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Electronic band structure, phonons, and exciton binding energies of halide perovskites
CsSnCl3, CsSnBr3, and CsSnI3
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The halide perovskites CsSnX3, with X = Cl, Br, I, are investigated using quasiparticle self-consistent
GW electronic structure calculations. These materials are found to have an “inverted” band structure from
most semiconductors with a nondegenerate s-like valence band maximum (VBM) and triply degenerate p-like
conduction band minimum (CBM). The small hole effective mass results in high hole mobility, in agreement with
recent reports for CsSnI3. The relatively small band gap changes from Cl to Br to I result from the intra-atomic
Sn s and Sn p characters of the VBM and CBM, respectively. The latter is also responsible for the high
oscillator strength of the optical transition in these direct-gap semiconductors and hence a strong luminescence
and absorption. The band gap change with lattice constant is also anomalous. It increases with increasing lattice
constant, and this results from the decreasing valence band width due to the decreased Sn s with anion p

interaction. It leads to an anomalous temperature dependence of the gap. The changes in band gap in different
lower-symmetry crystallographic phases is studied. The exciton binding energy of the free exciton, estimated
from the Wannier-Mott exciton theory and the calculated dielectric constants and effective masses, is found
to be two orders of magnitude smaller than previously claimed in literature, or of the order of 0.1 meV. The
photoluminescence peak previously assigned to the free exciton is instead ascribed to an acceptor bound exciton.
The phonons at the � point are calculated as well as the related enhancement of the dielectric constants.
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I. INTRODUCTION

The halide perovskites with the formula CsSnX3, with
X = Cl, Br, and I, form an interesting family of materials
with unusual properties. Like the much more studied oxide
perovskites, they undergo a number of phase transitions to
lower-symmetry structures, starting from a cubic perovskite
structure at high temperature.1–4 These phase transitions
correspond mostly to rotations and distortions of the SnX6

octahedra, leading to a closer packing. In CsSnI3 these
structures correspond to the so-called black phase, but there
is also a higher band gap yellow phase with a different,
even denser structure.4,5 In the perovskite structure, the SnX6

octahedra corner share, and thus each halide ion counts for
one half, resulting in the formula CsSnX3. The cubic structure
can be understood as a CsCl packing of large Cs+ ions and
SnX3

−1 units. This means that the Sn in the compounds is
divalent. The bonding thus can be viewed as strongly ionic.
Nevertheless, the band gaps are relatively small, of the order
of 1–3 eV, compared to, for example, Cs halides, and most
surprisingly, only relatively small changes occur, especially
from one halide to the next, especially in the Br to I case (1.38
to 1.01 eV). As we will show in this paper, several unusual
properties of this materials family result from the intracluster
SnI6 bonding. Interestingly, Cs in the structure can be replaced
by other large monovalent ions, for example, Rb and Tl, or even
organic radicals,1 such as methylammonium CH3NH3

+1 and
formamidinium NH2CH = NH2

+1.
Recently, a few of the unusual properties of black-phase

CsSnI3 have attracted interest for applications. Some of these
result from the low-temperature process ability of the material.
CsSnI3 is soluble in certain organic solvents and can thus be de-
posited on various substrates or even inside a porous structure
by solution processing.6 The strong luminescence at a band

gap close to that of Si4,7 and strong absorption at shorter wave-
lengths make CsSnI3 attractive as a solar luminescent concen-
trator material8 or as a solar-cell absorber.9 It was recently
shown6 that its high hole mobility4 make it an excellent all-
solid-state replacement for the electrolyte in a dye-sensitized
Grätzel-type solar cell with TiO2. It was found that CsSnI3

itself strongly contributes to the optical absorption, although
the overall performance still is aided by the organic dyes.

However, many of its properties are still rather poorly
understood. For instance, it is presently not clear whether the
strong luminescence is intrinsic, i.e., due to free excitons, or
due to defect bound excitons. The effects of crystal structure on
the luminescence strength are poorly understood and are cru-
cial for the indicated solar-cell-concentrator approach. Until
recently,4 progress was strongly hampered by the difficulty in
obtaining phase-pure CsSnI3 material and the rapid conversion
of the black phase to the yellow phase of CsSnI3 in air. The
electrical conductivity is only poorly understood. Although
a high hole mobility of ∼585 cm2 V−1 s−1 was reported,
a relatively low carrier concentration of the order of only
1017 cm−3 and a metallic-like decreasing conductivity with
temperature were obtained in Ref. 4.

Besides these few applications presently under investiga-
tion, other possibilities have not yet been explored. In view
of their close similarity to oxide perovskites in structure,
these materials may have interesting piezoelectric or even
ferroelectric properties in the lower-symmetry phases. The
relatively heavy ions combined with strongly ionic bonding
lead to low-frequency modes,10,11 which may result in large
phonon enhancements of the dielectric constant. Recently,12

third-order enhanced Raman spectra were reported for CsSnI3.
Heavy ions like Cs also make these materials suitable for cap-
turing γ rays and, combined with their strong luminescence,
may be excellent scintillation materials for detectors. This idea
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was recently proposed by Sing13 for closely related Tl- instead
of Cs-containing compounds, TlGeI3, TlSnI3, and TlPbI3.

Their band structures have been studied theoretically in
a few previous papers.14–17 These papers focused mostly
on the changes in band structure with crystal structure
and, because they were based on density functional theory
(DFT) in the local-density approximation (LDA), strongly
underestimated the gaps. In the early literature, there is even
significant discussion on whether they are semiconductors or
semimetals.14,15 Only the most recent study4 used the screened
exchange method, which gives larger gaps for CsSnI3, but it
still obtained a smaller gap than experiment for the black phase.

Here we present a study of the electronic band struc-
ture of the CsSnX3 compounds with X = I, Br, Cl. Using
the quasiparticle self-consistent GW method (QSGW ).18,19

We first present the basic band structures in the cubic per-
ovskite structure. Analyzing the atomic orbital character of the
bands provides immediate insights into some of the questions
mentioned above. These are all explained in terms of the SnI6

intracluster nature of the band gap. The changes with crystal
structure are found to be in fair agreement with previous theory
work. However, it is only after adding the QSGW quasiparticle
corrections that we can make a quantitative comparison of
the gaps with experiment. We next address another anomaly
on the exciton binding energy.20 We will show that a large
exciton binding energy (of the order of 12 meV) is indeed
obtained if the electron-hole interaction is only screened by the
high-frequency dielectric constant. However, we find that the
phonons increase the dielectric constant by a factor of 9.9 and
hence lead to two orders of magnitude smaller exciton binding
energy if their contribution to the screening is included. The
analysis of the previous experimental data is revised.

II. COMPUTATIONAL METHOD

The starting point for our band structure calculations is
the LDA to the DFT. The full-potential linearized muffin-tin
orbital method (FP-LMTO)21,22 was used for the band structure
calculations. The basis set in this method is characterized
by the smoothed Hankel function decay parameter κ and its
smoothing radius Rsm. Inside muffin-tin spheres, the wave
functions are augmented by φ and φ̇ functions, which are
solutions to the radial Schrödinger equation and its energy
derivative at some chosen linearization energy ενRl , specific to
each orbital at atomic site R and angular momentum l. In the
present calculations, we use two (κ,Rsm), the first for spd and
the second for sp orbitals, on Cs, Sn, and the halide ion. For
Cs, we treat the 5p states as bands. A 6p orbital was added as
a local orbital in some test calculations but was found to have
little effect. For Br and I, we include the 4s and 5s semicore
orbitals as local orbitals and the empty 5s and 6s as band
orbitals, respectively. Inside the spheres augmentation is done
up to lmax = 4. Brillouin zone integrations are done with a
10 × 10 × 10 k-point mesh. We emphasize that although a
muffin-tin construction is utilized in defining the basis set,
the actual “full potential” has no shape approximations; it is
neither spherical inside the atoms nor constant in between the
atoms.

Because the LDA underestimates band gaps, we next
use the QSGW method to recalculate the band structures

more accurately. In the GW method of Hedin23 the exchange-
correlation self-energy of the quasiparticle excitations is
obtained as a product of the one-electron Green’s function G0

and the screened Coulomb interaction W 0, schematically, � =
iG0W 0. The screening W 0 = ε−1v = [1 − 
0v]−1v itself is
calculated in terms of the independent particle polarizability

0 = −iG0 × G0 given in terms of the Green’s function. The
self-energy provides a shift of the one-electron eigenvalues
as well as a lifetime through its imaginary part. The differ-
ence with QSGW is that the independent Hamiltonian H 0

from which G0 is derived is chosen to make the difference
between the quasiparticle energies and the independent-
particle energies as small as possible by adding a Hermitian
but nonlocal exchange correlation potential change to the LDA
derived from the GW self-energy, which is then iterated to
self-consistency. For details, see Refs. 18 and 19. This method
has been shown to give quite accurate and systematic results
for a large number of materials. In particular, band gaps are
usually slightly overestimated because of the random phase
approximation treatment of the screening. It was found that this
can be further corrected by reducing � by a somewhat arbitrary
ad hoc correction of a factor of 0.8. In the present work,
however, we report pure QSGW results. Zero-point motion
corrections are not included here because we have currently
no reliable way of estimating them in these materials and they
are expected to be relatively small in these low-gap materials.

The QSGW approach is used here in conjunction with the
FP-LMTO implementation. An important point here is that
it allows us to obtain a real-space representation of � in the
basis of atom-centered muffin-tin orbitals. By a reverse Fourier
transform, this then allows calculating the GW corrections at
arbitrary k points, even if the GW calculation is performed
only on a relatively coarse k-point mesh. This allows us
to display the full band structure at the GW level and to
extract reliable effective masses from the band dispersion. The
convergence of the results with the GW k-point mesh used was
carefully studied along with its dependence on the parameters
of the LMTO basis set. Slightly more localized basis functions
than for the total-energy LDA calculations are used, and a mesh
of 5 × 5 × 5 was found to be adequate for the cubic perovskite
structure. For the tetragonal β phase, a correspondingly dense
mesh is used. Spin-orbit (SO) coupling (calculated at the LDA
level) can be added as a separate term in the Hamiltonian.

The phonon calculations were performed using the den-
sity functional perturbation theory (DFPT)24,25 using norm-
conserving pseudo-potentials26 and within the LDA. The
ABINIT code27 was used for these calculations. A plane wave
cut-off energy of 100 Hartree was used and a 4 × 4 × 4 k-point
mesh. Only phonons at the � point are calculated. The phonons
were calculated at the equilibrium lattice constants of the LDA,
which were found to be about 3% lower than the experimental
values within the pseudopotential plane-wave method using
the ABINIT code.

III. RESULTS

A. Band structures

The LDA usually slightly underestimates the lattice con-
stants. In the present case, for the cubic phases, we obtained
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TABLE I. Lattice constants for CsSnX3. Note that α, β, and γ

phases are cubic, tetragonal, and orthorhombic, respectively, while
the M phase is monoclinic and the Y phase is orthorhombic.

Material Space group Lattice constants (Å)

α-CsSnCl3
a Pm3m a = 5.56

M-CsSnCl3
b P 21/n a = 16.10, b = 7.425, c = 5.74

β = 93.2◦

α-CsSnBr3
a Pm3m a = 5.804

β-CsSnBr3
c P 4/mbm a = 8.195, b = 5.805

α-CsSnI3
d Pm3m a = 6.219

β-CsSnI3
d P 4/mbm a = 8.772, b = 6.261

γ -CsSnI3
d Pnam a = 8.688, b = 8.643, c = 12.378

Y -CsSnCl3
e Pnam a = 10.328, b = 17.677, c = 4.765

aBarrett et al.28

bPoulsen and Rasmussen.29

cScaife et al.30

dYamada et al.3
eMauersberger and Huber.5

an underestimate of the lattice constant by about 1.5%–2%
using the all-electron LMTO method. Therefore we prefer to
use the experimental lattice constants for our band structure
calculations. In Tables I and II the lattice constants and internal
parameters used in this paper are summarized. For the β phase
of CsSnI3 we also performed LDA calculations to minimize
the structure with respect to the internal parameters and found
excellent agreement with the experimental values to 0.001
precision.

For CsSnCl3 we also performed LDA calculations for
the monoclinic phase, which has a rather different crystal
structure,29 and we also calculated the band structure of the
yellow phase of CsSnI3 in the LDA.

We start analyzing the band structures in the cubic per-
ovskite phase. Figure 1 shows the band structures of CsSnX3,
with X = Cl, Br, I, obtained in the QSGW method without
spin-orbit coupling and the corresponding partial densities of
states. The dominant orbital character of the bands can be
described as follows. At about −15 eV below the valence
band maximum (VBM), in CsSnI3, we find the I 5s bands.
In the CsSnBr3 and CsSnCl3 cases these bands move farther
down, reflecting the deeper atomic energy levels in the
earlier elements of the periodic table. The next narrow band
corresponds to the Cs 5p semicore levels. Then we find a band
which is a bonding combination of Sn 5s and I 5p, followed by

TABLE II. Atomic coordinates of β and γ CsSnI3. The position
column gives the Wyckoff position and site point group.

Material Atom Position x y z

β-CsSnI3 Cs 2d(mmm) 0 0.5 0
β-CsSnI3 Sn 2b(4/m) 0 0 0.5
β-CsSnI3 I(1) 2a(4/m) 0 0 0
β-CsSnI3 I(2) 4h(mm) 0.210 0.290 0.5
γ -CsSnI3 Cs 4c(m) 0.006 − 0.040 0.25
γ -CsSnI3 Sn 4b(T ) 0.5 0 0
γ -CsSnI3 I(1) 4c(m) 0.476 0.000 0.25
γ -CsSnI3 I(2) 8d(1) 0.294 0.705 −0.019

mostly I 5p states and a band which is antibonding between
Sn 5s and I 5p. The conduction band minimum (CBM) is
dominated by Sn 5p states, but higher up there are also I 5p

antibonding orbital contributions, and above 5 eV, there is a
significant Cs 5d contribution. The energy levels at the R point
where the minimum direct gap occurs are symmetry labeled
for the CsSnI3 case, and the same labels apply for the other
cases.

We can see that the band gap in all three materials is direct
at the point R = (1,1,1)π/a. The VBM is nondegenerate,
while the conduction band minimum is threefold degenerate
without SO coupling and splits into a doublet and a quadruplet
(including spin) when SO is included, as is illustrated for
CsSnI3 in Fig. 2 The spin-orbit splittings are summarized in
Table III. This is opposite from what is found in most com-
pound semiconductors with tetrahedral bonding. We therefore
call it an “inverted” band structure. We note that this term
should not be confused with a so-called band inversion, a term
recently applied to topological insulators for the case where
there is actually a negative gap in the absence of spin-orbit
coupling because the cation s-like conduction band dips below
the anion p-like valence band.

To obtain further insight into why this happens, we analyze
the atomic orbital character of the bands. This is shown in
Fig. 3. In Fig. 3, the color intensity indicates how much a
chosen atomic orbital is present in the eigenstates at each
k point. One can see that the CBM is composed mostly of Sn
p states. The VBM, on the other hand, is a mixture of I p and
Sn s states. These two form an antibonding combination. The
reason why there is a strong Sn s to anion p orbitals at this
particular k point is that at k point R, the p orbitals on opposite
sites of the unit cell differ by a phase factor eik·T = −1, and
hence the p orbitals all point with the same lobe of the orbital
inward toward the Sn s, as shown in Fig. 4. They thus belong
to the same irreducible representation a1g of the cubic group
and have a strong interaction with each other. This means that
the gap is to a large extent intra-atomic between Sn s and
Sn p.

In fact, further group theoretical analysis, following the no-
tation of Bose et al.,15 shows that the CBM has R15 symmetry,
while none of the I 5p orbital combinations on the faces of the
unit cell belong to this irreducible representation. It also does
not interact with the Cs 5p below. There is some interaction
with the I 5s states, which do form a R15 linear combination
at point R but which lie very deep so that the upper state has
little I 5s contribution. There is also some interaction with Cs
5d states higher up which also belong to R15. This interaction
will tend to reduce the gap. On the other hand, the I 5p with
Sn s interaction leading to the two states of symmetry R1 is
clearly very strong because the levels are close to each other
and thus there is a very strong hybridization. The Cs 6s on the
corners of the unit cell form a R2′ irreducible representation,
which would only interact with f states at the center.

The natures of the CBM and VBM explain a number of
the intriguing properties of these materials. First, they explain
the “inverted” nature of the band structure. Second, they
show that strong optical transitions are expected between the
VBM and the CBM because they have an allowed �l = 1
dipole character on the same atom. Third, they show that
the gap is essentially controlled by the Sn s to I p covalent
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FIG. 1. (Color online) QSGW band structures and partial densities of states of α-CsSnI3, α-CsSnBr3, and α-CsSnCl3.
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FIG. 2. (Color online) Energy bands of CsSnI3 in the QSGW

method near the gap including spin-orbit coupling.

antibonding interaction. For instance, with an increasing lattice
constant, one expects this interaction to become weaker, and
hence the valence band width will be decreased and the gap
will be increased. We will see below that this is confirmed
directly by the calculations, and it also explains the anomalous
temperature behavior of the gap. It also explains why to zeroth
order the gap is not as strongly dependent on the anion as
one might think. In fact, it is in some sense intra-atomic in
nature on Sn. In particular, we note that the gaps of CsSnI3

TABLE III. Spin-orbit splitting in α-structure and tetragonal
crystal field splitting in β-structure in meV.

Compound �so �c

CsSnCl3 448
CsSnBr3 437 215
CsSnI3 420 254
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FIG. 3. (Color online) Dominant orbital character of (top) CBM
and (bottom) VBM for α-CsSnI3. For the selected orbitals φi

mentioned, the plots show k- and E-resolved “spectral functions,”
A(k,E) = |〈φi |ψnk〉|2δ(E − Enk), with the δ function replaced by a
Gaussian, using the color scale shown on the right. So the light green
areas and white areas indicate zero contribution from that orbital,
while the red areas indicate a strong contribution from that orbital.
The thin red lines show the band superposed on the color graph.

and CsSnBr3 are rather close, especially if we consider the
fact that the larger spin-orbit coupling in I, which reduces the
gap, partially overcomes the expected increase in gap on going
from I to Br. Still, of course, the degree of antibonding mixing
of the anion p orbital in the VBM will decrease from Cl to
Br to I because the anion p levels move farther down. This
explains the decreasing trend of the gaps from Cl to I.

Next, we consider the changes in band gap due to
the structural distortions in the lower-symmetry phases.
The structural phases of interest can be summarized as follows.
Starting from the cubic α phase, a rotation of the octachedra in
the xy plane results in the tetragonal β phase. Chabot et al.16

pointed out that this is related to the imaginary frequency of
the lowest acoustic mode at point M in the Brillouin zone. The
symmetry lowering from cubic to tetragonal symmetry leads to
a crystal-field splitting of the CBM in addition to the spin-orbit
coupling. The crystal-field splittings are included in Table III.
When both spin-orbit and crystal-field splittings are included
for the β phase, the VBM splits into three levels, similar to what

FIG. 4. (Color online) Schematic drawing of the anion p orbitals
pointing toward Sn s at the center of the unit cell for the VBM Bloch
state at point R at the corner of the Brillouin zone.

is observed for the VBM in tetragonally distorted tetrahedrally
bonded semiconductors, such as chalcopyrites.31 A further
tilting of the tetrahedra away from the z axis results in the
orthorhombic γ phase. These structural distortions have been
discussed in detail in Refs. 17 and 4. The yellow phase, on
the other hand, involves a much more involved rearrangement
of the atoms. The LDA band structures of all four CsSnI3

phases are shown in Fig. 5. The Brillouin zones (BZ) and
the labeling of the high-symmetry points are shown in Fig. 6.
Note that the relation between the α and β phases involves a
rotation by 45◦ and a folding. The �-M line of α phase folded
about its midpoint, which we labeled B in Fig. 6, becomes
the �-X line of the β phase. We can clearly see in the band
structure figures that the bands along M-B of the α phase
are similar in dispersion to those along the �-X line in the β

phase. Point R in α becomes folded onto the Z point in the β

BZ. In fact the whole M-R line is folded onto the �-Z line.
We included point L in the middle of the M-R line, although
it is not a higher-symmetry point. It becomes equivalent to
point H in the β structure. The transformation from β to γ

structure involves a doubling of the cell in the c direction or
folding of the bands along �-Z about the halfway point H so
that Z of β now becomes folded on to the � point of γ and
point H becomes the new Z point where the bands are doubly
degenerate because of the folding. However, the tetragonal
symmetry is also broken, so that the �-X and �-Y directions
become distinct.

Our results on the band gap changes obtained in LDA are
in good agreement with previous studies. For β-CsSnI3 we
also carried out the full QSGW calculation. This allows us
to check that the GW gap correction is not very sensitive to
the structure. Although the structural changes between the α,
β, and γ phases are mild, the changes for the monoclinic
phase of CsSnBr3 and the yellow phase of CsSnI3 are more
severe. Nonetheless, one may argue that the GW corrections
are mostly dependent on the average electron density and not
too sensitive to structural details. The degree to which this
holds may be judged from the agreement between our thus
estimated gaps for these phases with experiment. Thus, once
we have obtained the gap correction for the α phase, we can
also apply it to the gaps of the other phases. The QSGW band
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FIG. 5. (Color online) LDA band structure of α-CsSnI3, β-
CsSnI3, γ -CsSnI3, and Y -CsSnI3.

structures of the β phase materials are shown in Fig. 7 for both
CsSnI3 and CsSnBr3.

The results on the band gaps are summarized in Table IV.
The band gap differences between β and α and between γ and
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FIG. 6. (Color online) Brillouin zone of cubic (α phase), tetrag-
onal (β phase), and orthorhombic (γ and Y phases) structures, from
left to right.

β in CsSnI3 are 0.158 and 0.050 eV. These values are in fair
agreement with those of Borriello et al.,17 0.133 and 0.080 eV,
but are not as well in agreement with those of Chabot et al.,16

0.179 and 0.244 eV.
The comparison with experimental gaps requires a little

discussion. For Cl and Br materials, these gaps are not as well
established as for the I material because we rely on rather
old literature data. Voloshinovskii et al.32 presented photo-
luminescence (PL) and photoluminescence excitation (PLE)
as well as optical absorption data for CsSnCl3 in its high-
temperature cubic and low-temperature monoclinic forms. For
the α phase they show a broad PL band centered around
555 nm, or 2.2 eV. This is probably due to defect bound
excitons rather than being intrinsic. The PLE shows a peak
centered at 368 nm, or 3.4 eV; however, it extends clearly
to about 400 nm, or 3.0 eV. The absorption extends even
somewhat further to 420 nm, or 2.9 eV. This is in good
agreement with our gaps of 2.7 eV (with spin-orbit coupling)
and 3.0 eV (without spin-orbit coupling). The monoclinic
phase clearly has a higher gap. The peak of the PLE and
optical absorption lies near 4.46 eV.32 We only calculated this
material in the LDA (see Fig. 8), but assuming the same gap
shift to GW as for the cubic phase, we would estimate a gap of
4.7 eV. Ohno and Sasaki34 obtained two phase materials and
associated a 2.11-eV PL band with α-CsSnCl3, with a PLE
peak at 3.5 eV and onset just above 3.1 eV, and a 2.65-eV PL
band with monoclinic CsSnCl3, with PLE peaking at 4.23 eV.
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FIG. 7. (Color online) QSGW band structure of β-CsSnI3

(red solid lines) and β-CsSnBr3 (blue dashed lines).

165203-6



ELECTRONIC BAND STRUCTURE, PHONONS, AND . . . PHYSICAL REVIEW B 88, 165203 (2013)

TABLE IV. Band gaps for CsSnX3 (eV) in various structures.
Note that for the α and β phases, actual QSGW calculations were
performed, while for the other cases, they are estimates assuming a
structure-independent gap correction beyond LDA.

Material LDA QSGW QSGW + SO Other calc. Expt.

α-CsSnCl3 0.744 2.997 2.693 0.950a 2.9b

M-CsSnCl3
c 2.743 4.7 ± 0.1 2.845a 4.5b

α-CsSnBr3 0.351 1.690 1.382 0.58d

β-CsSnBr3 0.574 1.918 1.740 1.8e

α-CsSnI3 0.295 1.354 1.008 0.462,f 0.348a

β-CsSnI3 0.453 1.494 1.288 0.641,e 0.481a

γ -CsSnI3
c 0.503 1.3 ± 0.1 0.885,e 0.561a 1.3g

Y -CsSnI3
c 2.026 2.7 ± 0.1 2.53h 2.55g

aBorriello et al.17 GGA pseudopotential plane-wave method.
bVoloshinovskii et al.32

cQSGW results are estimates only.
dBose et al.15 LDA with LMTO ASA.
eClark et al.33

fChabot et al.16GGA pseudopotential plane-wave method.
gChen et al.20

hChung et al.4

Clark et al.33 report a band gap of 1.8 eV for α-
CsSnBr3 from optical absorption and low-temperature band
gap luminescence at 1.72–1.75 eV depending on temperature.
Myagkota et al.35 also assigned a peak at 1.72 eV to intrinsic
luminescence of CsSnBr3 in a sample that was a mixture with
other phases. It is not entirely clear whether these reports
correspond truly to cubic CsSnBr3 or to the tetragonal β form,
whose structure is reported in Scaife et al.30 We find that
our gap for the β phase of CsSnBr3 agrees much better with
experiment than the for the α phase. We note that our gap
of α-CsSnBr3 is rather close to that of CsSnI3, and hence this
material is also worth considering for photovoltaic applications
if it can be stabilized. In fact, as mentioned in Ref. 4, the smaller
cage size in this material may lead to a stabler bonding of Cs,
and hence it avoids the undesirable larger-gap yellow phase of
CsSnI3 but stays in a perovskite-derived structure.

We note that in the past literature,14,15,36 it was unclear if this
material was a semiconductor or semimetal. For example, in
the first semiempirical linear combination of atomic orbitals
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FIG. 8. (Color online) LDA band structure of M-CsSnCl3.

(LCAO) band structure calculation of Parry et al.36 and the
semiempirical pseudopotential calculation of Lefebvre et al.14

the Sn p-derived states at R are reversed with the Sn s-derived
states, and hence the material appeared to be semimetallic,
which was thought to be consistent with the high electrical
conductivity. Already in Bose et al.’s15 LMTO calculations in
the atomic sphere approximation (ASA) this was reversed, and
a semiconducting band structure was concluded, but the gap
was still strongly underestimated by the LDA with a gap of
the order of 0.58 eV.

These authors noted that the main difference between the
earlier empirical LCAO band structure and theirs was the
absence of any Cs orbitals in the LCAO basis set. However, at
the R point where the minimum gap occurs, the Cs 6s states
belong to irreducible representation R2′ and hence cannot
interact with the R1 VBM. The Cs 5d orbitals of symmetry
t2g can interact with the Sn p at the center because they both
belong to R15 symmetry. For example, the Cs dxy orbitals at the
corners of the cell interact with the Sn pz at the center, taking
into account the Bloch function phase factors as discussed
above. However, since the Cs 5d lie above the Sn p, omitting
the Cs orbitals or pushing them up will reduce this interaction
and thus move the Sn p CBM up, which would increase the
gap. The Cs 5p states cannot interact with the Sn p or Sn s

either. Thus we conclude that the absence of Cs orbitals did not
play a major role in the opening of the gap. However, if we shift
the Sn levels down with respect to Br or I or Cl orbitals, we can
increase the Sn s with X p interaction sufficiently to make the
R1 state shift above the R15 state, thereby closing the gap and
pinning the Fermi level at the R15 state. Note that the X s states
at k point R form a state of R15 symmetry, which interacts
with the Sn p orbitals at the center of the unit cell, and this
interaction tends to increase the gap. However, this interaction
is much weaker because the halogen X s orbitals lie rather
deep. Thus the origin of the wrong band structures in the early
work is because the position of the Sn s versus the X p levels,
which depends on charge transfer, was not properly taken into
account. In pseudopotential language, this corresponds to a too
deep Sn pseudopotential, as was speculated by Bose et al.15

Interestingly, it was recently proposed by Yang et al.37

that some of these materials could be close to a topological
insulator condition when a strain is applied so as to induce a
band inversion, i.e., negative gap. The gap would then indeed
result purely from spin-orbit coupling. These calculations,
however, were done at the generalized gradient approximation
(GGA) level, which underestimates the gaps significantly, as
shown here. With our present results, the strains required
to induce a topological insulator behavior would become
unrealistic.

For CsSnI3 our gap for the γ phase comes rather close to the
experimental value of 1.3 eV recently established. The change
in the gap between the β and γ phases is rather small. In any
case, our gaps are clearly all significantly larger than the LDA
gaps and the gaps reported in previous work, including the sx-
LDA gap reported in Ref. 4. With improved materials, it should
become possible to probe the nature of the spin-orbit split gaps
using circularly polarized light. For Y -CsSnI3, Chung et al.4

found a direct gap of 2.53 eV for the yellow phase, in good
agreement with the observed 2.55 eV onset of absorption, but
they also found a somewhat lower indirect gap of 2.46 eV. They
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FIG. 9. (Color online) Band gap vs lattice constant.

did not report a value for the gap for the γ phase, but from
their figure it appears to be about 0.7 eV, thus significantly
smaller than the 1.3 eV measured. Our LDA band structure of
Y -CsSnI3 is shown in Fig. 5. Both the direct gap, 2.026 eV, and
indirect gap, 1.943 eV, are close to the X point. If we add the
same amount of energy change shown in the α-CsSnI3 case, we
will get around 2.7 eV for the band gap after QSGW and SO
correction, which is close to the experimental value of 2.55 eV.

Finally, we show in Fig. 9 the changes in band gap with
lattice constant for CsSnI3, CsSnBr3, and CsSnCl3. We confirm
the already mentioned increase of gap with lattice constant. In
view of the thermal expansion, this also implies an increasing
band gap with increasing temperature, which is opposite
most materials. This is because in most semiconductors,
the gap is between anion p- and cation s-dominated bands.
The increasing covalent interaction between the two when
atoms are brought closer together then increases the gap with
decreasing lattice constant. However, here the gap is, to first
approximation, intra-atomic. The decreasing lattice constant
results in an increasing band width of the valence band,
pushing up the VBM by the increased interaction between
Sn s and anion p. This then results in the anomalous gap
behavior. Such anomalous gap behavior was reported recently
for CsSnI3 (Ref. 8) but can also be seen in the data for the
1.72-eV CL band in Myagkota et al.35 for CsSnBr3. We find
a gap deformation potential ag = dEg/d ln a of 4.65 eV in
LDA and 7.35 in QSGW for CsSnI3. For the other materials,
ag are shown in Table V. While it is often assumed that the gap
deformation potentials can be obtained accurately within LDA
even when the gaps themselves are underestimated because
one expects similar errors for each lattice constant, the present
results indicate that the GW corrections also are required for
the gap changes. The increase in gap from α to β structure is

TABLE V. Gap deformation potential ag in α structure (in eV).

Compound ag in LDA ag in QSGW

CsSnCl3 5.62 9.05
CsSnBr3 5.34 8.99
CsSnI3 4.65 7.35

TABLE VI. Effective masses at the band gap edges (in electron
mass). These correspond to the bands without spin-orbit coupling.

Sample m∗
h m∗

he[100] m∗
he[111] m∗

le[100] m∗
le[111]

α-CsSnCl3 0.140 0.741 0.272 0.088 0.149
α-CsSnBr3 0.082 0.635 0.201 0.053 0.084
α-CsSnI3 0.069 0.573 0.154 0.041 0.068

related to a similar effect. While the overall structure becomes
denser under this transformation, we found that the Sn halogen
distance actually increases. This reduces the Sn s-halogen–p

interaction, and hence the gap increases. The change from β

to γ is more difficult to interpret because the tilting of the
octahedra makes the orbital interactions more complex.

B. Effective masses and exciton binding energies

In Table VI we report the effective masses obtained by
fitting parabolic dispersion curves to our first-principles energy
band structures. For the holes, this is straightforward because
the band is nondegenerate and the band dispersion is isotropic
and parabolic near the VBM. We can see that rather low hole
masses are found decreasing from the Cl to the Br to the
I compound. These results are obtained for the cubic phase
for simplicity, but they do not differ very much in the other
phases. The low hole masses clearly play an important role in
the observed high hole mobility, which was reported4 to be of
the order of ∼585 cm2 V−1 s−1. In view of the general relation
μ = eτ/m∗ they indicate a carrier relaxation time τ of about
2.29 × 10−14 s.

Because of the threefold degeneracy of the CBM in the
absence of SO coupling, the masses depend on direction.
Along the [100] direction, there are two bands, and we label
these masses as the heavy (he) and light electron (le), in
analogy with the usual terminology for holes in tetrahedrally
bonded semiconductors. Similarly, in the [111] direction we
also have a splitting. This situation can best be described by
the Kohn-Luttinger (KL) Hamiltonian based on the theory of
invariants. Although we are here dealing with electrons instead
of holes and with a different k point, namely, R instead of �,
the form of the Hamiltonian is still applicable because of the
cubic symmetry. The KL Hamiltonian is given by

Ĥ = 1
3�0 �L · �σ + Ak2 − (A − B)

(
L2

xk
2
x

+L2
yk

2
y + L2

zk
2
z

) − 2C({Lx,Ly }kxky

+{Ly,Lz }kykz + {Lx,Lz }kxkz), (1)

where {Li,Lj } = (LiLj + LjLi)/2, �0 is the spin-orbit split-
ting, and the parameters A, B, and C are related to the effective
masses in different directions as follows:

A = 1

m∗
le[100]

,

B = 1

m∗
he[100]

, (2)

A + 2B − C

3
= 1

m∗
he[111]

,

A + 2B + 2C

3
= 1

m∗
le[111]

. (3)
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TABLE VII. Calculated inverse mass parameters A, B, and C of
the Kohn-Luttinger Hamiltonian.

Sample A B C ε∞ ε0 Ẽb (meV) Eb (meV)

α-CsSnCl3 11.4 1.35 3.05 4.80 29.4 37.0 0.696
α-CsSnBr3 18.7 1.57 6.92 5.35 32.4 19.2 0.345
α-CsSnI3 24.2 1.74 8.28 6.05 48.2 12.2 0.124

In Table VII we list the A, B, and C parameters obtained by
fitting to these equations.

The exciton binding energy is of great importance to un-
derstanding the relation between absorption and luminescence
in these materials. In a recent paper, Chen et al.20 deduced the
exciton binding energy from the temperature dependence of
the photoluminescence intensity and found a rather high value
of 18 meV. They further remarked that this implies a large
deviation of the empirical Haynes’ rule, which relates exciton
binding energies to band gaps. In fact on a logarithmic scale
the exciton binding energies appear linear when plotted versus
band gap on the linear scale.

Using the effective mass approximation, the exciton binding
energy within the Wannier exciton theory can be obtained
from the electron and hole effective masses and the screened
Coulomb interaction between the electron and hole. In the
simplest form of the theory, this lead to a hydrogenic model
with the binding energy being the effective Rydberg. This
scales proportionally to the reduced mass and inversely pro-
portionally to the dielectric constant squared. This model can
be further elaborated to take into account the degenerate nature
of the CBM described by the Kohn-Luttinger Hamiltonian. For
the usual situation of a degenerate VBM and a nondegenerate
CBM, the theory was worked out in detail using group
theoretical analysis by Baldereschi and Lipari.38 Within a
so-called spherical approximation, they obtained

Eb = 2π2μ0e
4

h2ε2
0

[
1 + 10

7

(
μ0

μ1

)2

+ 5

28

(
μ0

μ2

)2
]

, (4)

with μ−1
0 = (m∗

h)−1 + 2(A+2B)/3, μ−1
1 = (A−B)/3, and

μ−1
2 = 2C/

√
3.

The only remaining unknown parameter in this theory is
the dielectric constant. This is a rather subtle point. If the
exciton binding energy is small, at the time scale of the relative
motion of the electron and hole, the ions have time to relax
and contribute to the screening. One should then use the static
dielectric constant including the phonon contributions. On the
other hand, if the time scale of the excitons is fast relative to
the vibrational periods, then the phonons cannot contribute,
and one should use the high-frequency dielectric constant. In
most semiconductors, where the Wannier theory of excitons
applies, the static dielectric constant is applicable.

However, in CsSnI3 the highest optical phonon energies are
of the order the of 18 meV, as we discuss in the next section.
The static dielectric constant is larger than the high-frequency
dielectric constant by a factor of 9.9. The high-frequency
dielectric constant can be obtained from our GW calculations.
By taking the q → 0 and ω → 0 limit of ε−1(q,ω) we
obtain what is usually called ε∞. Using this high-frequency
dielectric constant, we obtain an exciton binding energy Ẽb

of about 12 meV for α-CsSnI3. This is of the same order of
magnitude as the phonon frequencies but still lower than the
highest phonon frequencies. Therefore, in principle, at least the
higher-energy phonons should contribute to the screening. It is
not entirely clear if we should take into account the full phonon
enhancement factor of the phonons as some of the lower
phonon frequencies are lower than our exciton binding energy.
However, according to the Lyddane-Sachs-Teller relation

∏
i

(
ωLi

ωT i

)2

= ε0

ε∞
, (5)

we can think of each mode as contributing a separate factor
to the enhancement of the dielectric screening. The highest
modes show the highest contribution because they have the
highest LO-TO splitting. They already increase the dielectric
constant by a factor of 1.5 and so would reduce the binding
energy by a factor of 2.3. But then the next phonon frequency
is already higher than this binding energy, so we need to
also include it. Ultimately, this means a factor of 9.9 for the
dielectric constant and a decrease of our exciton binding energy
by a factor of 98, or, in other words, two orders of magnitude.
Thus we expect the exciton binding energy to be of the order
of 0.1 meV. While these are all fairly rough estimates because
a full dynamic theory of excitons including electron-phonon
coupling is beyond present-day capabilities of first-principles
calculations, the reduction of the exciton binding energy
by the phonons by about two orders of magnitude should
remain valid. In that case it is not at all in contradiction with
Haynes’s rule; in fact, it is even somewhat low. The same
conclusion applies to the other materials which all end up with
exciton binding energies of about 0.1 meV. This disagrees with
Chen et al.20

We now discuss the reasons for the discrepancy. Chen
et al.20 claimed that the exciton is a free rather than bound
exciton based on their excitation power dependence study,
which shows a linear dependence and no saturation over
several decades, and on the fact that the shape of the exciton
indicates a single peak which is just shifting and broadening
with temperature, rather than shifting weight from a bound
exciton at low temperature to a free exciton at higher temper-
ature. However, this is not entirely convincing because their
PL is rather broad. Second, their approach for extracting the
exciton binding energy relies on a number of assumptions.
They fitted the decay of the exciton intensity as a function of
temperature to the expression

Rspon(T ) = RG[1 − e−Eb/kBT ], (6)

where RG is the generation rate of excitons, kB is Boltzmann’s
constant, and the underlying assumption is that the decay
is given by the dissociation of excitons as a function of
temperature only. In other words, no nonradiative processes
are in competition with the radiative one. This equation makes
sense if we assume the exciton is a bound exciton and there
is no kinetic energy related to the exciton moving as a whole:
the probability at temperature T of the decay of the exciton is
then given by the Boltzmann equation, and only the excitons
surviving can give rise to radiation. However, they also tried to
justify this equation for a free exciton. In order to arrive at the
same expression under the assumption of a free exciton, they
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had to assume that the exciton motion is two-dimensional (2D)
so that there is a steplike density of states of exciton kinetic
energies. In that case the number of excitons would be

N (T ) =
∫

D(E)e− E
kB T dE ∝ T

[
1 − e

− Eb
kB T

]
(7)

if we integrate up to Eb, which presumably one could justify
by assuming that when an exciton gets kinetic energy above
the binding energy, it will decay. In the case of a three-
dimensional (3D) distribution D(E) ∝ √

E, and we would
obtain N (T ) ∝ T 3/2γ (3/2,Eb/kBT )/�(3/2), with γ (a,x)
and �(a) being the incomplete gamma function and gamma
function, respectively.39 This N (T ) must then be divided by
the partition function of free electrons, which is proportional
to T in 2D and to T 3/2 in 3D, to obtain the rate of survival of
excitons. The reason is that we consider electrons to either be
bound to a hole or free, but we only consider minority carriers
(electrons) since the material is p type. On the other hand,
the theory of exciton decay for free excitons in a 2D quantum
well was considered by Feldmann et al.40 Slightly generalizing
their approach to either 2D or 3D, the decay rate of excitons is
given by

1

τ
∝ Ebμγ

(
D
2 , �

kBT

)
M��

(
D
2

) , (8)

where D is the dimensionality of the motion, M = me + mh

is the total mass of the exciton, μ is the reduced mass, and �

is the spread of energies of the exciton due to their nonzero
kinetic energy, which arises from interaction with acoustic
phonons. In other words, �(T ), which in general depends on
T , is the linewidth of the exciton peak. This approach appears
similar to that of Chen et al.20 but is arrived at by integrating
the density of excitons only up to � rather than to Eb. It turns
out that for D = 2 this reduces to a form similar to Eq. (6)
because γ (1,x) = [1 − e−x], but the important point is that
the relevant parameter �, in this equation, is not the exciton
binding energy but the linewidth of the exciton. A fit of the
data to this equation with the assumption D = 3 would give
� ≈ 30 meV, which agrees roughly with half the linewidth of
the PL peak. The measured exciton lifetimes as a function of
temperature by Chen et al.20 show a curve which is essentially
inversely proportional to the exciton-integrated intensity as a
function of temperature, as expected. However, if their exciton
were really free and this theory were applicable, it does not
tell us anything about the exciton binding energy but merely
about the exciton linewidth.

On the other hand, the study of Chung et al.4 showed that
after high-temperature cycling (300–600 K), the PL increased
in intensity and that this increase is also accompanied by an
increase in conductivity. This indicates that chemical changes
are taking place in the material, leading to an enhanced hole
concentration (since the material was found to have p-type
conduction). Their calculations, in fact, ascribe this to the
formation of Sn vacancies VSn. These observations are clear
indications that the PL in question is in fact due to an acceptor
bound exciton rather than a free exciton. Even material as
grown before the heat treatments is already p type with
concentrations of the order of 1017 cm−3. In that case, Chen
et al.’s20 first analysis in terms of a simple rate equation,

assuming a single-exciton binding energy but no kinetic energy
of the excitons, may be considered to be valid as a way to
obtain the exciton binding energy, but it is then the energy of
a bound exciton and is therefore not in contradiction with our
conclusion that the free-exciton binding energy is two orders
of magnitude smaller. Essentially, the energy is lowered by the
binding energy of the acceptor, which may easily be of the
order of 20 meV. Their analysis leading to the conclusion of a
2D motion, however, is clearly invalid. In fact, there is also no
support for 2D motion of the electrons (or excitons) from our
band structure or from the crystal structure.

C. Phonons

The previous section already relied on some of our results
on phonons. Here we present the results of our phonon
calculations. Group theoretical analysis shows that in the cubic
perovskite structure, there are three infrared active modes
of irreducible representation T1u and one silent mode of
symmetry T2u. Since each of these are threefold degenerate,
they account for all the modes (N − 1)3, with N = 5 being
the number of atoms in the unit cell.

The calculated frequencies of the modes are shown in
Table VIII along with some other properties and experiment
results from Donaldson et al.41 We note that Donaldson et al.41

reported three infrared bands for CsSnCl3 at 70, 172, and
310 cm−1 and three for CsSnBr3 at 68, 118, and 218 cm−1.
These seem significantly higher than our calculated modes and
do not distinguish between TO and LO modes. However, we
notice that the lowest optical mode in our calculations had
an oscillator strength that is between 12 and 21 times weaker
than the higher-frequency ones. We thus assume that it may
have been missed in the experiment and ascribe the lowest
experimental mode to our second-lowest mode T 2

1u. One can
see a reasonable agreement between the average of our TO
and LO modes, i.e., the middle of the absorption band as it
would be seen in reflectivity, and the experimental value. For
CsSnCl3 our values for (ωT O + ωLO)/2 for T 2

1u and T 3
1u are 77

and 182 cm−1, while the two lowest observed IR bands are at
70 and 172 cm−1. The higher observed band of 310 cm−1 is
close to but somewhat lower than 2T 3

1u, although one would
expect two-phonon absorption to be weak. In two-phonon
absorption one rather expects to see a density of states, which
may be more influenced by zone-boundary phonons. Based on
the phonon-dispersion curves shown by Chabot et al.,16 we
expect these zone boundary phonons to be somewhat lower
than our T 3

1u. For CsSnBr3 we similarly find 64 and 145 cm−1

as average modes for T 2
1u and T 3

1u, which can be compared with
the lowest two IR bands at 68 and 118 cm−1. Our calculation
would overestimate the experiment by about 23%, which is
expected in view of the overbinding of LDA. Again, the third
observed IR band at 218 cm−1 is not too far from 2T 3

1u at
290 cm−1 but again is somewhat lower because we expect it to
be a two-phonon density of states band. For CsSnI3 we could
not find infrared absorption data in the literature. Donaldson
et al.41 also calculated the silent T2u mode by using force
constants extracted from the observed IR active T2u modes,
but in view of the, in our opinion, erroneous assignment of the
modes, these values are not trustworthy.

We next analyze the Lyddane-Sachs-Teller relation, already
mentioned in the previous section in Eq. (5). We can see
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TABLE VIII. Phonon frequencies ω (in cm−1), oscillator strength S (in a.u., with 1 a.u. = 253 m3/s2), generalized Lyddane-Sachs-Teller
relation, and dielectric constants in α-CsSnX3. These dielectric constants ε∞ differ from the ones in Table VII because they are obtained from
the DFPT at the LDA level instead of from GW .

Mode TO LO S Expt.a ωL/ωT

∏
i

(
ωLi

ωT i

)2
ε0
ε∞ ε∞ ε0

CsSnCl3 T 1
1u 25 32 1.4×10−5 1.311

T 2
1u 76 78 1.3×10−5 70 1.029

T 3
1u 121 243 2.9×10−4 172 2.003

T2u 53 7.29 7.30 4.03 29.4

CsSnBr3 T 1
1u 19 26 1.1×10−5 1.381

T 2
1u 59 69 3.7×10−5 68 1.165

T 3
1u 108 183 1.6×10−4 118 1.697

T2u 37 7.45 7.45 4.34 32.4

CsSnI3 T 1
1u 12 18 9.5×10−6 1.483

T 2
1u 45 63 5.5×10−5 1.412

T 3
1u 101 152 1.1×10−4 1.506

T2u 29 9.93 9.93 4.86 48.2

aDonaldson et al.41

that the static to high-frequency dielectric constant ratio is
close to the expected value from the Lyddane-Sachs-Teller
relation. We observe indeed a very strong contribution of the
phonons to the static dielectric constant by a factor of 7–10
increasing from Cl to I. This is expected in view of the strong
ionic bonding. Relatedly, we have rather large Born effective
charges, obtained from DFPT, as shown in Table IX. The Born
effective charge for the X atom in the direction parallel to the
polarization of the mode is different from that in the direction
perpendicular to it. It is interesting that even though Sn is
nominally divalent in this material, its Born effective charge
is nonetheless larger than 4. The Cs effective charge, on the
other hand, is close to 1.

Returning to the dielectric constants, the values obtained for
the high-frequency dielectric constant obtained from the DFPT
calculations are somewhat larger than those in the previous
section. This is not surprising because, first, they are obtained
in a rather different manner, namely, from the polarization in
response to a static electric field and only including electronic
contributions and calculated via the Berry phase method. In the
previous section they were obtained from the low-frequency
limit of the polarizability calculated as function of frequency
in the region above the band gap. Furthermore that calculation
was based on the QSGW band structure, while the present
one uses the LDA band structure. In view of these widely
different approaches, the agreement between the two can be
viewed as satisfactory and certainly sufficient for our main
present purpose of estimating the exciton binding energies in
the previous section.

TABLE IX. Born effective charges obtained within DFPT
(in units of e).

Cs Sn X‖ X⊥

CsSnCl3 1.162 4.462 −3.471 −1.077
CsSnBr3 1.109 4.701 −3.295 −1.258
CsSnI3 1.060 4.954 −3.110 −1.452

IV. CONCLUSIONS

In this paper, we have presented quasiparticle self-
consistent GW band structures of the family of CsSnX3 com-
pounds, with X = (Cl, Br, I). Spin-orbit coupling effects were
included. The changes in band structure with the structural
distortions of the α, β, and γ phases were investigated. The
band gap of 1.3 ± 0.1 eV was found to be in good agreement
with experiment for γ -CsSnI3, for which the best experimental
data are available. For α-CsSnCl3, our gap of 2.7 eV is in good
agreement with the PLE data of Voloshinovskii et al.,32 giving
an estimate of 2.9 eV. We also obtained good agreement for
the much higher gap of the monoclinic phase (of the order of
4.5 eV) if we assume the same LDA to QSGW gap correction
applies. For α-CsSnBr3, our calculations predict a gap of
1.38 eV, while for the β phase we obtain 1.7 eV, in good
agreement with experiment (1.8 eV) by Clark et al.33 While
this gap is a little larger than optimal for solar-cell applications,
the increased stability of the desirable perovskite phase for
the Br compound makes this material of further interest for
photovoltaics. The Br material, having a somewhat smaller
lattice constant, appears to avoid the competing so-called
yellow phase of CsSnI3.

The most important finding is that all these materials have a
rather unusual “inverted” band structure with a nondegenerate
s-like valence band and a degenerate p-like conduction band.
This was shown to result from the strong Sn s character of
the valence band maximum, which is an antibonding state, or
anion p states with Sn s. The reason why the VBM occurs at the
Brillouin zone corner R is that at this point in k space, the anion
p orbitals on the corners of the octahedron surrounding the Sn
atom point with their lobes of the same sign toward the center
of the octahedron and hence give the strongest interaction. The
strong intra-atomic nature of the gap explains various features:
the relatively weak dependence on the anion, the strong optical
luminescence and band gap absorption, and the anomalous
temperature dependence, increasing the gap with increasing
temperature.
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The effective masses were determined for the band edges,
and the low hole mass in CsSnI3 is found to be responsible
for the high hole mobility observed in this material. The other
materials also have relatively low hole masses and may thus
also be expected to be excellent p-type semiconductors.

The free-exciton binding energy was estimated to be of the
order of 0.1 meV in CsSnI3, in contrast to a recent report20

which claimed an anomalously high value of 18 meV. Our
low value is obtained when using the static dielectric constant
rather than the high-frequency one. This is consistent with the
fact that, while the vibrational frequencies are rather low, they
still are expected to contribute to the dielectric screening of
the electron-hole interaction. We also find no evidence for 2D
motion of excitons as claimed by Chen et al.20 and showed that
their method of determining the binding energy of the excitons
is flawed. Further, we propose that their PL should rather be
interpreted as an acceptor bound exciton than as a free exciton.

We presented also results for the phonons at the � point
of the cubic perovskite and for the static and high-frequency
dielectric constants. The phonon frequencies for CsSnBr3 and
CsSnCl3 are in reasonable agreement with experimentally
observed infrared absorption bands, provided we assume that
the lowest vibrational modes have too low an oscillator strength
to be observed.41
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