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Equilibration of quantum Hall edge states by an Ohmic contact
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Ohmic contacts are crucial elements of electron optics that have not received a clear theoretical description yet.
We propose a model of an Ohmic contact as a piece of metal of the finite capacitance C attached to a quantum
Hall edge. It is shown that charged quantum Hall edge states may have weak coupling to neutral excitations in
an Ohmic contact. Consequently, despite being a reservoir of neutral excitations, an Ohmic contact is not able
to efficiently equilibrate edge states if its temperature is smaller than h̄�c, where �c is the inverse RC time of
the contact. This energy scale for a floating contact may become as large as the single-electron charging energy
e2/C.
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The study of quantum Hall (QH) edge states has great
importance both for theoretical understanding of a strongly
correlated matter and for the development of quantum devices
for electron optics. These chiral one-dimensional (1D) states
are quantum analogs of the skipping orbits which appear at
the edge of a two-dimensional electron gas (2DEG) in a strong
magnetic field. The fact that the QH edge states behave in
many ways similarly to optical beams has triggered several
quantum-optics-type experiments with electrons.1–4 One of
the most important elements used to manipulate the edge
states in such experiments are the Ohmic contacts. They serve
as incoherent sources and detectors of the “electron beams”
in experiments on controllable dephasing2,3 and controllable
energy equilibration of the edge states.4

Ohmic contacts are created by placing a piece of metal on
top of a highly doped region in a semiconductor containing
2DEG. Strong tunneling between the edge states and the
states in this doped region provides a low-resistance contact
with external circuits. Ohmic contacts are very complicated
electron systems from a theoretical point of view, and they
are still the least understood elements of electron optics in
spite of their widespread usage. A simplification arises in
the regime of the integer QH effect, where edge states are
commonly described using the free fermion picture.5 Based
on this picture, an idealized concept of a so-called “voltage
probe”6 has been proposed to describe floating Ohmic contacts
in this regime. A voltage probe is a reservoir of electrons
which absorbs all incoming electron excitations and emits new
electron states with the equilibrium Fermi distribution and the
electrochemical potential that takes into account the current
conservation law. However, it has been shown recently,7–11 in
the context of the experiments,2,4 that even at integer filling
factors the free-fermion description of the edge states is not
always correct, and that the effective theory12 considering
the edge states as collective boson excitations is a more
appropriate approach. This observation calls us to reconsider
the applicability of the concept of a voltage probe.

It may appear that this concept finds a theoretical jus-
tification even at the effective theory level. Indeed, it has
been argued that strong tunnel coupling at a floating Ohmic
contact leads to equilibration13 and an effective elongation14

of the QH edge channel. Therefore it seems to be natural

to consider the edge channel being effectively cut into two
separate parts (see Fig. 1) carrying orthogonal fermions, i.e.,
with zero overlap. However, edge states carry the electric
charge which an Ohmic contact may have a limited ability
to accommodate. To be more specific, considering an Ohmic
contact as a three-dimensional piece of metal of the size
L, the level spacing of neutral excitations scales as 1/L3.
It is typically small enough to consider an Ohmic contact
to be a reservoir of such excitations. On the other hand, the
characteristic frequency of the charge response of an Ohmic
contact scales as 1/C, where its capacitance C is of the order
of L. Therefore it scales down with the size L much slower
than the level spacing and may compare to characteristic
energy scales of modern mesoscopic experiments with QH
edge states, which makes it impossible to fully equilibrate
them. In this article, we propose a simple model of an Ohmic
contact, generalizing earlier models for systems with nonchiral
Luttinger liquids,15 which is capable to correctly account its
finite charge response frequency.

Floating contact and boson scattering theory. We model
an Ohmic contact connecting incoming and outgoing QH
edge states at filling factor ν = 1 as shown in Fig. 2 and
explained in the figure caption. The low-energy physics
of the QH edge states12 is described by a set of scalar
boson fields φσ (x,t), where σ = ±. The charge density
operator and the current operator for incoming, σ = −, and
outgoing, σ = +, states have the form ρσ = (e/2π )∂xφσ and
jσ = −(e/2π )∂tφσ . These boson fields satisfy the following
canonical commutation relations:

[∂xφσ (x,t),φσ ′(y,t)] = 2πiσδσσ ′δ(x − y). (1)

The system can be described by the Hamiltonian containing
two parts. The first part generates the dynamics of the incoming
and outgoing edge channels,16 while the second term describes
the charging energy of the Ohmic contact of a finite size:

H = h̄vF

4π

∑
σ

∫ ∞

−∞
dx(∂xφσ )2 + Q2

2C
, (2a)

Q =
∫ 0

−∞
dxeεx/vF [ρ+(x) + ρ−(x)]. (2b)
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FIG. 1. (Color online) An Ohmic contact, shown on the left, is a
piece of metal (white rectangle) which is placed in close proximity
to the 2DEG (shown by gray shadow) and connected to an electrical
circuit via the impedance Z(ω). It absorbs incident electron states,
formed at the edge of the 2DEG in the QH effect regime (shown by
thick black lines), and turns them to neutral electron-hole excitations
(dotted lines). Then it emits equilibrium neutral excitations, and at
the exit, turns them to the edge states. Motivated by earlier findings
(Refs. 13 and 14), we model this process by extending an edge state
inside the piece of metal (red rectangle shown on the right) and
splitting it in two uncorrelated channels. Edge states inside the metal
provide their charge Q to the Ohmic contact and become neutral
modes. The Ohmic contact, in turn, equilibrates these neutral modes.

Here Q is an operator of the total charge accumulated at
the Ohmic contact and ε is a small regularization parameter,
roughly given by the decay rate of neutral excitations inside
the contact.17

Using commutation relations (1) and the Hamiltonian (2),
we obtain the equations of motion for the incoming and
outgoing state:

σ∂tφσ (x,t) + vF ∂xφσ (x,t) = − e

h̄C
Q(t)eεx/vF θ (−x). (3)

These equations have to be accompanied with the boundary
conditions

∂tφ+(−∞,t) = −(2π/e)jc(t), (4a)

∂tφ−(0,t) = (2π/e)jin(t), (4b)

where jin is the current flowing into the Ohmic contact, while jc

describes equilibrium fluctuations of the neutral mode with the
reservoir temperature Tc, originating from the Ohmic contact.
Solving Eq. (3) with the boundary conditions (4), one can
relate the outgoing current jout(t) = −(e/2π )∂tφ+(0,t) to the
incoming current jin, as illustrated in Fig. 2.

FIG. 2. (Color online) An equivalent representation of the floating
Ohmic contact at filling factor ν = 1 shown in Fig. 1. For convenience,
we fold edge states so that they could be described by two boson
fields φ+ and φ− of opposite chiralities. The dynamics of these fields
is generated by the Hamiltonian (2), and the boundary conditions
are given by Eqs. (4). The region inside the Ohmic contact, where
the capacitive interaction is assumed, is shown by the red color.
Note that the charge response frequency of the contact is finite, while
the level spacing of neutral modes vanishes. In order to take this fact
into account, we extend edge states inside the interaction region to
infinity and introduce a small parameter ε to regularize corresponding
integrals.

In order to solve Eq. (3), we apply the Fourier transform
φσ (x,ω) ≡ ∫

dteiωtφσ (x,t) and rewrite them as ordinary first-
order differential equations. The general solution for x � 0
then reads

φσ (x,ω)=φσ (ω)eiσωx/vF + σ

RqC

∑
σ ′ φσ ′(ω)

(iω − σε)
eεx/vF , (5)

where φσ (ω) are constants of integration, and Rq = 2πh̄/e2

is the resistance quantum. Using the boundary conditions (4),
we find the fields φσ (x,t), and then, the outgoing current

jout(ω) = iωRqC

iωRqC − 1
jc(ω) − 1

iωRqC − 1
jin(ω), (6)

where we have omitted a trivial phase factor in jc(ω) and set
ε = 0.19 In the context of the boson scattering theory,7,20 the
boundary conditions (4) can be viewed as the incident waves,
while jout is the outgoing wave. Then the coefficients in front
of the currents in Eq. (6) are the boson scattering amplitudes.21

Langevin equations. The equations of motion for the
currents and the charge may be written in a yet different form:

dQ(t)

dt
= jin(t) − jout(t), (7a)

jout(t) = Q(t)/RqC + jc(t), (7b)

where the first equation expresses the conservation of charge.
The second one is the Langevin equation, which has the
following simple physical meaning. The outgoing current
acquires two contributions: Q(t)/RqC is the current induced
by the time-dependent potential Q(t)/C, and the second one,
jc, is the Langevin current source. It is easy to check that by
solving these equations, one arrives at the result (6).

The advantage of this formulation is that the equations
(7) can be easily generalized to account for the effects of
dissipation in an Ohmic contact connected to the electric
circuit. This amounts to adding a current j ′

out and an impedance
Z to the equivalent electric circuit, as shown in Fig. 3. It is
convenient to present corresponding equations of motion in
the frequency domain:

iωQ(ω) = jout(ω) + j ′
out(ω) − jin(ω), (8a)

jout(ω) = Q(ω)/RqC + jc(ω), (8b)

j ′
out(ω) = Q(ω)/Z(ω)C + jZ(ω). (8c)

After straightforward calculations, we present the current
jout(ω) in the following form:

jout(ω) =
∑

p=in,c,Z

Tp(ω)jp(ω), (9a)

TZ = −Tin = Tc − 1 = [iωRqC − Rq/Z(ω) − 1]−1. (9b)

FIG. 3. Equivalent circuit representation of the Langevin equa-
tions (8). The charge conservation in the system is described by
Eq. (8a), while Eqs. (8b) and (8c) for the outgoing currents are the
Langevin equations with the current sources jc and jZ , respectively.
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We note that the Langevin equation approach used here is
appropriate in the case of linear quantum circuits that may
be described entirely in terms of collective plasmon modes.
This approach is fully consistent22 with the Caldeira-Leggett
model.23

Spectral functions and effective temperature. One can
characterize the statistics of the current fluctuations δjout ≡
jout − 〈jout〉 by the spectral density function S(ω), defined via
the relation

〈δjout(ω)δjout(ω
′)〉 = 2πδ(ω + ω′)S(ω). (10)

The solution (9) allows us to express it in terms of the noise
spectral densities of the currents jin(ω), jc(ω), and jZ(ω):

S(ω) =
∑

p

|Tp(ω)|2Sp(ω). (11)

Here Sp(ω) are defined similarly, 〈δjp(ω)δjp(ω′)〉 =
2πδ(ω + ω′)Sp(ω), and the average is evaluated with the equi-
librium state in the corresponding channel, which implies24

Sp(ω) = 2h̄ωGp

1 − e−h̄ω/Tp
, (12)

with Gin = Gc = 1/2Rq and GZ = Re[1/Z(ω)]. It is easy to
check that the following identity holds:∑

p

|Tp(ω)|2Gp(ω) = 1/2Rq. (13)

Therefore the statistics of the current originating at the Ohmic
contact is equilibrium if all the temperatures Tp are equal, and
it is nonequilibrium otherwise.

Sufficiently far from the Ohmic contact, the outgoing state
reaches the equilibrium. Therefore since the heat flux Jout

carried by the edge state is conserved, it is convenient to
define the effective temperature Tout of the outgoing state
by using the equilibrium relation Jout = πT 2

out/12h̄ for a 1D
chiral channel,25 which can easily be derived as follows.26

In a chiral system, the energy flux operator is equal to
the energy density operator multiplied by the velocity J =
vF · (h̄vF /4π )[∂xφ(x,t)]2 = (πh̄/e2)j 2(x,t). Then the heat
flux can be obtained by subtracting the vacuum energy
contribution: Jout = 〈J 〉 − Jvac. Expressing the heat flux in
terms of the current noise spectral function and comparing it
to the one for the equilibrium noise, we arrive at the following
result:

T 2
out = 3Rqh̄

π2

∫ ∞

−∞
dω[S(ω) − h̄ωθ (ω)/Rq]. (14)

One can see that the summation rule (13) guarantees the
convergence of the integral in Eq. (14) at high frequencies.

We evaluate this integral using Eqs. (9b), (11), and (12) in
the simple case where the circuit is a resistor, Z(ω) = R, and
with the natural assumption TZ = Tc. The result reads

T 2
out = T 2

c + 6(h̄�c)2

(πγ )2

[
I

(
h̄�c

Tin

)
− I

(
h̄�c

Tc

)]
, (15)

where �c = (Rq + R)/RqRC is the inverse RC time of the
Ohmic contact, and γ = 1 + Rq/R is the circuit coupling
parameter. The dimensionless function I in this equation has

FIG. 4. (Color online) The effective temperature Tout of the QH
edge state at ν = 1 originating at a floating Ohmic contact is plotted as
a function of temperature Tin of the incoming edge state for different
values of the temperature of the Ohmic contact Tc. Note that at Tin =
0 the effective temperature of the outgoing channel saturates at a
constant value, which is smaller than the contact’s temperature Tc. At
large values of Tin, it behaves as Tout ∝ √

Tin.

the following form:

I (a) =
∫ ∞

0

zdz

z2 + a2

1

ez − 1
= 1

2

[
ln

(
a

2π

)
− π

a
− ψ

(
a

2π

)]
,

where ψ(z) is the logarithmic derivative of the gamma
function. Figure 4 shows Tout for the floating contact as a
function of Tin for different values of Tc.

In the case of a cold Ohmic contact, Tc = 0, we find

Tout

Tin
=

{
1/γ, if Tin 	 h̄�c,√

3h̄�c/πγ 2Tin, if Tin 
 h̄�c.
(16)

Note that for γ = 1 + Rq/R > 1, additional cooling is pro-
vided by the dissipation in the circuit. In the case of a cold
incoming state, Tin = 0, and finite Tc, we have

Tout

Tc

=
{√

1 − 1/γ 2, if Tc 	 h̄�c,

1 − 3h̄�c/2πγ 2Tc, if Tc 
 h̄�c.
(17)

Thus the ability of the Ohmic contact to equilibrate the edge
state depends on the energy scale h̄�c, which, for a floating
contact (γ = 1), becomes comparable to the single-electron
charging energy: h̄�c = e2/2πC. To efficiently equilibrate
edge states with temperatures, e.g., in the range Tin ∼ 10 −
100 mK, one needs an Ohmic contact of the size of L ∼
10 − 100 μm or larger.

So far, the contact’s temperature Tc has been considered
an independent parameter, taking (ideally) the value of the
base temperature Tb. The ability of phonons to cool a contact
to the base temperature can be estimated by comparing the
incoming heat flux of electrons πT 2

in/12h̄ to the outgoing
flux �V (T 5

c − T 5
b ) to phonons, where � � 0.2 nW μm3 K5

is the electron-phonon coupling constant in metals,27 and
V � L3 is the volume of the contact. Assuming that cooling
by phonons is efficient, we find the relative correction (Tc −
Tb)/Tc � π/60h̄�(TcL)3, where we took Tin = Tc for the esti-
mate. On the other hand, h̄� = e2/2πC � e2/2πεε0L, where

165307-3



SLOBODENIUK, LEVKIVSKYI, AND SUKHORUKOV PHYSICAL REVIEW B 88, 165307 (2013)

ε � 12 for GaAs. Eliminating L, we find that (Tc − Tb)/Tb �
(0.03h̄�c/Tc)3, i.e., in the regime Tc � h̄�c considered here,
heating of the Ohmic contact is indeed weak.

Multichannel case. The generalization of our model to
QH systems with the integer filling factors ν > 1 is straight-
forward. In this case, the interactions at the edge split the
spectrum of the collective modes in one charged mode and
ν − 1 neutral modes. For a floating contact, one may generalize
the scattering theory. However, the easiest way to proceed
is by noting that one should simply replace the resistance
Rq in the Langevin equation (8b) with Rq/ν. Next, all
the outgoing neutral modes are, obviously, at equilibrium
with the Ohmic contact, because only the charged mode is
coupled to its charge Q. Finally, even a screened Coulomb
interaction at the edge is typically strong enough to equally
distribute the heat flux over the ν electron channels26 that are
accessible experimentally. All this leads to the modification
of the circuit parameter γ = 1 + Rq/νR to a similar change
in the charge response frequency �c = (Rq + νR)/RqRC,
and to the overall suppression of the heat flux per channel.

Expressed in terms of the new parameters, the effective
temperature of an electron channel is given by T 2

out = T 2
c +

(6/ν)(h̄�c/πγ )2[I (h̄�c/Tin) − I (h̄�c/Tc)]. In particular, in
this case even at small temperatures Tin,Tc 	 h̄�c, a floating
Ohmic contact is able to heat the edge states (Tout/Tc =√

1 − 1/ν at Tin = 0) or cool them down (Tout/Tin = 1/
√

ν

at Tc = 0) by redistributing the energy uniformly over the
electron channels.

To conclude, we have shown that a floating Ohmic contact
attached to the edge of a QH system can serve as a voltage
probe only if it has a sufficiently large capacitance, so that
the energy scale h̄�c, where �c is the inverse RC time of the
contact, is much smaller than the temperature of the QH edge
excitations. Such Ohmic contacts can be used to cool an edge
channel with temperature larger than h̄�c, and the efficiency of
cooling can be increased by connecting the contact to a circuit
with small resistance R < Rq . Finally, the equilibration by an
Ohmic contact becomes more efficient at large filling factors.

We acknowledge support from the Swiss NSF.
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