It may be clear
that regarding accuracy such a canonical FMA model cannot
compete with calculations at an ab initio level within density
functional theory (DFT). Also, as in our previous study, our
model does not include spin polarization, which could be only
significant for the few magnetic transition metals (Fe, Co,
Ni) for which a lowering of the segregation energy has been
predicted.43

The paper is organized as follows: after this introduc-
tion, the theory description is detailed in Sec. II, bulk
order/demixing trends are presented in Sec. III and surface
segregation trends in Sec. IV. A brief summary and conclu-
sions are given in Sec. V.

II. THEORY

A. Tight-binding model for transition metals and their alloys

Within a tight-binding description, the wave function,
describing the quantum state of the system, is expressed as
a linear combination of localized atomic orbitals. Eventually,
this leads to a Hamiltonian matrix HTB, which for a crystal has
an eigenvalue spectrum consisting of an energy band or possi-
bly bands and gap(s). Roughly speaking, the diagonal blocks
of HTB determine the average band energy/energies [that
is, its/their position(s) on the energy axis], whereas the off-
diagonal blocks, which describe the probabilities for electron
hopping between atoms, determine the width(s) of the band(s).

The band structure according to HTB together with the
filling of it up to the Fermi level EF , depending on the number

of available valence electrons, determine the electronic, or
band energy Eband of the system. The total energy of a
tight-binding model is obtained by adding to this a repulsive
contribution, which usually is empirical and consists of a sum
of repulsive pair interactions.

For transition metals, it is well known that the dominant
and decisive contribution to the density of states comes from
the d-band, with band fillings running from 0 to 10 for each
of the three transition metal series. Hence we may describe a
transition metal within a pure d-band basis set, |λ〉(λ = 1,5),
by the Hamiltonian

HTB =
∑
i,λ

|iλ〉ελ〈iλ| +
∑
i,λ

j �=i,μ

|iλ〉βλμ

ij 〈jμ|, (1)

where the sums over i and j run over all N atoms, the diagonal
parameter ελ is the isolated atom electronic energy level for the
orbital |λ〉, and the off-diagonal parameters β

λμ

ij are the hop-
ping integral matrix elements. For transition metals, the
crystal field splitting between the atomic ελ levels, i.e., the
difference between t2g and eg levels, is much smaller than
the d-band width (a few hundred of meV compared to a
few eV44). Therefore we will neglect this splitting and take
ελ = ε for λ = 1, . . . ,5. Each of the hopping probabilities
β

λμ

ij are standardly described by the Slater-Koster two-center
integrals45 and consists of a sum of terms, where each term can
be factorized into a bond orientation dependent part, which
is universal (i.e., species independent), and a purely bond
distance dependent potential, which is either ddσ (r), ddπ (r),
or ddδ(r), corresponding to the three possible hybridization
channels. In general, these potentials have a finite cutoff,
which may be chosen such that only nearest neighbors
yields nonzero hopping integrals. We have adopted this
approximation in the present work. For our lattice calculations,
the r dependence of these potentials, often taken as simple
exponential functions, is irrelevant and we only need their
equilibrium values, ddαeq ≡ ddα(req)(α = σ,π,δ), where req

is the equilibrium nearest-neighbor distance. Furthermore,
adopting the well-established canonical rules ddπ � −ddσ/2
and ddδ � 0,44 the d-band width for the fcc lattice can be
analytically derived to be equal to W = −6ddσeq + 4ddπeq +
2ddδeq � −8ddσeq.20 Finally, since we assume an orthogonal
TB model in this work, the overlap matrix is the identity
matrix not containing additional parameters.

Of the two parameters left in the above description, i.e.,
ε and W , ε is not really a free parameter as it has to be
compensated by an equal energy shift to ensure that Eband

vanishes in the isolated atoms limit. Hence we can conclude
that in a first reasonable approximation, the d-band energy of
a transition metal on a fcc lattice is determined by merely one
parameter, namely the off-diagonal parameter or bandwidth
W = −8ddσeq.

If we now move to binary alloys, the Hamiltonian extends to

HTB({pia}) =
∑
a,i,λ

pia|iλ〉εa〈iλ|

+
∑
a,i,λ

b,j �=i,μ

piapjb|iλ〉βλμ

ij,ab〈jμ|, (2)
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where pia are site occupation numbers, with pia = 1 if site
i is occupied by an atom of type a (a = A,B) and pia = 0
otherwise, and where we assumed εa to be independent on the
d orbital λ as before. While the bond orientation dependent
part of β

λμ

ij,ab is independent of the chemical identities of the
atoms i and j , the parameterization of the distance dependent
part can be reasonably restricted by using the so-called Shiba
rule ddαAB = √

ddαAAddαBB (α = σ,π,δ). Adopting this
rule and defining Wa = −8ddσaa,eq(a = A,B), the band
energy of any binary alloy from the three transition metal
series on an fcc lattice is, apart from its composition xB (with
xB = 1 − xA in mole fraction) and corresponding band filling
Ne = xANe,A + xBNe,B [with Ne,a(a = A,B) the number
of d electrons of each metal], determined by merely three
parameters, which are appropriately chosen as the diagonal
disorder parameter δd ≡ εA − εB , the off-diagonal disorder
parameter δnd = WA − WB , and the average bandwidth
parameter Wav = (WA + WB)/2. At this point, it is important
to notice that each of these parameters is based on pure
element parameters. This means that the major trends in the
mixing and surface segregation properties, as presented in
Secs. III and IV, are basically determined by pure element
electronic properties. Obviously, also the band filling Ne

is based on pure element properties. It should be noticed,
however, that there is an intrinsic correlation between the
parameters due to the constraint of local charge neutrality, a
property of transition metal alloys recently confirmed by DFT
calculations,46 and which even holds at surfaces.

As has been shown in our previous work on bulk ordering
properties,24 the impact of the average band parameter Wav is,
although not negligible, relatively small. Therefore, to keep
the present work concise, we will mainly restrict ourselves to
the role of the diagonal and off-diagonal disorder parameters,
δd and δnd , taking Wav equal to a representative, average value
for the transition metals.

Further refinements, that can be obtained by relaxing the
above mentioned approximations, will not change the major
trends, but lead to relatively small quantitative modifications.
In general, this also holds for the impact of the repulsive
part of the TB model. For transition metals, the repulsive
interaction at normal conditions is relatively small as compared
to the band energy (namely, about twenty percents at the
equilibrium distance20). Moreover, the ordering systematics
experimentally evidenced along each transition metal series,
i.e., as a function of the d-band filling, implies that the band
term is the leading one for such behaviours at least for systems
that do not present a large size mismatch. Larger quantitative
effects for the segregation can be expected, however, for two
elements with rather different sizes, in particular, when one
would allow the structure to relax. In this work, we will not
consider this so-called size effect but focus on the major
effect coming from the band part of the total energy, which
is the dominant driving force in most cases. However, for a
more complete prediction of the segregation behavior for a
particular alloy, one could, in principle, add the size effect as
estimated from elasticity theory, as is done in Ref. 14, involving
the bulk and shear moduli for the issued alloy. Another
possibility is to parameterize an FMA potential, including
the repulsive interaction, in order to simulate explicitly the
atomic relaxations using quenched molecular dynamics. The

presented study is based on electronic energy differences of
rigid lattice configurations, omitting the repulsive interactions.

It should be realized that the pure component parameters
εa and Wa are correlated and basically known for all three
transition metal series from the work in Ref. 44. This
correlation is clearly demonstrated by a plot of Wa versus
εa for the three transition metal series (see Fig. 1 in Ref. 24).
Deriving δd and δnd from this work yields values in the ranges
0 < δd < 10 eV and −10 < δnd < 10 eV, taking δd positive
without loss of generality. However, for many transition metal
alloys, among which those of our particular interest, δd and
|δnd | are not larger than 4 eV. Therefore the parameter values
for the calculations presented later on have been chosen within
these more limited ranges. The average band parameter Wav

was taken equal to 6 eV in all cases.

B. Fourth-moment approximation (FMA)

The total band energy Eband can be decomposed into atomic
band energies Eband,i as

Eband =
N∑

i=1

Eband,i =
N∑

i=1

2
∫ EF

−∞
(E − εi)ni(E)dE, (3)

where the prefactor 2 accounts for the two spin states in the
paramagnetic state, EF is the Fermi energy, εi is the average
d-orbital energy per electron in an isolated atom i, and ni(E)
is the local density of states (LDOS) at the position of atom i.
Via the Green’s function formalism, the d-band LDOS can be
written as ni(E) = −(5/π ) limε→0+ Im[1/(zI − HTB)], where
z = E + iε, which can be worked out to the continued fraction
expansion:

ni(E) = − 5

π
lim

ε→0+
Im

⎛
⎜⎜⎜⎝

1

z − ai,1 − b2
i,1

z−ai,2−
b2
i,2

z−ai,3−b2
i,3/..

⎞
⎟⎟⎟⎠ , (4)

where ai,n and bi,n are the continued fraction coefficients,
which can be computed from the recursion method.47

The fourth-moment approximation consists of taking ai,n =
ai,2 and bi,n = bi,2 for all n > 2. This terminates the tail of the
continued fraction expansion, leading to an analytic expression
for ni(E)38 with the important property that both ni(E) and
Eni(E) are analytically integrable,38,48 allowing for fast and
accurate computation.

In the FMA, the LDOS is thus based on the four computed
coefficients ai,n and bi,n for n = 1,2, which ensures to get the
first four exact moments μi,n(i = 1,4):

μi,n = 1

5

∫ ∞

−∞
Enni(E)dE = 1

5

∑
λ

〈iλ|Hn
TB|iλ〉 (5)

for n = 0 to 4. Note that μi,0 = 1 by normalization.
It appears from this formulation that the exact calculation

of the nth moment μi,n involves all n-hopping closed paths
starting from atom i. This means that SMA, which only counts
two-hopping paths, only feels off-diagonal disorder, whereas
one needs to go up to the fourth moment to be also sensitive
to diagonal disorder. Indeed, the fourth-moment pathway i →
i → j → j → i, where j is a neighbor of i, involves both
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the diagonal matrix element for specie i and that for specie
j , represented by the parts i → i and j → j , respectively.
Within the SMA, the chemical nature of the neighbor atom j

is only included via the off-diagonal term i → j appearing in
second-moment pathways i → j → i.

C. Tight-binding Ising model: effective pair interactions and
surface potential

As a starting point for deriving and identifying quantities
that dominate the mixing and surface segregation properties,
we use the so-called cluster expansion in which the energy
is expanded as a systematic sum of n-body terms (n =
0,1,2,3, . . .). For a mixture with an arbitrary number of
components, the cluster expansion reads

E = NE0 +
∑

i

∑
a

piahia +
∑
〈i,j〉

∑
a,b

piapjbVij,ab + · · · ,

(6)

where the sums over i and 〈i,j 〉 run over all atomic sites and
pairs of sites, respectively, the sums over a and b run over
the atomic species, and where pia has been defined before. In
expression (6), E0, hia , and Vij,ab are a constant, site potentials
and pair potentials, respectively. Although it is well known that
a reasonable description of the cohesive energy of transition
metals requires to go beyond pair terms due to many-body
effects, it has been previously shown from a perturbation
treatment that the configuration dependent part of this energy is
well described by the cluster expansion truncated beyond pair
terms, which then turns into a generalized Ising model, known
as TBIM.21–23 Hence, we will continue with this truncated
expansion, the TBIM.

In principle, hia and Vij,ab depend on the site i and pair of
sites ij , respectively, as well as on their respective occupations
by a and ab. However, in a bulk lattice model with one atom
in the primitive unit cell, where all sites are geometrically
equivalent, we can simplify the TBIM to

E = NE0 +
∑

a

Naha +
∑

l

∑
〈ab〉

N
(l)
abV

(l)
ab , (7)

where Na is the number of atoms of type a, Nl
ab is the number

of lth neighbor pairs of type ab, ha is a specie dependent site
potential and V

(1)
ab , V

(2)
ab , etc., are pair interactions between

first, second, etc. neighbors. In this work, we will retain
only the pair interactions between nearest neighbors, as
they represent by far the dominant contribution in the fcc
crystalline structure.22 In the following, we will therefore omit
the superscript (1), writing Nab(=N

(1)
ab ) and Vab(=V

(1)
ab ) for

convenience. Also, we will consider a binary alloy from now
on. Then, for a bulk phase, the quantities Na(a = A,B) and
Nab(ab = AA,BB,AB) are not independent but satisfy the
exact relations:

NAA = 1
2 (ZNA − NAB) and NBB = 1

2 (ZNB − NAB),

(8)

where Z is the number of nearest neighbors, with Z = 12 for
an fcc crystal. Substitution of these relations into Eq. (7) leads

to

E =
∑

a

NaEa − NABV, (9)

where Ea = E0 + ha + Z
2 Vaa and V is the (nearest neighbor)

effective pair potential defined as

V = 1
2VAA + 1

2VBB − VAB. (10)

This effective pair interaction is directly related to the
excess energy per AB bond, VE = −V , used in the field of
thermodynamics of mixtures.

Equation (9) implies that for a fixed composition xB =
NB/N the total energy for any configuration depends only on
the number of nearest neighbor pairs of type AB, NAB , as
the terms Naha(a = A,B) are constant. Hence, within this
approximation up to nearest-neighbor-pair interactions, the
mixing behavior is governed by the sign of V . Positive and
negative V correspond to a tendency to mixing and demixing,
respectively.

For studying surface segregation properties, we will use
slab geometries of the fcc lattice with the two surfaces
chosen perpendicular to the z direction and periodic boundary
conditions applied in the x and y directions. Clearly, now not
all sites are geometrically equivalent, so that, staying within
the TBIM, in general Eq. (7) will not be a good approximation
anymore. The simplest extension to improve the expansion (7)
is to distinguish between two types of site potentials, one for
bulk sites ha and one for surface sites hs

a on the basis of their
nearest neighbor coordination. In that case, Eq. (7) generalizes
to

E � NE0 +
∑

a

Naha +
∑
〈ab〉

NabVab +
∑

a

Ns
a

(
hs

a − ha

)
,

(11)

where Ns
a is the number of atoms of type a at the surface and

hs
a the site potential at the surface for an atom of type a. For a

slab, the relations (8) have to be replaced by

NAA = 1

2
(ZNA − NAB) − Z′

2
Ns

A and
(12)

NBB = 1

2
(ZNB − NAB) − Z′

2
Ns

B,

respectively, where Z′ is the number of broken bonds of
an atom at the surface, assuming that all surface sites are
equivalent, which is the case for the high symmetry (001)
and (111) surfaces of the fcc lattice. Substitution of Eq. (12)
into (11) and some rearrangements lead to

E �
∑

a

NaEa + 1

2
Ns
s − NABV + 1

2
�Ns�hs, (13)

where we defined Ns = Ns
A + Ns

B , �Ns = Ns
A − Ns

B , 
s =
hs

A + hs
B − hA − hB − Z′

2 (VAA + VBB) and

�hs = hs
A − hs

B − hA + hB − Z′

2
(VAA − VBB), (14)

which we will call the effective surface potential hereafter.
Looking at it naively, within the TBIM this surface potential
is nothing else than the difference in the surface energy
for a pure A slab and that for a pure B slab, including
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a surface site contribution, (hs
A − hA) − (hs

B − hB), and a
missing pair terms (or broken bonds) contribution. Indeed,
applying the TBIM to pure slabs yields surface energies equal
to Es

a = hs
a − ha − Z′Vaa/2(a = A,B). However, although

the TBIM gives good approximations of the energy difference
between configurations with the same composition, there is no
reason to assume that this truncated expansion (TBIM) gives
reliable energy differences between structures with different
compositions. Nevertheless, it can be derived that,23 when
off-diagonal disorder is neglected and appropriate band fillings
are used for the pure slabs (see Sec. IV), this correspondence
between the effective surface potential and the difference in
the pure component surface energies should hold fairly well,
as was shown explicitly for the compositions xB = 0.25, 0.5,
0.75.23 This is the reason why the segregation tendency is
often determined by computing this difference in the surface
energies. However, it remains to be seen to what extent this
approach remains valid/accurate when off-diagonal disorder is
taken into account and for dilute mixtures. In Sec. III, we will
show that in particular for dilute mixtures strong deviations
from this often assumed relation between segregation tendency
and pure component surface energy difference can be expected.

For slab configurations with fixed composition, only the last
two terms on the right-hand side of Eq. (13) vary, depending
on the values of NAB and �Ns for a particular configuration.
Thus, comparing energies for slab configurations with equal
NA, NB , and NAB , the surface segregation behavior is governed
by the sign of �hs , with a tendency for A/B-terminated
surfaces for negative/positive �hs .

III. BULK ORDER/DISORDER TRENDS

According to Eq. (9), the effective pair interactions can be
conveniently calculated from the formation energy of a system
1 from another system 2 with equal NA and NB but different
NAB from

V = − E1 − E2

NAB,1 − NAB,2
, (15)

where the subscripts 1 and 2 label the two systems with
electronic energies E1 and E2, computed using the FMA model
in our case. (Note that E1 − E2 could be calculated from a
model at any level accuracy.) Furthermore, we will use the fact
that charge transfer is negligible in transition metal alloys.46

This implies that the integrations over εini(E) in Eq. (3) cancel
out in the calculation of E1 − E2, so that

E1 − E2 = 2
N∑

i=1

(∫ EF,1

∞
En1,i(E)dE −

∫ EF,2

∞
En2,i(E)dE

)
.

(16)

It should be reminded, however, that application of Eq. (16) to
a real transition metal requires a self-consistent value for δd ,
i.e., a value that yields local neutrality. Note that as long as
we do not specify a particular binary by the individual band
fillings of both components but only use the average band
filling (Ne) (as is sufficient for our model), this self-consistency
constraint does not enter our calculations. However, when
we want to calculate the effective pair interactions for a
given, real transition metal alloy, we should either perform
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FIG. 1. (Color online) The effective pair potential V (in eV) as
a function of the d-band filling Ne, calculated from the formation
energy of the L10 phase (solid red line), the formation of two
realizations of disordered phases (indigo dotted lines), and the
formation energy of a bulk slab configuration (see text, blue dashed
line). The thin, black solid line are the results obtained from
calculations based on 22 exact moments.

a self-consistent calculation leading to a self-consistent value
of δd or, alternatively, use a self-consistent value available in
literature.49

We have calculated V from the formation energy of a mixed
system 1 from a system 2, where the latter is taken as the
weighted sum of the pure phases with total density of states
equal to

∑N
i n2,i = NAnA + NBnB , with nA and nB the local

densities of states for the pure phases. Results for xB = 0.5 are
shown in Fig. 1 for different choices of the mixed system 1,
including the ordered L10 phase, two disordered phases and a
phase consisting of periodically repeated slabs of four layers A

alternated with four layers B. In the L10 phase, the two atoms
species are arranged in alternating layers perpendicular to one
of the axis of conventional cubic lattice for the fcc structure.
Let us first consider what happens when off-diagonal disorder
is neglected. Looking at the case (δd,δnd ) = (2,0) eV in the left
top panel, we find a tendency to demix for low and high d-band
filling and to mix for intermediate band filling, in agreement
with the prediction derived from the generalized perturbation
method.21,22 The results are practically independent of the
choice of system 1, which confirms that the effective pair
interaction, derived from the cluster expansion neglecting all
terms beyond nearest neighbors, is indeed the appropriate
quantity and dominant term for the mixing behavior. Note that
the observed difference in Fig. 1 could be translated in terms
of higher order terms of the cluster expansion but apparently
these terms are relatively small. The right top panel for
(δd,δnd ) = (4,0) eV shows that |V | increases with increasing
δd , as expected. If one now introduces off-diagonal disorder,
one can see in the lower panels that its effect is to strongly
decrease/enhance the demixing tendency for low/high band
filling when δnd is positive and vice versa when δnd is negative.

One can then wonder to what extent these systematic trends
hold when a higher number of exact moments is used to
calculate the density of states. In order to check that the FMA
development is sufficient (and crucial when putting it against
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FIG. 2. (Color online) Total density of states for the L10 ordered
phase (solid, red line) and weighed sum of the densities of states for
the pure phases, n(E) = 1/2[nA(E) + nB (E)] (dashed, blue line).

the SMA) to capture the essential physics of the ordering
phenomena, we have calculated these effective ordering pair
interactions using 22 exact moments yielding a much more
precise description of the electronic structure. As can be seen
in Fig. 1, the agreement between calculations with 4 and 22
exact moments fully justifies the use of FMA.

The observed behavior in Fig. 1 can be understood by
looking at and comparing the densities of states of system 1
and system 2, shown in Fig. 2 for the case that system 1 is the
L10 phase. In view of Eqs. (15) and (16), V is determined by
the integral over E�n = E(nAB − nA/2 − nB/2), where nAB

is the total density of the mixed (L10) phase. Looking first at
the case δnd = 0 in the top panel, we observe that nAB (solid,
red line) is narrower than nA/2 + nB/2 (dashed blue line),
leading to the situation that the density of bonding states at the
lower band edge is larger for the demixed state (dashed, blue
line) than that for the mixed state. Hence, for small average
band filling Ne, the demixed state is energetically favorable,
which is then reflected in the negative sign of V in Fig. 1
for this case at small Ne. Subsequently, for increasing band
filling, we enter in a region where �n(E) changes sign, as can
be deduced from Fig. 2 by looking at the difference between
the two curves. At a certain point, this then leads to a change
of sign of the integrated quantity V , etc. So, in essence, the
behavior of the sign of V is related to the enhanced narrowness
of nAB as compared to nA/2 + nB/2, which in turn can be fully
explained by what is analytically known of the eigenvalue
spectrum of a real symmetric matrix (HTB) with diagonal
disorder.20 However, when nondiagonal disorder is added and,
in particular, when δnd > δd , this analytical analysis breaks
down partially. But what happens in such cases according
to our calculations is shown in the bottom panels of Fig. 2.
For the case that WA is larger than WB , i.e., for positive
δnd = 3 eV, nAB shows an increased density at low energy due
the contribution from the narrower but larger B band density at
these low energies (shifted down by δd = 2 eV with respect to
the A band). Due to the hybridization in the mixed phase, this

pushes the lowest energies of nAB to values even lower than
those at the lower band edge of nA(E)/2 + nB(E)/2, which
in turn leads to a very tiny region, i.e., only for very small
Ne, in the corresponding panel in Fig. 1 where V is positive.
For the L10 this is hard to see in Fig. 1, as it concerns only
very small Ne, but for the bulk slab configuration it is much
more pronounced. In both case, the underlying mechanism is
the same. This discussion can be extrapolated to explain the
behavior of V for negative δnd as well, looking at the right
bottom panel of Fig. 2.

As a conclusion for bulk materials, one can state that the off-
diagonal disorder strongly modifies order-disorder maps in the
space of the above mentioned model parameters.24 Locating
a number of real binary transition metals (CoPt, NiPt, CuAu)
in these maps has elucidated their mixing behavior, which
could not be explained by previous approaches including only
diagonal disorder.21,22

IV. SURFACE SEGREGATION TRENDS

From the calculations with our model for the (001) and
the (111) surface, we found very similar surface segregation
trends. Therefore we will only present the results for the (001)
surface, obtained from differences in the electronic energy
for lattice slab configurations. Indeed, in most cases, the
anisotropy of surface segregation is such that the phenomenon
is weakened when going from open to close-packed surfaces,
without reversing the nature of the segregating species. The
only very few cases where such a reversal could be observed
concerns systems for which the difference in surface energies
is (very) small or vanishing while the size effect is strong. In
these cases, surface relaxation becomes the main driving force
behind surface segregation, giving rise to a larger orientation
dependence. Examples are PtNi or PtCo systems.4,14

A direct way to determine the effective surface potential
�hs is to calculate it from the energy difference between
two slab configurations with equal composition xB and equal
number of nearest neighbors of type AB, NAB , but with
different occupations of the surface sites, that is with a different
�Ns . In that case, it follows from Eq. (13) that

�hs = 2(E1 − E2)

�Ns
1 − �Ns

2

, (17)

where the subscripts 1 and 2 label the two slab configurations.
Three examples of suitable slabs configurations for the com-
position xB = 0.5 are drawn schematically in Figs. 3(a)–3(c).
In each case, two mirror slab configurations can be obtained
by swapping the chemical identity of the particles. The energy
difference E1 − E2 between these two mirror configurations
allows us to calculate �hs via Eq. (17).

In order to see to what extent the earlier mentioned
correspondence between the effective surface potential and
the difference in the pure component surface energies remains
valid when off-diagonal disorder is taken into account, we
have to compare �hs to �Es = Es

A − Es
B , calculated within

the same tight-binding model, where the respective d-band
fillings of the pure metals (A,B) have been taken equal to
the partial d-band filings (Ne,A, Ne,B ) in the alloy phases,
consistently with DFT results.46 These were determined in
an approximate way as follows. First, for given total d-band
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z

(a) slab configuration 1 (b) slab configuration 2

(c) slab configuration 3 (d) slab configuration ordered phase

FIG. 3. (Color online) Schematic presentation of the slab config-
urations used for the calculation of the effective surface potential.
Solid and dashed lines represent chemically different layers.

filling Ne we determine the Fermi level EF for a system
composed of the two pure bulk phase with a total density of
states n(E) = NAnA(E) + NBnB(E), thus without including
an interphase contribution. Next, we determine the partial
d-band fillings Ne,a(a = A,B) according to

Ne,a =
∫ EF

−∞
na(E)dE. (18)

After that we calculate the pure component surface energies
Es

a(Ne,a) = Eslab
i (Ne,a) − Ebulk

a (Ne,a)(a = A,B) for the calcu-
lated Ne,a and, finally, �Es(Ne) by

�Es(Ne) = Es
A(Ne,A) − Es

B(Ne,B ). (19)

In Fig. 4, we show the effective surface potential as a function
of Ne for the slab configurations 1, 2, and 3 in Fig. 3 with
composition xB = 0.5 and different values of δd and δnd ,
calculated using the direct method [see Eq. (17)], and we
compare it to �Es [see Eq. (19)]. The agreement between
�hs and �Es is quite good in this equimolar case, also
for nonzero nondiagonal disorder. Looking at the results for
δd = 1 and 4 eV and δnd = 0 in the middle panels, we
recover a result in agreement with the known, rough trend and
previous calculations based on TBIM,23 namely, a tendency for
component A/B to segregate to the surface for low/high band
filling, getting stronger with increasing δd (note the difference
in scale on the vertical axis between left and right panels).
Similar as for the effective pair interactions, the behavior of
the effective surface potential can be qualitatively understood
from the involved densities of states. The LDOS for a particle
at the surface is narrower than that of a bulk particle, implying
a transfer of the states at the band edges toward the center of
the band. For a slab with component B at the surface, this gives
a loss of states at the lower band edge with energies lower than
those lost at the lower edge of the LDOS of component A at
the surface, simply because B band is lower in energy due to
its shift down (by δd ) with respect to the A band. So the net
loss of low-energy states is larger for a B terminated surface
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FIG. 4. (Color online) Calculated effective surface potential,
�hs , for L10-like slabs with xB = 1/2 based on the four slab
configurations in Fig. 3 for δd = 1 eV and different values of the
off-diagonal parameter δnd , as indicated in the graphs. The solid
(red), the dashed (blue), and the dashed-dotted (green) lines are the
results using slab configurations 1, 2, and 3, respectively. The thin,
solid (black) line represents the difference in the pure component
surface energies �Es , calculated using Eq. (19).

and this favors a surface terminated by the A component for
low band filling (Ne < 5 eV).

If we now add off-diagonal disorder, we see a similar shift in
the tendency as for the bulk mixing properties. Looking at the
left top panel for (δd,δnd ) = (1,3) eV, the segregation tendency
at low band filling of component A is strongly reduced or even
reversed, while that of component B at high band filling is
enhanced. Opposite behavior is seen for (δd,δnd ) = (1,−3) eV
in the left bottom panel. The same shift in the trends occurs for
the case δd = 4 eV, but here the basic trend remains fully intact.
Nevertheless, the extreme values of �hs change as much as
0.5 eV in these cases.

Comparing the results in Fig. 4, we notice that there
is a systematic, relatively small difference connected with
the occupancy of the subsurface layer, either by the same
component that occupies the surface layer or not. This
ambiguity in the calculated effective surface potential is to
be attributed to the truncation/approximations of the cluster
expansion leading to the TBIM. In the present case, this
ambiguity could be (partly) resolved by assuming different
values for the pair potentials involving surface atoms, which
would give rise to additional parameters. However, the fact that
the differences are relatively small confirms the rigorousness
of the observed trends, without requiring further refinement.

We also studied the segregation trends for alloys with
compositions different from xB = 0.5, including the L12

ordered phase compositions xB = 0.25 and 0.75 and diluted
mixtures. In the L12 structure the conventional (cubic) unit
cell of the fcc structure contains three A and one B atoms or
vice versa. For such compositions, the procedure to compute
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FIG. 5. (Color online) Calculated effective surface potential for
three L12-like slabs based on the schematic pictures in Fig. 3 with the
overall compositions xB = 1/4 or xB = 3/4, δd = 1 eV, and different
δnd , as indicated. The solid (red), dashed (blue) and dashed-dotted
(green) line are the results using two realizations of the slab 1, 2, and
3, respectively, combined with the slab in Fig. 3(d) (see text). The
thin, solid (black) lines represent �Es .

the effective surface potential from the energy difference of
mixed slabs is slightly more complicated. Note that taking
the chemical image of a slab with composition xB �= 0.5
still conserves NAB but not the composition that transforms
into 1 − xB , making Eq. (17) inapplicable. To overcome this
difficulty for the L12 compositions, we computed the effective
surface potential from the energies of three slabs with different
NAB and �Ns by solving a set of three linear equations (13)
for for C(= ∑

a NaEa + 1
2Ns
s), V , and �hs . Three such

slabs were selected by using again the schematic picture in
Fig. 3, but now with the solid and dashed lines representing
pure layers and layers with composition 0.5, respectively, like
in the L12 phase with an overall composition either xB = 0.25
or 0.75. For each of the slab configurations 1, 2, and 3 in
Fig. 3, a second slab with equal xB but different NAB and
�Ns is obtained by replacing each pure by a mixed layer and
each mixed by a pure layer. To complete the set, the third slab
configuration is taken to be the one in Fig. 3(d) with again
equal composition but different NAB and �Ns .

The results, including a comparison with �Es , are shown
in Fig. 5 for different model parameters. From the results in
the left panels for the two L12 compositions and (δd,δnd ) =
(1,0) eV, the first important things to notice are that (i) globally
the shape of the curve is the same as those for the composition
xB = 0.5 in Fig. 4 and (ii) an asymmetry has occurred in the
position where the curve crosses the zero line. The band fillings
beyond which B terminated surfaces are favored have changed
from Ne = 5 for xB = 0.5 (see Fig. 4) to Ne = 4 for xB =
0.25 and to Ne = 5.8 for xB = 0.75. A comparable rather
strong effect of the composition was also seen in extensive
calculations of the effective pair interactions.24 Next, if we
add off-diagonal disorder, the effect is basically the same as
that in Fig. 4, as is illustrated in the right panels for xB = 0.25.
It strongly favors the segregation of A/B to the surface for
negative/positive δnd .

slab configuration 3

slab configuration 1 slab configuration 2

slab configuration 4

z

FIG. 6. (Color online) Schematic presentation of the slab config-
urations used for the calculation of the effective pair interactions and
surface potential for diluted mixtures. The impurities in slabs 2 and
4 are first neighbors, contrary to the situation in slabs 1 and 3.

Although the different curves in Fig. 5, obtained for the
different reference systems as explained, are still rather close,
the variation is larger than in Fig. 4, and, in particular, the curve
representing �Es starts to deviate considerably, although the
global trends remain the same.

To determine the effective surface potential for dilute
mixtures we used the four slab configurations displayed
schematically in Fig. 6, each of them with 2 impurities B
sitting either in the bulk or at the surface of an A lattice,
and being neighbors or not. Using Eq. (13), the effective pair
interactions can readily be obtained either from the energy
difference between slab 1 and 2 or else from the energy
difference between slab 3 and 4. As before, within the TBIM
approximation, the two results, hereafter denoted as V1−2 and
V3−4, respectively, will not exactly be the same in general.
However, the comparisons between the two results in the left
panels of Fig. 7 for δd = 2 eV and δnd = 0,−2, and 2 eV again
confirm the validity of the TBIM when it comes to retrieving
the trends, as the results are in fact quite close. As for the
nondiluted mixtures, there is a global trend to demix for low
and high band filling and to mix for band fillings in between.
However, the intersections with the V = 0 axis are extremely
shifted to the left, so that the domain of demixing at low band
filling has become very narrow. Moreover, in particular for
δnd = −2 eV, a new domain of mixing has appeared at high
band filling. (We did similar calculations for mixtures diluted
in A. In that case, the intersections with the V = 0 are shifted
completely to the right.)

Once the effective pair interaction is determined, we can
calculate the effective surface potential either from the energy
difference between slab 1 and 3 or from the energy difference
between slab 2 and 4 by using again Eq. (13) and eliminating
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FIG. 7. (Color online) Calculated effective pair interactions (left
panels) and surface potential (right panels) for a diluted mixture, made
of two impurities B in a A bulk, δd = 2 eV and different values for
the off-diagonal parameter, as indicated. The solid (red) and dashed
(blue) lines in the left panels are V1−2 and V3−4, while those in the
right panels represent �hs

1−3 and �hs
2−4, respectively (see text). The

thin, solid (black) lines represent �Es . Both middle panels contain
the results for the cases in which the two impurities in slab 1 and 3
of Fig. 6 are taken as second, third, fourth, and fifth neighbors. All
these results are so close that they can hardly be distinguished in the
figure. For the calculations shown in the other panels, the impurities
in slabs 1 and 3 were taken as fifth neighbors.

V by using V1−2 or V3−4, or else V = (V1−2 + V3−4)/2 as we
did. The respective results, which we will denote as �hs

1−3 and
�hs

2−4 are shown in the right panels of Fig. 7 and compared
to �Es from Eq. (19). The global trends, including the effect
of off-diagonal disorder, are the same as for the nondilute
mixtures, but the range of band fillings yielding negative �hs

has become much smaller now. In practice, this means that
there is an enhanced tendency for the B solute to segregate
to the surface. However, while the results for �hs

1−3 and
�hs

2−4 are quite close, they deviate considerably from �Es , in
particular, for low band filling, where it predicts an opposite
surface segregation trend over a significant range of Ne. It is
worth noticing that �hs

1−3 and �hs
2−4 are much more reliable

indicators for the segregation trend than �Es , as the former
quantities are directly obtained from the diluted mixtures. This
leads us to the conclusion that the rule of thumb to predict the
surface segregation trend from the difference in surface energy
of the pure components can become very inaccurate for diluted
mixtures.

This is confirmed by calculating directly the segregation
energy, Esegr, of an impurity in the framework of the same
FMA model. We calculate Esegr standardly as the energy of
a slab with a single impurity at the surface minus that of a
slab with an impurity in the bulk part of the slab. As can
be seen in Fig. 8, the overall behavior is dominated by the

-1

0

1

-3

3

-1

1

3

1

-1

-3

-3

-3

-3

-3

-3

-3

3

3

3

3

3

3

E
segr

(eV)

E
segr

E
segr

E
segr

(eV)

(eV)

(eV)

N
e

N
e

x
A

 --> 0 x
B
 --> 0

-2

0

2

δ
d
=0 eV δ

d
=0 eV

δ
d
=1 eV δ

d
=1 eV

δ
d
=2 eV δ

d
=2 eV

δ
d
=4 eVδ

d
=4 eV

-2

0

2

0 2 4 6 8 10

-2

0

2
-3

-3

3

3

0 2 4 6 8 10

FIG. 8. (Color online) Electronic contribution to the segregation
energy in both dilute limits for different values of diagonal and
off-diagonal disorder parameters. Red, dashed red, black, dashed
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difference in the energy scale for graphs in different rows.

diagonal term as soon as it is sufficiently large (δd � 2), but it is
strongly modified by the off-diagonal disorder effect otherwise
(δd < 2). Moreover, the importance of this effect is stronger
at low or high band filling. Within the TBIM approximation,
Esegr = (−)�hs + 4V when the impurity is A(B), implying
that Esegr includes both the energetic contribution from the
surface term and that of the alloying term. Comparing then the
right column of Fig. 8 to that of Fig. 7 we can deduce that, when
�hs differs from the difference in surface energies between
pure elements, it is the difference in effective surface potentials
(�hs) [together with the contribution from the alloying term
(4V )] that drives surface segregation.

V. CONCLUSIONS

We have revisited the problem of surface segregation
in binary tansition metal alloys on the basis of a d-band
tight-binding model within the fourth moment approximation
(FMA), which includes both diagonal disorder δd , that is, the
energy shift between the d bands of the two components,
and off-diagonal disorder δnd , which takes into account the
difference in the pure component bandwidths. By including
both effects simultaneously, the present study goes beyond
previous studies,23 and reveals strong systematic trends in
the surface segregation properties as a function of the band
filling Ne, δd , and δnd , and also of the composition xB of
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the mixture. While for δnd = 0 old results are recovered,
predicting A/B terminated surfaces for a less/more than a
half-filled d band (i.e., Ne = 5), the effect of a nonzero δnd is
to strongly asymetrize and even reverse this tendency favoring
the segregation of A/B for negative/positive δnd .

In addition, the present study shows the limits of the
usual argument based on the difference in surface energies
to predict surface segregation in the dilute limits. From a more
general point of view, the present work extends a previous
work24 on bulk mixing trends to surface segregation trends.
Our approach, or more generally a tight-binding approach,
is particularly appropriate for unravelling the trends in the
mixing and surface segregation properties, as it allows for the
identification of a very limited set of model parameters, which
cover the whole transition metal family and which turn out to
be the main driving forces behind the trends.

A further interest of using the FMA model lies in the fact
that this model allows for large scale, atomistic simulations
with a computation time that scales linearly with the system

size and is not much slower than the currently widely used
models based on the SMA approximation. At the same time,
FMA remains close to standard tight binding and is therefore
expected to be more reliable and transferable than SMA.
This is indeed confirmed by the roughly correct prediction
of the trends in the bulk ordering and segregation properties of
transition metal alloys, as found in this work. In addition, since
FMA provides an approximation of the electronic structure,
completely absent in standard SMA models, it opens the
possibility to do large scale simulations designed for retrieving
dynamical properties involving the electronic structure.
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