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Simulations of imaging of the local density of states by a charged probe technique
for resonant cavities
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We simulate scanning probe imaging of the local density of states related to scattering Fermi level wave
functions inside a resonant cavity. We calculate the potential landscape within the cavity, taking into account the
Coulomb charge of the probe and its screening by deformation of the two-dimensional electron gas using the
local density approximation. Approximation of the tip potential by a Lorentz function is discussed. The electron
transfer problem is solved with a finite difference approach. We look for stable work points for the extraction of the
local density of states from conductance maps. We find that conductance maps are highly correlated with the local
density of states when the Fermi energy level enters into Fano resonance with states localized within the cavity.
Generally outside resonances the correlation between the local density of states and conductance maps is low.
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I. INTRODUCTION

In semiconductor systems based on two-dimensional elec-
tron gas (2DEG), linear conductance is determined by the scat-
tering properties of the Fermi level wave functions.1 Since rel-
atively recently, the electron transport properties can be probed
with a local perturbation introduced to 2DEG by the charge
probe at the atomic force microscope tip,2,3 used as a floating
gate. Scanning gate microscopy2,3 allows for visualization of
magnetic deflection of electron trajectories,4 quantum interfer-
ence due to elastic scattering5 and Aharonov-Bohm effects,6,7

charged islands and edge currents in nanostructured quantum
Hall bars,8 branching of the electron flow,9 tip-induced lifting
of the Coulomb blockade in quantum dots,10,11 etc.

In this paper, we consider electron transport across a
cavity side-attached to a semiconducting channel. Electron
flow through resonant cavities is a basic problem for quantum
transport with a long history, starting from weak localization
effects,12 the relation between classical and quantum modes of
transport,13 in particular the scars of classical trajectories on
wave functions,14,15 and most recently the pointer states,16,17

which are robust against decoherence and stable despite cou-
pling to the environment. The spatial distribution of the pointer
states was extracted by post-treatment of the conductance
images as obtained by scanning gate microscopy.2,18

In this work, we consider a purely coherent electron
transport. Our purpose is to determine the extent to which
the details of the local density of states6,7 at the Fermi level
can be extracted from the raw conductance maps gathered
with the charge perturbation scanning the surface of the
structure. The original tip potential as seen by the 2DEG
is of long-range Coulomb form. The Coulomb potential
is screened by deformation of 2DEG density. Usually for
theoretical modeling, the tip potential is assumed short-range
in a form given by a closed formula.4,6,7,19,20 For 2DEG
which is not confined laterally,4,5,9 the deformation of the
electron gas follows the tip as it scans the surface, and
the effective (screened) tip potential preserves its form. On the
other hand, in systems with lateral confinement—in the cavity
in particular—the 2DEG deformation cannot freely follow the
tip, so a local form of the effective potential can only be
an approximation of the actual potential. In this work, the

effective potential of the tip is evaluated by solving the density
functional theory equations.21 We find that the tip potential
is close to Lorentzian, which for a small 2DEG-tip distance
is isotropic outside the edges of the cavity and of the width
which is close to the tip-2DEG distance.

We demonstrate that the resolution of the local density
of states at the Fermi energy level with the charge probe
technique depends on the work point defined by the electron
density. The local density of states is highly correlated to
conductance maps when the Fermi energy level enters into
Fano resonance with states localized within the cavity. Outside
the resonances, the maps calculated for weak tip potentials
agree with the Lippmann-Schwinger perturbation theory22 but
are not correlated in a clear way with the local density of states.

II. THEORY

We consider the electron gas filling the channels including
the side-attached square cavity (300 nm × 300 nm), that is
depicted in Fig. 1(a). The entire computational box is taken as
large as 1.5 μm. This length guarantees that the potential of
the tip is screened before it reaches the ends of the channels.
The channels are taken 50 nm wide. The electron gas is con-
sidered strictly two-dimensional. We apply the local density
approximation (LDA) for a description of the electrostatics of
the system,23 with the single-electron Hamiltonian

H = − h̄2∇2

2meff
+ U (x,y), (1)

where meff is the electron effective band mass, and the
potential is given by

U = W + VH + Vxc + Vtip, (2)

where W is the confinement potential of the channels (we
take 0 inside the channels and 200 meV outside), VH is the
Hartree potential, Vxc is the exchange correlation potential
(we apply the parametrization by Perdew and Zunger),24 and
Vtip is the tip potential. The Coulomb potential of the charge
at the tip of the probe as seen at the 2DEG level is given by

Vtip(x,y; xt ,yt ) = −|e|Qtip

4πεε0

√
(x − xt )2 + (y − yt )2 + z2

t

, (3)
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FIG. 1. (Color online) Schematics of the considered system.
(a) Geometry within the plane of confinement. The square cavity
of side length 300 nm is side-attached to a 50-nm-wide channel. The
length of the computational box is 1.5 μm. The dashed straight lines
indicate the paths along which the Lorentzian fit to the tip potential
is discussed (see Fig. 3 below). (b) Side view: the plane of electron
confinement at a distance of zd to the sheet of ionized donors and zt

to the tip.

where (xt ,yt ,zt ) is the tip location and Qtip is the charge at
the tip.

In 2DEG, the carriers are delivered by the donor layer which
is left charged positively. We assume that a homogeneous sheet
of positive charge is present on top of the area accessible to
electrons [see Fig. 1(b)] at a distance of zd from the electron
gas. The considered model is charge-neutral, with the average
electron density within the channels matched to the donor
density in the doped layer above the 2DEG [see Fig. 1(b)].

To simulate open infinite leads, we apply periodic boundary
conditions for the Schrödinger equation with Hamiltonian (1).
For calculation of the Hartree potential, we produce copies of
the charge present within the original computational box and
place them on its left and right sides [see Fig. 1(a)], and then
we integrate the charge with the Coulomb potential,

VH (x,y) = e2

4πεε0

(
−

∫
dx ′dy ′ nd (x ′,y ′,zd )

|(x,y,0) − (x ′,y ′,zd )|
+

∫
dx ′dy ′ n(x ′,y ′,0)

|(x,y,0) − (x ′,y ′,0)|
)

. (4)

In Eq. (4), n is the electron density, which is determined
in the following manner. We solve the eigenequation for H

obtaining eigenfunctions ψi with eigenvalues εi . Then, the
electron density is calculated as

n(r) = 2
∞∑
i

f (εi)|ψi(r)|2, (5)

where f is given by the Fermi-Dirac distribution,

f (εi) = {exp[(εi − EF )/kBτ ] + 1}−1, (6)

and the factor 2 accounts for the degeneracy of energy levels
with respect to the spin. The Fermi energy EF is determined
by the normalization condition

N = 2
∞∑
l

f (εl). (7)

In the calculations, we assume a temperature of τ = 0.28 K and
material parameters of InAs: meff = 0.023m0 and ε = 15.5.

Once the self-consistency of the Schrödinger-Poisson
scheme is reached, we obtain the Fermi energy and the poten-
tial distribution, which is then used to determine the electron
transfer probability T , and thus the conductance G = 2e2

h
T ,

according to the Landauer approach. Within the leads, far away
from the cavity the potential depends only on y, so that the
Hamiltonian eigenstates carrying the probability current can
be described by the wave vector (k > 0)

�k(x,y) = eikxψ(y), (8)

where ψ is the wave function describing the state of the
transverse quantization. In this paper we consider low electron
densities, for which the transport occurs in the lowest subband
only. Then a single value of the wave vector k appears at the
Fermi level. To determine the electron transfer probability,
we solve the Schrödinger equation with the finite difference
method and the scattering boundary conditions. Let us assume
that the electron is incident from regions of negative x (see
Fig. 1) and let us denote the scattering wave function for this
case by �+. In the channels far away from the cavity, i.e.,
outside the range of the evanescent modes, the wave function
acquires the form

�+(x,y) = �k(x,y) + r+�−k(x,y) (9)

in the input channel, where r+ is the backscattering amplitude.
In the output channel, one finds

�+(x,y) = t+�k(x,y), (10)

where t+ is the electron transfer amplitude for the electron
incident from the left. The electron transfer probability is
T = |t+|2. The solution of the scattering problem, i.e., the
Hamiltonian eigenstate matched to boundary conditions given
by Eqs. (9) and (10), is found by an iterative approach which
is described in detail in Refs. 21 and 25.

Below we discuss the spatial density of states at the Fermi
level [also known as the local density of states (LDOS)].6 The
local density of states is obtained as a sum of the scattering
probability densities for the Fermi-level electron incident to
the cavity from the left �+ and right channels �−

LDOS(x,y) = |�+(x,y)|2 + |�−(x,y)|2. (11)

To support the discussion of the simulated scanning
gate microscopy conductance maps, in the limit of weak
perturbations we employ the general formulas for the first-
and second-order corrections to conductance due to the tip
developed22 using the Lippmann-Schwinger approach. In the
lowest-subband transport case discussed here, the formulas
read

G(1)(xt ,yt ) = −2meff

h̄2k
Im(r∗

+t−V (−,+)) (12)

for the first-order, and

G(2)(xt ,yt ) = −2πmeff

h̄2k
Re[|t+V (−,+)|2 + |t−V (+,−)|2

+ r∗
+t−(V (−,−)V (−,+) − V (−,+)V (+,+))] (13)

for the second-order corrections, with the potential matrix
element defined as

V a,b(xt ,yt ) =
∫

dx dy�∗
a (x,y)V (x,y; xt ,yt )�b(x,y), (14)

which is evaluated from the scattering wave functions coming
from left (a,b = +) or right (a,b = −) leads. The wave
functions and the scattering amplitudes used in Eqs. (13)–(15)
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are calculated in the absence of the tip, which only enters
the kernel of Eq. (14). The conductance is then approx-
imated by Gpert(xt ,yt ) = G(∞) + G(1)(xt ,yt ) + G(2)(xt ,yt ),
where G(∞) is the conductance in the absence of the tip.

For a quantitative discussion of the similarity between maps
of conductance and the local density of states, we calculate
correlation factors in the following manner. We first perform
normalization of the map,

f = F − Fmin

Fmax − Fmin
, (15)

where Fmax and Fmin are the maximal and minimal values of
the quantity F within the cavity area S. Next, we calculate the
correlation factor for dimensionless normalized maps f and g

as

r = 1

S

∫
S
dx dy[f (x,y) − 〈f 〉][g(x,y) − 〈g〉]

σf σg

, (16)

where 〈f 〉 = ∫
S
dx dyf (x,y)/S and σ 2

f = ∫
S
dx dy[f (x,y) −

〈f 〉]2/S.

III. RESULTS AND DISCUSSION

A. Screening of the tip potential

The calculated self-consistent charge and potential distri-
butions as obtained for N = 100 electrons within the box
in the absence of the tip are plotted in Figs. 2(a) and 2(b),
respectively. The charge density within the system is distinctly
maximal at its edges. In the channels near the ends of the
computational box, U becomes independent of x, which is
consistent with the boundary conditions used for the transport
problem [Eq. (8)]. Figure 2(c) shows the bare potential
of the tip localized at zt = 15 nm above the 2DEG. The
applied effective charge at the tip Qtip = −1|e| for the tip
radius of R = 5 nm corresponds to the tip potential of V =
Qtip/R = 0.288 V. Figures 2(d) and 2(e) display the charge
density and potential as perturbed by the tip, respectively. A
consequence of the charge redistribution is the screening of
the original tip potential. The screened (effective) tip potential
can be calculated as a difference of perturbed [Fig. 2(e)] and
unperturbed potentials [Fig. 2(b)]. The difference is displayed
in Fig. 2(f). The effective potential has a form of a 4 meV peak
of �30 nm diameter. For comparison, the effective potential
calculated for the 2DEG-tip distance increased to 40 nm is
displayed in Figs. 2(g)–2(l). As the tip approaches the edge of
the cavity, the second elongated maximum is formed along the
edge [Fig. 2(g)]. In the present model, the screening is only
due to 2DEG which is missing outside the cavity, hence the
reduced screening at the edge. When the tip is displaced to
the outside of the cavity [Figs. 2(j) and 2(k)], the elongated
maximum at the edge is preserved.

For a quantitative parametrization of the tip potential, we
fitted to the results of the Schrödinger-Poisson scheme the
Lorentz function

VL(x,y; xt ,yt ) = U0

1 + (x−xt )2

d2
x

+ (y−yt )2

d2
y

, (17)

where U0 is the potential height above the constant potential
background, and dx and dy are potential widths in the directions
parallel and perpendicular to the channels, respectively. The

FIG. 2. (Color online) (a) Charge density of the electron gas for
100 electrons present within the computational box in the absence
of the tip. (b) Total potential U distribution corresponding to (a).
(c) Bare potential of the tip within the 2DEG plane. The probe charge
is above the spot marked by the cross for Qtip = −1|e| at a distance
of zt = 15 nm from the plane. (d) Charge density for the tip localized
as in (c). (e) The potential U distribution corresponding to (d). (f) The
effective potential of the tip calculated as the difference of (e) and
(b). (g) The effective potential for zt = 40 nm for yt = 300 nm and
xt = 850 nm. (h)–(k) same as (g) only for xt = 750, 800, 950,
and 1000 nm, respectively.

results of the fit for the tip following the paths marked by
horizontal dashed lines in Fig. 1 are displayed in Fig. 3 for
parameters of Fig. 2. For stronger interaction (zt = 15 nm),
the height of the tip potential oscillates. The period of the
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FIG. 3. (Color online) Parameters of the Lorentz potential
[Eq. (17)] fitted to the effective tip potential for Qtip = −|e| and
the tip-2DEG distance of zt = 15 nm [as in Fig. 2(e)] and zt =
40 nm along the dashed lines plotted in Fig. 1. Plot (a) shows the height
of the potential U0 maximum. Plot (b) shows dy (dash-dotted curves)
and dx given by the error bars. The fit was performed within the cavity
area inside a square of 200 nm side length centered on the tip.

oscillation is roughly half of the Fermi wavelength (here kF =
0.05/nm), which is reminiscent of the Friedel oscillations
discussed in Ref. 21. When the tip is near the center of the
cavity [cf. Fig. 2(b) for y = 300 nm and xt = 750 nm] its
potential is isotropic. Note that, in this case the potential width
dx = dy is of the order of zt . The height of the tip potential
[Fig. 3(a)] tends to increase at the edge of the cavity, which is
due to the reduced screening by the electron gas. The potential
becomes anisotropic when the tip approaches the edges of
the cavity due to the anisotropy of the screening medium. An
extreme anisotropy is reached for the tip above the edge: the
potential is strongly elongated along the edge, and it weakly
penetrates the cavity [cf. Fig. 2(j)].

For the discussion below, we use both the results for the
Coulomb potential (3) and the anisotropic Lorentz ansatz (17)
with d = dx = dy . There is an essential difference between
these two calculations. Vtip given by Eq. (3) enters the DFT
equations, so that the charge density n reacts to its presence
resulting in the screening of the tip potential. On the other
hand, whenever the ansatz in a form given by Eq. (17) is used,

we simply add this potential to the self-consistent potential as
obtained by DFT in the absence of the tip and use it in the
electron scattering problem.

The present finding that the tip potential can be approx-
imated by the Lorentz function with the width of the order
of the 2DEG-tip distance is consistent with the experiment of
Ref. 11, which investigated the form of the actual tip potential
in the Coulomb blockade microscopy of double quantum dots
defined within 2DEG. The conclusion11 was that the potential
is close to the circularly symmetric Lorentz function that for
the tip �234 nm above the electron gas (200 nm above the
sample surface with the electron gas buried 34 nm below it)
possesses a dip that is 250 nm wide.

B. Density of states at the Fermi level versus the
conduction maps

In Fig. 4(a) we show the density of states at the Fermi
level obtained for N = 78 electrons within the computational
box. Figures 4(b) and 4(c) display the corresponding maps of
the transfer probability for zt = 15 and 40 nm, respectively.
Correlation between the LDOS and T map for zt = 15 nm
is evident, although the relative amplitudes of extrema as
observed in the LDOS and T vary. The correlation factor
between the T map with zt = 15 nm and the LDOS [Figs. 4(a)
and 4(b), respectively] is r = −0.52 (the negative sign is due
to the coincidence between maxima of the LDOS and minima
of the G map). The details of the T map become less resolved
for zt = 40 nm [Fig. 4(c)], as should be expected from the
increase of the effective width of the tip discussed in Figs. 2(f)
and 2(g). The correlation factor between the T map of Fig. 4(c)
and the LDOS of Fig. 4(a) falls to r = −0.36.

As discussed in Fig. 3, the parameters of the effective tip
potential vary with the tip position. To illustrate the importance
of the variation in Figs. 4(d) and 4(e), we presented the T maps
as obtained with the isotropic Lorentz potential [Eq. (17)].
For zt = 15 nm (zt = 40 nm), we fixed parameters to U0 =
3.5 meV and d = dx = dy = 15 nm (U0 = 0.7 meV and d =
40 nm) according to the fit obtained for the tip near the center
of the cavity (cf. Fig. 3). The similarity between the T maps
with the Lorentz ansatz [Figs. 4(d) and 4(e)] and those obtained
by the full calculation with the Coulomb potential of the tip
[Figs. 4(b) and 4(c)] is quite distinct and the correlation factor
equals r = 0.61 for zt = 15 nm and r = 0.7 for zt = 40 nm.
For zt = 40 nm, the results with the Coulomb potential indicate
a stronger variation along the edges of the cavity, which results
from the increased height of the actual perturbation near the
edges (see the discussion above).

For the parameters corresponding to zt = 40 nm, the height
of the perturbation U0 = 0.7 meV is distinctly smaller than
the kinetic energy of the Fermi level electron (h̄2k2

F /2meff =
2.5 meV). It is instructive to check how the perturbation theory
works for the Lorentz potential as compared to the exact results
[Fig. 4(e)]. The first- and second-order T maps are displayed
in Figs. 4(f) and 4(g), with the correlation factors reaching
r = 0.48 and 0.65, respectively.

The correspondence of the LDOS with the T map found in
Fig. 4 for zt = 15 nm is relatively close. To see whether this can
be considered a rule, we performed calculations for a varied
electron number—N = 92; see the results of Fig. 5. The result
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FIG. 4. (Color online) Results for N = 78 electrons within the computational box. (a) The density of states at the Fermi level (local
density of states), calculated as a sum of probability densities corresponding to scattering wave functions incident with kF = 0.039/nm
(h̄2k2

F /2meff = 2.5 meV) from the left and right to the cavity. Transfer probability maps (or conductance maps in units of G0 = 2e2/h) obtained
for Qtip = −1|e| and the tip at the distance of zt = 15 nm (b) and zt = 40 nm (c) from the 2DEG. (d) Conduction map for Lorentz perturbation
[Eq. (17)] with parameters corresponding to (b), i.e., U0 = 3.5 meV and d = dx = dy = 15 nm. (e) Conduction map for Lorentz perturbation
with parameters corresponding to (c), i.e., U0 = 0.7 meV and d = 40 nm. Plots (f) and (g) show the conductance maps as calculated with the
first- and second-order corrections of the Lippmann-Schwinger equation theory [Eqs. (12) and (14)] obtained with the potential of plot (e). The
values of r(b,a),r(b,d), . . . etc. give the correlation factors between the maps of panels (b,a),(b,d), . . . , as calculated according to Eq. (16).

for Qtip = −1|e| [Fig. 5(c)] exhibits a similar correlation to
the LDOS [Fig. 5(a)] with the correlation factor of r = 0.47.
Note, that the correspondence has now an inverse character
with respect to Fig. 4: in Fig. 5, the maximal T corresponds to
the maximal LDOS, hence the positive sign of r . Figure 5(d)
indicates that the correspondence of T to the LDOS is reduced
for the larger charge at the tip. For Qtip = −8|e|, the 2DEG
beneath is completely depleted, and the volume of the cavity
itself, i.e., the space accessible for electrons, changes with the
varied tip position, hence the abrupt variation of the T map.
The correlation to the LDOS factor drops to r = 0.26.

We learn from Fig. 5(b) that as the tip charge is reduced
further from Qtip = −|e| to Qtip = −0.1|e|, the T map does
not get any closer to the LDOS. Only the amplitude of
the variation is reduced for smaller |Qtip|. We find that in
general, the effective width of the tip depends on zt and
not on Qtip. The experimental literature on quantum rings2,6

contains a discussion of the influence of the tip potential on the
conductance patterns in the scanning gate microscopy maps.
The conclusion2,6 was that in the linear perturbation regime
(i.e., for relatively weak perturbation), the potential at the tip

influences only the amplitude of the map and not the pattern,
which is consistent with the result obtained for Qtip varied
between −|e| and −0.1|e|.

For comparison, in Figs. 5(e) and 5(f) we presented results
for T maps as obtained for the Lorentz potential of the tip
for d = 4 and 40 nm, respectively, for a small height of

potential U0 = 0.33 meV (about 10% of h̄2k2
F

2meff
). The result of

Fig. 5(e) for d = 4 nm reproduces in a close detail the LDOS of
Fig. 5(a)—with the correlation factor reaching r = 0.86. The
result with d = 4 nm and small U0 is exactly reproduced by the
perturbation calculus [Figs. 5(g) and 5(h)]. For the wider tip
d = 40 nm, the second correction plays a more decisive role
[Figs. 5(i) and 5(j)], with the values of T closer to the results of
the exact calculation [Fig. 5(f)] but with a reduced correlation
of the images due to lower contrast of the map [Fig. 5(j)]. The
discussed case of d = 40 nm is near the verge of applicability
of the perturbation theory. We find that independent of N for
d = 4 nm and U0 of the order of 10% of the kinetic Fermi
energy, the perturbation calculus22 including the second-order
correction exactly reproduces the exact transfer probability
maps with r close to 1.
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FIG. 5. (Color online) Results for N = 92 electrons within the
computational box (kF = 0.046/nm, h̄2k2

F /2meff = 3.5 meV). (a)
The density of states at the Fermi level (local density of states), and
conduction maps obtained for the tip at the distance of zt = 15 nm,
for Qtip = −0.1|e| (b), Qtip = −1|e| (c), and Qtip = −8|e| (d).
Results for a Lorentzian ansatz of the effective tip potential
are displayed in (e) and (f) for U0 = 0.33 meV and radii d =
4 nm (e) and d = 40 nm (f). Plots (g) and (h) [(i) and (j)] are the
first- and second-order perturbations calculated for the parameters
of (e) [(f)].

FIG. 6. (Color online) The black line shows the dependence of the
transfer probability T on N . The green curve shows the correlation
factor between the LDOS and the T map as obtained for a pointlike

perturbation d = 4 nm and U0 = 0.1
h̄2k2

F

2meff
. The vertical dashed lines

show the electron numbers which are discussed in the text.

C. T (N) versus the resolution of the local density of states at the
Fermi level

The LDOS, which characterizes only the scatterer in the
absence of the tip, can be resolved by scanning gate mi-
croscopy maps with the spatial precision that is limited by the
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FIG. 7. (Color online) The first row of plots corresponds to N =
65, the second to N = 97, and the third to N = 104 within the system.
In the first column, we show the local density of states, and in the
second column the T maps as obtained with the Lorentz ansatz of the
effective tip potential for U0 = 0.1h̄2/k2

F /2meff and width d = 4 nm.
The Fermi wave vectors and the related kinetic energies for N = 65,
97, and 104 are 0.032/nm, 0.049/nm, and 0.052/nm; 1.7, 4, and
4.5 meV, respectively.
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FIG. 8. (Color online) Same as Fig. 6 but for an asymmetric cavity
of Fig. 9.

width of the tip potential. When the tip potential is large, the
scattering wave functions will be strongly influenced by the
tip. In the limit of weak and pointlike tip perturbation, the
correlation between the LDOS and the T maps should be as
high as possible. For the rest of the paper, we concentrate
on this limit. The limit of weak and δ-like perturbation is
investigated using a short-range Lorentz potential d = 4 nm
and small height U0 = 0.1h̄2k2

F /2meff .
We find that the resolution of the local density of states near

the Fermi level by the T maps depends on the electron density
(or N ) which sets the Fermi energy within the system. The
dependence of T on N is displayed in Fig. 6. For the purpose
of Fig. 6, we allowed N to take on also noninteger values [N
enters the expression for the Fermi energy (7)]. Additionally,
we plotted the correlation factor between the LDOS and the T

map as calculated with the Lorentz potential.
The results for N = 78 presented above [Fig. 4(b)] cor-

responded to a plateau of T (N ) in Fig. 6. In this case, the
correlation factor r between the pointlike weak perturbation
is as small as 0.35. The case of N = 92 in Fig. 5 corresponds
to a neighborhood of a dip of T [see Figs. 6(a) and 6(c)].
This dip results from the Fano interference that involves a
resonant localized state within the cavity. The correlation
factor becomes as large as r = 0.86. When |dT /dN | is large,
so is the amplitude of the T (x,y) variation as obtained for the
Coulomb tip with Qtip = −|e| at zt = 15 nm. For maps plotted
at the plateaus of T , the amplitude is distinctly smaller [see
Fig. 4(b)].

We find as a general rule that near the Fano resonances,
the correlation between the LDOS and T maps reaches
r � 0.8 (see N = 59, 92.3, 96.7, and 106.7). For an extra

illustration, the results near another resonance for N = 97
are displayed in Figs. 7(c) and 7(d). Near the plateaus of
T , the correlation becomes distinctly lower—see the results
for N = 78 discussed above or the results presented for
N = 104 in Figs. 7(e) and 7(f). Note that for N = 104 there
is an apparent similarity between the LDOS and the T map
since the extrema of the maps coincide with one another.
However, the maxima of the LDOS correspond variably to
either the minimum or the maximum of T —hence the low
value of r = −0.42. The case for N = 65 of Figs. 7(a) and
7(b) corresponds to an off-resonant conditions but for large
|dT /dN |. In this case, the correlation between the LDOS and
the conductance map is still significant.

The results presented so far were obtained for a symmetric
structure. In the experiment, the asymmetry is inevitable and
the present study requires generalization to a nonsymmetric
case. The T (N ) and the correlation factor of LDOS to
conductance maps obtained with the Lorentz tip potential of
width d = 4 nm and a height of U0 = 0.1 h̄2k2

2meff
are displayed

in Fig. 8 for the asymmetric cavity of Fig. 9. We can see
that, whenever T falls to zero—as a result of the Fano
resonance with the states localized within the cavity—one
finds an increase of the correlation factor r to about 0.8 or
higher (see the result of Fig. 9). On the other hand, for flat
maxima of T —when the system is transparent for electrons,
i.e., when there are no cavity-localized states for a given
energy—the correlation factor drops to distinctly lower values.
As representative examples, we plotted in Figs. 9 and 10 the
conduction maps for N = 77 and 92 electrons for which a dip
and a maximum of T are obtained, respectively. For the dip
at N = 77, a large correlation of r = −0.83 is found between
the LDOS and the conductance map. For the maximum at
N = 92—as seen above for the symmetric cavity of Figs. 7(e)
and 7(f)—the local extrema of T and LDOS coincide but the
maxima of one of the quantities correspond to alternately a
minimum or maximum of the other, hence the low value of
|r| = 0.12.

We checked that the conclusions reached in this work
hold also when a small external magnetic field is applied
perpendicular to the system. For higher energy when the
Zeeman splitting becomes non-negligible as compared to
the Fermi energy, the Fano resonances for opposite spin
orientations do not appear at the same values of the electron
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FIG. 9. (Color online) The results for N = 77 electrons and the asymmetric cavity obtained with a cut introduced to the right upper corner
of the structure. (a) The transfer probability map as obtained with the Lorentz tip potential, with the width of d = 4 nm, and U0 equal to 10%
of the kinetic Fermi energy. (b) The transfer probability obtained with the Lippmann-Schwinger equation up to the second correction.22 (c) The
local density of states.
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FIG. 10. (Color online) Same as Fig. 9 only for N = 92 electrons.

densities, so the indication of conditions for which the
LDOS is reliably imaged by conductance maps becomes
difficult.

IV. SUMMARY AND CONCLUSIONS

In summary, we have studied the correlation between the
local density of states (LDOS) calculated from the scattering
wave functions of the cavity at the Fermi level and the maps
of the transfer probability T as a function of the position of a
charged probe. We solved the Schrödinger-Poisson problem,
including the intrinsic screening of the tip potential by the
electron gas. Our results indicate that the effective potential
generated by the Coulomb charge of the tip becomes short
range when the tip approaches 2DEG at a close distance.

We studied both the conductance maps calculated with the
Coulomb potential of the tip and ansatz Lorentz potentials
including the limit of pointlike gentle perturbation introduced
by the tip for which the correlation of the LDOS to the

conductance maps should be the closest. We found as a general
rule that the Fermi level wave functions can be quite precisely
mapped by the model Lorentz tip potential of weak amplitude
and short range at the resonances involving states localized
within the cavity. The resonances induce strong backscattering
of the electron incoming from the Fermi level and result in dips
of the transfer probability falling to zero. Then, the correlation
factor between the LDOS and the electron transfer probability
becomes of the order of 0.8. Within the regions of flat plateaus
of T , where no resonant localized states within the cavity are
present, the conductance maps have no evident correspondence
with the LDOS.
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