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Quench dynamics of a dissipative quantum system: A renormalization group study
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We study dissipation in a small quantum system coupled to an environment held in thermodynamic equilibrium.
The relaxation dynamics of a system subject to an abrupt quench in the parameters of the underlying Hamiltonian
is investigated using two complementary renormalization group approaches. The methods are applied to the
Ohmic spin-boson model close to the coherent-to-incoherent transition. In particular, the role of non-Markovian
memory for the relaxation before and after the quench of the spin-boson coupling and the Zeeman splitting of
the up and down spin is investigated.
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I. INTRODUCTION

Obtaining a detailed understanding of a dissipation in small
quantum systems coupled to a reservoir held in thermodynamic
equilibrium poses a formidable challenge. With the increasing
accuracy of experimental techniques in diverse fields such
as condensed matter physics, quantum optics, cold atomic
gases, physical chemistry, and quantum information science,
phenomenological approaches need to be complemented by
a more microscopic view. One thus has to develop appro-
priate microscopic models for dissipation as well as the
corresponding quantum many-body methods to solve those
with sufficient precision. We here report on progress with
respect to the second aspect. Focusing on the commonly
investigated spin-boson model (SBM),1,2 we propose two
complementary renormalization group (RG) based methods
which allow controlled access to the relaxation dynamics of the
Ohmic SBM close to its coherent-to-incoherent transition:1,2

the real-time RG (RTRG) (Ref. 3) and the functional RG (FRG)
(Ref. 4). We study the relaxation dynamics under the SBM
Hamiltonian out of an initially (at time t = 0) prepared product
state of spin up and the boson vacuum together with the time
evolution after a quantum quench where one of the parameters
of the SBM is changed abruptly; we here exclusively consider
temperature T = 0.

The time dependence of the position of a classical damped
harmonic oscillator constitutes a possible point of reference
for the functional dependence of the spin expectation value
P on time t in the SBM. An important intrinsic property
of the SBM that is absent in the oscillator is the system’s
memory. Non-Markovian memory effects are a fundamental
issue in dissipative quantum systems, in particular due to their
relevance in quantum information theory. Several ways have
been proposed to characterize and measure to which degree the
dynamics of an open quantum system shows non-Markovian
features (see, e.g., Ref. 5 for a recent review). Here, we define
non-Markovian memory by those effects which result from
the energy dependence of the effective kernel in Laplace
space determining the time evolution of the local quantum
system. Using RTRG, a generic analysis6,7 has shown that
non-Markovian dynamics results in additional exponentially
decaying terms for the time evolution, which have unexpected
oscillation frequencies and decay rates compared to the leading
Markovian terms, together with pre-exponential functions

containing power laws and logarithmic functions in the long-
time limit. These effects result from the nonanalytic energy
dependence of the effective kernel, where the position of a
branching point determines the exponential part, whereas the
pre-exponential function follows from the scaling behavior
around the branching point. In special cases such as, e.g.,
quantum critical points or reservoirs with specific nonanalytic
density of states, it may even happen that non-Markovian
effects lead to a pure power law in the long-time limit without
any exponentially decaying part, as it is, e.g., the case for
multichannel Kondo models.8

Non-Markovian effects have already been reported for the
Ohmic SBM. Its Hamiltonian reads as

Htot = ε

2
σz − �

2
σx +

∑
k

ωkb
†
kbk −

∑
k

λk

2
σz(b

†
k + bk), (1)

where ση, η = x,z are the Pauli matrices, and b
(†)
k are bosonic

ladder operators. A spin- 1
2 with Zeeman splitting ε and

tunneling � � 0 between the two states is coupled by λk

to a reservoir of bosonic modes with dispersion ωk . Of
interest is the computation of the spin expectation value
P (t) = 〈σz〉(t) primarily considering the initial condition
〈σz〉(0) = 1. P (t) corresponds to the population imbalance of
left and right double-well states when exploiting the analogy
of the SBM to a particle in a double-well potential.1,2 The
spin-boson coupling is characterized by a spectral density
J (ω) =∑k λ2

kδ(ω − ωk) containing the microscopic details of
the model.1 We concentrate on the extensively studied Ohmic
case when the spectral density is linear up to a cutoff D, e.g.,
J (ω) = 2αωe−ω/ωc . In the special case without bias, ε = 0, the
standard result quoted for the spin expectation value P (t) is
the one resulting from the noninteracting blip approximation
(NIBA), where P (t) decomposes into a coherent (pole) and
incoherent (branch-cut) contribution P (t) = Ppole(t) + Pbc(t).
In the long-time limit TKt � 1, the NIBA predicts1,2

Ppole(t) = θ (1 − 2α)
1

1 − α
e−�∗

1 t cos(�t), (2)

Pbc(t) = 1

�(2α − 1)

1

(TKt)2−2α
. (3)

Here, �∗
1 = TK sin πα

2(1−α) and � = TK cos πα
2(1−α) are the char-

acteristic scales determining the exponential time dynamics
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of the coherent part Ppole(t), and TK = �(�/ωc)α/(1−α) is an
effective tunneling rate. The incoherent part Pbc(t) is a term
resulting purely from non-Markovian dynamcis, whereas the
coherent part Ppole(t) is also obtained in Markov approximation
but the precise values of �∗

1 , �, and the prefactor are influenced
by non-Markovian contributions. For strong enough damping
α > 1

2 , the NIBA predicts correctly that the coherent term
Ppole(t) is absent. Although the results (2) and (3) were
originally predicted for all values of α, controlled calculations
for small α and for α close to 1

2 have shown that this result
can not be correct for all α. For small α it has been shown
recently that Pbc(t) is also exponentially decaying with a rate
�∗

2 ≈ 2�∗
1 (Refs. 7 and 9) and the O(α) correction to the

exponent of the algebraically decaying function is absent.7

Especially the latter requires a controlled analysis close to
branching points of the effective kernel, such that all powers
∼[α ln(TKt)]n are systematically taken into account. So far,
this has only been achieved by the RTRG method, where
a controlled renormalization group study is possible for the
weak-coupling regime of small α.

For α close to the coherent-to-incoherent transition at
α = 1

2 , which is the regime of interest in this work, a systematic
perturbative analysis is also possible in the parameter g =
1 − 2α. For small |g| � 1 and for ωc being the largest
energy scale (scaling limit), the SBM can be mapped onto the
interacting resonant level model (IRLM),1,2 which describes a
quantum dot connected to a lead featuring fermionic degrees
of freedom with a constant density of states of bandwidth 2ωc.
Its Hamiltonian reads as

Htot = ε d†d +
∑

k

εka
†
kak +

√
�0

2πν

∑
k

(d†ak+da
†
k)

+ U

2ν
(d†d − dd†)

∑
kk′

: a
†
kak′ : , (4)

where d (†) is the fermionic dot ladder operator, a
(†)
k is an

annihilation (creation) operator of a fermion in the lead
with energy εk , and the density of states in the lead is∑

k δ(εk − ω) = ν for ω � ωc. Normal ordering with respect
to (w.r.t.) the reservoir equilibrium distribution is denoted
by : . . . :. The IRLM parameters are related to those of
the SBM as U = 1 − √

2α and �0 = �2/ωc. Our observ-
able of interest P (t) corresponds to 2〈d†d〉(t) − 1, with the
expectation value of the dot level occupancy 〈d†d〉(t) and
the initial condition 〈d†d〉(0) = 1. Throughout this work, we
mainly use the language of the IRLM but switch to the SBM
language whenever this is useful to describe the underlying
physics.

Concerning the relaxation dynamics of P (t) for α close to 1
2 ,

it has already been shown by an improved NIBA calculation10

that the incoherent part Pbc(t) has to be changed to

Pbc(t) = −g[1 + 3�(−g)]
e−�∗

2 t

(TKt)1+|g| , (5)

i.e., it is also exponentially decaying with a rate �∗
2 ≈ �∗

1/2,
the prefactor changes to −4g = 4(2α − 1) for α > 1

2 , and the
exponent of the algebraically decaying function was predicted
to change to 1 − g = 2α for α > 1

2 . However, a systematic

analysis containing all powers ∼[g ln(TKt)]n with g = 1 − 2α

is still missing, i.e., the corrections in O(g) to the exponent
can not be trusted so far. The predictions of improved NIBA
were recently confirmed in a letter-style paper using RTRG
and FRG for the IRLM.11 In addition, it was shown that the
incoherent part Pbc(t) has the form Eq. (5) for exponentially
large times (TKt)|g| � 1 only and an analytical formula
was proposed valid for all times TKt � 1. Furthermore, an
improved expression for the rate �∗

2 was presented, and it was
shown that the prefactor of the coherent part Ppole(t) has to
be changed to 2 1−g

1+g
= 2α

1−α
.12 One purpose of this paper is to

present more details of the results from RTRG and FRG for
the relaxation dynamics close to the coherent-to-incoherent
transition at α = 1

2 .
From this discussion, it is obvious that the relaxation

dynamics of the unbiased, Ohmic SBM differs from the NIBA
prediction for α � 1 and for |1 − 2α| � 1 and it remains to
be seen if similar deficits prevail for other α. The RTRG and
FRG methods are perturbative renormalization group methods
for nonequilibrium systems, and therefore their applicability
range for a controlled analysis of the time evolution is restricted
to the weak-coupling regime. However, in contrast to bare
perturbation theory or the self-consistent Born approximation,
as e.g. applied to the Ohmic spin-boson model at small α,9,13

the RTRG and FRG are unique in the sense that they can
select systematically all logarithmically diverging terms in
the bandwidth ωc in all orders of perturbation theory, such
that renormalized parameters and exponents of power laws
for the time evolution can be determined. Other numerical
studies for the SBM using a variety of different methods,
either being formally exact or selecting certain subclasses
of processes in all orders of perturbation theory, have found
exponential dependence and substantiated the coherent-to-
incoherent crossover but pre-exponential functions were so
far not identified unambiguously.14–19

For α close to 1
2 , one of the important characteristics to

compare is the transition between coherent and incoherent
relaxation. In accordance with the standard terminology in the
field of dissipative quantum mechanics, we speak of incoherent
dynamics if P (t) is a monotonically decaying function while
we refer to coherent behavior if P (t) is nonmonotonic. To
understand the effect of the memory on this transition, we
study the system’s dynamics in two cases: (1) when it relaxes
with time-independent Hamiltonian out of a nonequilibrium
product state, and its dynamics is affected by the memory
collected over time, and (2) when in addition at time tq some
of the Hamiltonian’s parameters are changed abruptly so that
the behavior of the system at t > tq is influenced by the
interplay of the dynamics in the new regime and the memory
collected before tq . The first case we name the relaxation
protocol, implying that the small system and the bath held
in thermodynamic equilibrium were decoupled initially [i.e.,
�0 = U = 0 or � = 0, α = 1

2 for the SBM Hamiltonian
Eq. (1)], and at the time t = 0 the Hamiltonian in Eq. (4) with
nonzero �0 and U comes into effect. The quench protocols
in addition to the steps of the relaxation protocol imply the
sudden change of the Hamiltonian parameters ε, �0, and/or U

at time tq > 0 [in the language of the SBM the parameters ε,
�, and/or α are quenched; see Eq. (1)]. Particularly interesting
is the quench that invokes a transition between the coherent
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and incoherent regimes of the dynamics. In this case, the
difference in the time dependencies is particularly clear. The
quench dynamics constitutes the main focus of our work. We
investigate quenches of the system-bath coupling as well as
those of the Zeeman splitting of the up and down spin. In
addition, we leave the framework of the SBM and identify
a part of the SBM physics in a bias-voltage-driven IRLM
with two leads. As the standard relaxation dynamics forms
the basis for the understanding of the quench ones, a detailed
study of the former is presented first. In particular, we note
that an understanding of the crossover between coherent
and incoherent dynamics requires the knowledge of the time
dynamics on intermediate time scales, which is accessible by
our methods, numerically as well as analytically. Parts of our
results for the quench dynamics were earlier published in a
letter-style publication.11

At U = 0, that is α = 1
2 , the fermionic quantum dot

model (4) becomes noninteracting and can be solved exactly
(Toulouse limit). For finite interactions, we use the RTRG
and FRG methods. The RTRG was specifically developed
as an analytical tool to study the nonequilibrium physics of
small interacting quantum systems coupled to noninteracting
reservoirs in the weak-coupling limit.3,20 In particular, the
method has the advantage that it can address each individual
term contributing to the time evolution and it can provide
analytical insight as to what the generic form of the time
evolution looks like.6,7 The method has already been applied to
the stationary properties of the IRLM and to the time evolution
for ε � �0.21 In this paper, we will discuss the solution
of the RG equations and the time dynamics for the more
difficult resonant case ε = 0. Moreover, we will generalize
the RTRG method to the case of arbitrary time-dependent
Hamiltonians and will discuss in detail the quench dynamics
for an abrupt change of some system parameter. The second
method applied in this paper is the FRG, which is a very flexible
RG method and can be used for open as well as closed quantum
many-body systems of different dimensionality.4 The practical
implementation for the time evolution in the model at hand
has been developed in Refs. 22 and 23. We discuss in detail
how the combined use of the two methods provides controlled
analytical as well as numerical access to the standard relaxation
and the quench dynamics of the IRLM for small |U | that is
close to the Toulouse point. The time evolution of the SBM in
other parameter regimes and for other nonequilibrium setups
was investigated in Refs. 13, 18, and 24–30 using a variety of
methods.

The paper is structured as follows. In the next section, we
introduce the RTRG method essentially without referring to a
specific model and explain in detail how it can be extended
to time-dependent Hamiltonians, in particular to study the
quench dynamics. In Sec. III, we discuss the basic steps to
obtain FRG flow equations. Next in Sec. IV, we apply both
RG approaches to the IRLM and study the dynamics within
the relaxation and quench protocols. This section contains the
RG flow equations to be solved as well as our analytical and
numerical results. We conclude with a brief summary in Sec. V.
The Appendixes contain technical details on the generalization
of the RTRG method to time-dependent Hamiltonians and
quantum quenches together with the flow equations and their
solutions for the IRLM.

II. RTRG METHOD

A. Basic concepts

The main goal of the RTRG method is to compute
the reduced density matrix of a small interacting quantum
system coupled to several reservoirs by integrating out the
degrees of freedom of the noninteracting bath. From this,
the observables of interest can be extracted. The reservoirs
are initially decoupled from the interacting system and are
held in thermodynamic equilibrium. Wick’s theorem, which
is applicable for the ladder operators of the bath, allows us
to write a diagrammatic series for an effective Liouvillian
which determines the time evolution of the reduced density
matrix of the local quantum system.3 For the SBM (Ref. 7)
at small α and the IRLM (Ref. 21) at small |U |, that is
the SBM for α close to 1

2 , the perturbative series contains
logarithmic divergencies, which can be regularized either by
cutting off the Matsubara frequencies characterizing the poles
of the Bose/Fermi functions of the reservoirs3 or by using the
Laplace variable E as a flow parameter. The latter is exploited
in the recently developed E-RTRG method.8 In both cases,
one obtains RG flow equations, the solution of which gives the
effective Liouvillian.

Here, in the main text we qualitatively summarize the ideas
of the RTRG method and its extension to time-dependent
Hamiltonians and quenches; for technical details and the
precise diagrammatic rules, we refer the interested reader to
Appendixes A and B.

The time dependence of the reduced density matrix ρ(t) of
the local quantum system is determined by the von Neumann
equation. Due to the coupling to the bath, the system acquires a
memory which is stored in the form of excitations in the leads.
This results in a time-dependent effective Liouvillian L(t,t ′),
defined for times t > t ′, which acts in Liouvillian space of
the local system and determines the dynamics of the reduced
density matrix via the effective von Neumann equation

iρ̇(t) =
∫ t

t0

L(t,t ′)ρ(t ′)dt ′, (6)

where the coupling of the system to the bath at time t = t0
is implied (later on we will set t0 = 0 for convenience). The
effective Liouvillian can be decomposed as

L(t,t ′) = LS(t) δ(t − t ′ − 0+) + �(t,t ′), (7)

where LS(t) is the bare Liouvillian of the isolated local
quantum system and �(t,t ′) is the dissipative part of the kernel
emerging from the coupling to the reservoirs. Defining for
t > t ′ a propagator �(t,t ′) relating the reduced density matrix
at time t to the one at t ′ where system and bath are assumed to
be decoupled, we can write the solution of the kinetic equation
formally as

ρ(t) = �(t,t0) ρ(t0), (8)

where the relation between �(t,t ′) and L(t,t ′) is given by

�(t,t ′) = θ (t − t ′) − i

∫∫
θ (t−t1)L(t1,t

′
1)�(t ′1,t

′)dt1dt ′1.

(9)

Here, all functions depending on two time arguments are
retarded ones, i.e., are defined as zero for negative time
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differences. The last equation expresses the physical property
that −iL(t,t ′) contains the sum of all correlated processes
between t ′ and t . The rules for the classification of all these
processes by a diagrammatic expansion in the system-bath
coupling are provided in Appendix A.

For a time-independent Hamiltonian, the effective Liouvil-
lian is a function of the time difference only. The resulting von
Neumann equation

iρ̇(t) =
∫ t

t0

L(t − t ′)ρ(t ′)dt ′ (10)

can be formally solved by means of a half-sided Fourier
transform (or Laplace transform with the rotated Laplace
variable z → −iE)

ρ(t) = �(t − t0) ρ(t0),
(11)

�(t) = 1

2π

∫ +∞+i0+

−∞+i0+
e−iEt �(E)dE,

where

�(E) = i

E − L(E)
(12)

is the propagator containing the effective Liouvillian L(E) =∫∞
0 L(t)eiEtdt in Laplace representation. The analytical con-

tinuation of the propagator can be performed from the real
axis into the complex plane. As a response function with
�(t < 0) = 0, �(E) is an analytical function in the upper
half-plane. Thus, the Laplace integral transforms into an
integral over the contour C which goes around the nonan-
alyticities of the propagator in the lower half-plane. The
general structure of those has been investigated in Refs. 6
and 7. In short, the real and imaginary parts of the pole
positions zi = �i − i�i determine the oscillation frequencies
�i and decay rates �i of an exponential decay. Poles with
a finite real part occur in pairs z±

i = ±�i − i�i . One pole
is always located at E = 0 corresponding to the stationary
state L(i0+)ρstat = 0. Additionally, branch cuts occur from
the nonanalytic function L(E), which contains typically log-
arithms or power laws arising from logarithmic divergencies
in the perturbative series. For the time evolution they lead
to pre-exponential functions which, in the long-time limit
TKt � 1, are typically proportional to (TKt)−kF (g ln[TKt])
with some model-dependent integer k = 0,1, . . . and a slowly
varying logarithmic function F (g ln[TKt]), where TK is a
typical low-energy scale (analog of the Kondo temperature)
and g is a dimensionless coupling constant.

The non-Markovian contribution to the dynamics is en-
crypted in the E dependence of the effective Liouvillian
L(E). L(E) is computed by means of the RTRG approach.3,8

As proposed in Ref. 8, it is convenient to decompose the
Liouvillian as

L(E) = L�(E) + E L′(E), (13)

where L�(E) and L′(E) are slowly varying logarithmic
functions. The idea of the E-RTRG method,7,8 where the
Laplace variable E is used as the flow parameter, is to
set up equations for the derivatives ∂EL�(E) and ∂EL′(E),
and to resum the series on the right-hand side (rhs) of the
differential equation in terms of effective propagators and

effective vertices. Closing the set of differential equations by
deriving corresponding differential equations for the effective
vertices, one obtains universal RG equations in the infinite
bandwidth limit ωc → ∞ which are free of logarithmic
divergencies. Provided that the effective vertices stay small
(the so-called weak-coupling limit), the RG equations can be
solved perturbatively in the renormalized couplings along an
arbitrary path in the complex plane, providing analytical access
to an individual study of all singularities and branch cuts in
the lower half of the complex plane.

Once the parts L�(E) and L′(E) of the effective Liouvillian
are known, the propagator Eq. (12) can be written as

R(E) = −i�(E) = 1

E − L̃�(E)
Z′(E) = R̃�(E)Z′(E), (14)

where we have defined

Z′ = 1

1 − L′(E)
, L̃�(E) = Z′(E) L�(E) , (15)

and

R̃�(E) = 1

E − L̃�(E)
. (16)

For the special case of the IRLM, the RG equations for L̃�(E)
and L′(E) together with the results for the effective vertices
have been derived in Ref. 21 using the Matsubara cutoff
scheme of Ref. 3. The same equations can be obtained within
E-RTRG by using the Laplace variable as flow parameter.31

The results are summarized in Appendix C and will be used
in this work as a starting point to analyze the dynamics within
the relaxation and quench protocols.

B. Extension to quenches

In this paper, we extend the RTRG method to quenches,
namely, abrupt parameter changes in the Hamiltonian. The
system is described by the Hamiltonian Hi

tot before the time
of the quench tq and by H

f
tot afterwards, while both Hi

tot as
well as H

f
tot are assumed to be time independent. In this case,

the integral in Eq. (6) can be split into two parts that describe
the memory of the system before and after tq . Equation (10)
determines the density matrix ρi(t) = ρ(t)θ (tq − t) before
the quench, where the Liouvillian Li , calculated using Hi

tot,
is taken. In the equation describing the dynamics of the
density matrix ρf (t) = ρ(t)θ (t − tq) after the quench there
is an additional term containing the memory of the systems
dynamics before the quench:

iρ̇f (t) =
∫ t

tq

Lf (t − t ′)ρf (t ′)dt ′ +
∫ tq

t0

�f i(t,t
′)ρi(t

′)dt ′,

(17)

where the Liouvillian Lf is calculated using the Hamiltonian
H

f
tot after the quench, and the kernel �f i(t,t ′) describes the

system’s memory of processes that took place before the
quench. Therefore, �f i(t,t ′) is only defined for t ′ < tq < t .

Most conveniently, the solution of Eq. (17) can be written in
terms of the propagator �f i(t,t ′) = θ (t − tq)�(t,t ′)θ (tq − t ′),
which connects the density matrix after the quench with the
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initial density matrix before the quench:

ρf (t) = �f i(t,t0) ρ(t0). (18)

Using Eq. (9), this propagator can be split into two parts

�f i(t,t
′) = �f (t,tq) �i(tq ,t

′)

− i

∫∫
�f (t,t1) �f i(t1,t

′
1) �i(t

′
1,t

′)dt1dt ′1,

(19)

where �f/i(t,t ′) = �f/i(t − t ′) are only defined for t > t ′ and
are the propagators of a system time evolved for all times with
H

i/f
tot taken from Eqs. (11) and (12) with Liouvillian Li/f .

Inserting Eq. (19) in Eq. (18) and using �i(tq − t0)ρ(t0) =
ρ(tq), we obtain

ρf (t) = �f (t − tq) ρ(tq)

− i

∫∫
�f (t − t1)�f i(t1,t

′
1)�i(t

′
1 − t0)ρ(t0)dt1dt ′1.

(20)

The first term describes the dynamics without any memory to
times smaller than the quench time, i.e., the density matrix
ρ(tq) at the quench time is used as initial condition for the
time evolution after the quench as if the local system and
the reservoirs were decoupled up to time tq . The second term
describes the memory part where the quench time is inside the
memory kernel �f i .

Defining the double Laplace transform

�f i(E,E′) =
∫∫

eiE(t−tq )−iE′(t ′−tq ) �f i(t,t
′)dt dt ′, (21)

and analogous for �f i(E,E′), Eq. (19) can be written in
Laplace space as

�f i(E,E′) = �f (E)[1 − i�f i(E,E′)]�i(E
′). (22)

Using the inverse Laplace transform of the second term on the
rhs of this equation and substituting it for the second part of the
propagator Eq. (19), we can write the time evolution Eq. (20)
as

ρf (t) = 1

2π

∫
e−iE(t−tq ) �f (E) ρ(tq)dE

− i

∫∫
e−iE(t−tq )−iE′(tq−t0)

×�f (E) �f i(E,E′) �i(E
′) ρ(t0)

dE dE′

(2π )2
. (23)

The two terms of Eq. (22) and the diagrammatic expansion
of the memory kernel in terms of the coupling vertices are
illustrated in Laplace space in Figs. 1(a) and 1(b). Here, the
quench vertex is indicated as a diamond and is implemented
in the diagrammatics as a unit matrix vertex:

quench vertex: 1̂ = .

As implied by Eq. (22), all operators on the left of the quench
vertex depend on the Laplace variable E and have to be taken
w.r.t. H

f
tot, while the ones on the right depend on E′ and

are taken w.r.t. Hi
tot. The diagrammatic rules are explained

in detail in Appendix B [some examples of diagrams are

Π f i (E , E’ )  = +

− i Σ f i (E , E’ )  =

+

=

+=

+ + +

+ +

(a)

(b)

,

+  ...  .

FIG. 1. (Color online) (a) Diagrammatic view of a quench
propagator corresponding to Eq. (19) (time representation) or Eq. (22)
(Laplace representation). (b) Diagrammatic series for a quench
kernel; the first diagram is expressed in Eq. (24). The thick horizontal
lines are propagators of a local system; diamonds are quench
vertices; single circles depict tunneling vertices, while doubled circles
represent an interaction vertex; the green lines connecting circles
correspond to reservoir contractions.

shown in Fig. 1(b) for the IRLM]. The diagrams consist of
vertices with one or two reservoir lines, corresponding to
tunneling and Coulomb interaction vertices, respectively. The
vertices are connected by propagators R = −i� (horizontal
black lines) and reservoir contractions (green lines). In each
diagram, the quench vertex has to be inserted in every bare
propagator. Analogous to Ref. 8, we resum all diagrams
with excitations living only before and after the quench (i.e.,
contractions which do not cross over the quench) such that
full effective propagators and vertices occur to the left and
right of the quench vertex. As a consequence, only diagrams
with contractions crossing over the quench vertex have to be
considered. Sorting diagrams by the number of contractions,
i.e., the number of excitations gone through the quench, the
series starts as shown in Fig. 1(b). In this we present all
diagrams with one or two contractions. Using (B12) and (A14)
and considering the IRLM with only one reservoir, chemical
potential μ = 0, and zero temperature, the first diagram is
explicitly given by (for the notation see Appendixes A and B)

−i �f i(E,E′) =
∫

p′f (p′ω̄) G
f

1 (E)Rf (E + ω̄)

×Ri(E
′ + ω̄) (Gi)

p′

1̄ (E′ + ω̄)dω̄,

where f (ω) = θ (−ω) is the Fermi function at T = 0, ω̄ =
ηω, G

f/i

1 ≡∑p(Gf/i)
p

1 , and Rf/i(E) = 1/[E − Lf/i(E)].
No frequency cutoff is needed since the integral converges.
Neglecting the frequency dependence of the second vertex
(giving rise to higher-order terms) and closing the integration
contour in the upper half of the complex plane, we see that
only the nonanalytic part of p′f (p′ω̄) = − 1

2 sign(ω̄) + p′/2
contributes to the integral. The integral around the branch cut
of the sign function at ω̄ = i�, 0 < � < ∞, leads to

�f i(E,E′) =
∫ ∞

0
(Gf )1(E) Rf (E + i�)

×Ri(E
′ + i�) (Gi)1̄(E′)d�. (24)

This result will be used in Sec. IV B to analyze the quench
dynamics via Eq. (23). All other diagrams of Fig. 1(b) are
unimportant. The second diagram is divergent and has to be
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treated by the E-RTRG method by considering its derivative
w.r.t. E.8 However, it contributes only to the dynamics of the
off-diagonal terms of the reduced density matrix, which we
do not consider here. The integrals over the frequencies in
all other diagrams do not diverge and therefore computing
those does not require a RG procedure. They can be directly
evaluated but lead to higher-order terms.

III. FRG METHOD

The FRG is a flexible method which allows us to tackle
a variety of open as well as closed quantum many-body
models within the same framework.4 In this approach, one
aims at the one-particle irreducible vertex functions from
which observables can be computed. The formulation of the
FRG approach in Matsubara space provides direct access to
the equilibrium properties of microscopic many-body models.
It was used for studying quantum dots, quantum wires, and
two-dimensional lattice models.4 The FRG was extended to
Keldysh space and steady-state nonequilibrium properties32–35

as well as nonequilibrium time evolution22,23,36 was studied.
To keep the presentation simple we focus on the Keldysh
formalism (used in this paper) when presenting explicit
formulas from now on.

In a first step of the derivation of flow equations, one
introduces a cutoff � to the free propagator

G0 → G�
0 , G�=∞

0 = 0, G�=0
0 = G0, (25)

which is a 2 × 2 matrix in Keldysh contour space. During the
RG flow, this cutoff is removed and the problem of interest is
restored. One takes the derivative of the generating functional
��({φ̄},{φ}) for the irreducible vertex functions with respect
to �:

�̇�({φ̄},{φ}) = Tr
[
G�

0 ∂�

[
G�

0

]−1]
∓ iTr

[
∂�

[
G�

0

]−1 δ2Wc,�

δη̄�δη�

]
(26)

and expands with respect to the source fields φ̄,φ. Aside from
the usual dependence on the quantum numbers and times, the
latter carry an additional index for the upper or lower Keldysh
contour. Here, the upper (lower) sign is for bosons (fermions)
and we defined the generating functional of the connected
Green’s functions by

Wc,�({η̄},{η})
= ln

[
1

Z0

∫
Dψ̄ ψ exp

{
S�

0 − iSint − (ψ̄,η) − (ψ,η̄)
}]
(27)

with the noninteracting partition function Z0 and the nonin-
teracting S�

0 and interacting Sint part of the action defining
the quantum many-body problem. This leads to an infinite
hierarchy of flow equations for the vertex functions, with the
first three given by

∂�γ �
0 = Tr

[
G�

0 ∂�

[
G�

0

]−1]− Tr
[
G�∂�

[
G�

0

]−1]
,

∂�γ �
1 (1′; 1) =

∑
22′

S�
22′γ

�
2 (1′2′; 12),

= tt

FIG. 2. Diagrammatic representation of the self-energy flow
equation. The dot indicates the derivative w.r.t. � and the slanted
line is the single-scale propagator S�.

∂�γ �
2 (1′2′; 12) =

∑
33′

S�
33′γ

�
3 (1′2′3′; 123)

−
∑

33′44′
S�

33′γ
�
2 (3′4; 12)G�

4′4γ
�
2 (1′2′; 4′3)

−
[∑

33′44′
S�

33′γ
�
2 (1′3′; 14)G�

44′γ
�
2 (2′4′; 23)

− (1′ ↔ 2′) − (1 ↔ 2) + (1′ ↔ 2′,1 ↔ 2)

]
,

(28)

where we have used

S�
1′1 = S�(1′,1) =

∑
22′

G�
1′2
[
∂�

[
G�

0

]−1]
22′G

�
2′1 (29)

and an appropriate multi-index 1,1′, . . . denoting the quantum
numbers, time, and the contour label. In practical applications
to time evolution, one is restricted to the lowest-order (in the
two-particle interaction U ) truncation scheme of the resulting
coupled differential equations for the vertex functions (see
Fig. 2). This results in differential equations for the Keldysh
components of the self-energy which are controlled to leading
order in the interaction but due to the RG resummation go
beyond plain perturbation theory; e.g., in a variety of appli-
cations one obtains power laws with interaction-dependent
exponents.4 The flow equations can be solved numerically
with minor computational effort, which allows us to study the
entire parameter space of a given model with high efficiency.
In limiting cases, one often even succeeds in gaining analytical
insights from these flow equations. Within the time-dependent
FRG approach one can straightforwardly treat quenches as
all parameters of the Hamiltonian can carry an explicit time
dependence. This was discussed in detail in Ref. 36.

IV. APPLICATION TO DISSIPATIVE DYNAMICS

In this section, we apply the RG methods introduced
above to the IRLM and describe its dynamics. We restrict
ourselves to the small-|U | regime corresponding to the SBM
close to its coherent-to-incoherent transition. Ultimately, we
are interested in the quench dynamics but first present a
comprehensive study of the relaxation protocol. It presents
the basis for the understanding of the quench protocol.

A. Relaxation protocol

1. RTRG approach

The general Eqs. (11) and (12) can be used to describe
the behavior of the system between the initial time t0 = 0 of

165133-6



QUENCH DYNAMICS OF A DISSIPATIVE QUANTUM . . . PHYSICAL REVIEW B 88, 165133 (2013)

coupling the reservoir to the dot and the time of the quench tq .
Using the form Eq. (14) for the propagator, we obtain

ρ(t) = i

2π

∫
C
e−iEt R̃�(E) Z′(E) ρ(0)dE, (30)

where C is a contour enclosing clockwise the lower half of the
complex plane including the real axis.

For the particle-hole symmetric case ε = 0, the 4 × 4
matrices R̃�(E) and Z′(E) are provided in Eqs. (C1) and (C6).
Since we are only interested in the relaxation of the diagonal
matrix elements ρ00(t) and ρ11(t) of the density matrix, we
obtain(

ρ00(t)

ρ11(t)

)
= i

2π

∫
C

e−iEt

×
(

τ+
E

+ τ−
E + i�1(E)

)(
ρ00(0)

ρ11(0)

)
dE, (31)

with τ± = 1
2 (1 ± σx). Using i

2π

∫
C e−iEt 1

E
= 1 and ρ00(0) +

ρ11(0) = 1, we find(
ρ00(t)

ρ11(t)

)
= 1

2

(
1

1

)

+ i

2π

∫
C

e−iEt

E + i�1(E)

1

2

(−1

1

)
〈σz〉(0)dE,

(32)

with 〈σz〉(0) = ρ11(0) − ρ00(0). This gives

〈σz〉(t) = P (t) 〈σz〉(0), (33)

where

P (t) = i

2π

∫
C

e−iEt

E + i�1(E)
dE (34)

is defined as the solution for 〈σz〉(t) with the initial condition
〈σz〉(0) = 1.

To determine P (t) we need the function �1(E), which
follows from the RG equations (C4) and (C5):

∂E�1/2(E)=−gR2/1(E)�1(E), (35)

where g = 2U − U 2 and

R1(E) = 1

E + i�1(E)
, R2(E) = 1

E + i�2(E)/2
, (36)

with the initial conditions �1/2(E = iωc) = �0. For high
energies |E| � |�1/2(E)|, the solution of the RG equations
is

�1/2(E) = �0

(
ωc

−iE

)g

= TK

(
TK

−iE

)g

, (37)

where

TK = �0

(
ωc

TK

)g

= �0

(
ωc

�0

)g/(1+g)

(38)

is the typical low-energy scale which is kept fixed in the
scaling limit ωc → ∞ and g,�0 → 0. In this limit, the RG
equations (35) cover systematically all orders of g ln(ωc/E)
and the exponent of the power law in Eq. (37) is controlled
up to O(U 2). The terms neglected on the rhs of the RG

equation for �1(E) contain terms ∼U 3(�1/E) of higher
orders in U (which can be neglected for small U ) and terms
∼U (�1/2/E)2 of higher order in �1/2/E. Integrating the latter
from E = iωc down to E ∼ i�1/2 gives a correction to �1

of order O(U�1/2) ∼ O(UTK [TK/�1/2]g). This is a small
correction to Eq. (37) of relative order U , which changes
only the prefactor of the Kondo temperature TK but does
not influence the power-law exponent. The FRG approach
described above can cover such corrections up to O(U ) since
all orders in the tunneling are fully taken into account in each
order of the Coulomb interaction.

We note, however, that neglecting higher orders in �1/2/E

might imply a change of the power-law exponent of the time
evolution in the regime of exponentially large times TKt � 1
and |g ln(TKt)| � 1. In this regime, one needs a solution of
the RG equations for E exponentially close to a singularity
z∗ of the resolvents Rn(E) and it may happen that neglected
terms ∼g(�1/2)2R1(E)R2(E) are of order g|�1/2/(E − z∗)|
since one resolvent is of order 1/|z∗| ∼ 1/|�1/2| while the
other one has a pole at E = z∗ and is of order 1/|E − z∗|.
Such terms lead to additional logarithmic contributions close
to the singularities of the resolvent R1(E) which might result in
logarithmic corrections for pre-exponential functions relevant
for exponentially large times. Recently, it has been shown7 that
such behavior can occur for the SBM at small coupling α and
it needs to be analyzed whether similar effects may be realized
in the IRLM (Ref. 31) at small g. The most interesting physics
occurs when different terms in the dynamics compete. For
the relaxation as well as the quench protocols, this happens
at intermediate (TKt ∼ 1) to long (TKt � 1) times while at
exponentially large ones |g ln(TKt)| � 1 one term dominates
(see below). For the former, we can safely ignore higher-order
terms in �1/2/E. We note that for completeness and to make
contact to existing results, we also analyze our approximate
RG equations for exponentially large times keeping in mind
that the corresponding result might not present the final answer.

2. FRG approach

In the FRG approach to the IRLM [Eq. (4)], we consider a
semi-infinite tight-binding chain, where the first site is tunnel
coupled to a single level almost resonant to the Fermi level in
the chain (see Fig. 3). A fermion occupying the first site of the
chain interacts with the resonant level by a density-density–
type interaction of strength u. The first lead site and the single
level define our quantum dot region. Initially, the two sites of
the quantum dot region are empty. With the rest of the chain
we proceed as follows. We achieve a structureless reservoir

tH τ

D=2τH 
2/τ

τH 

lead
dot

DoS

E

u=πUD/2

∋

FIG. 3. Quantum-dot model considered within FRG.
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by choosing the hopping τ between the corresponding sites
and the hopping τH from the second to the first site such that
τ → ∞, τH → ∞, but τ 2

H /τ remains constant. As long as the
hopping tH between the first site of the chain and the resonant
level remains small compared to the bandwidth ωc = 2τ 2

H /τ ,
we capture the physics of the IRLM as defined in Eq. (4),
where the parameters are mapped by choosing �0 = 4t2

H/ωc

and U = 2u/(πωc).22,35

The FRG flow equations to be solved numerically were
already derived in detail in Ref. 22. The main steps and
essential equations are summarized at this point to keep our
presentation self-contained. The nonequilibrium problem at
hand is tackled by using the Keldysh formalism.37,38 First,
we determine the retarded (R), advanced (A), and Keldysh
(K) components of the Green’s function of the decoupled and
noninteracting dot region

gR
ij (t,t ′) = −i�(t − t ′)[e−iε̂(t−t ′)]ij , (39)

gK
ij (t,t ′) = −i[gR(t,0)gA(0,t ′)]ij . (40)

Here and in the following, the two sites of the quantum dot
region are labeled by the single-particle indices i,j ∈ {1,2}.
The matrix ε̂ appearing in the argument of the exponential
function is given by

ε̂ =
(

tH ε

0 tH

)
. (41)

We next treat the influence of the reservoir and the interaction
separately in the form of self-energies. To obtain the reservoir
part, we project the reservoir contribution on the noninteracting
dot Green’s function g0, exploiting that the interaction is
restricted to the quantum dot region. This way, the influence
of the reservoir is considered by tracing over the particles
temporarily (virtually) residing in the reservoir by tunneling
from the dot and back. This yields a Dyson equation for the
reservoir-dressed but noninteracting dot Green’s function G0:

G0 = g0 + g0�resG0, (42)

where we have left implicit internal matrix multiplications
w.r.t. the Keldysh and single-particle indices and convolutions
w.r.t. time. If we restrict ourselves to a structureless reservoir,
the reservoir contribution to the self-energy �res is given by

�R
res,ij (t ′,t) = [�A

res,ij (t ′,t)
]† = −2ωciδ(t ′ − t)δi,j δi,1, (43)

�K
res,ij (t ′,t) = −4ωc

π
P
(

1

t ′ − t

)
δi,j δi,1. (44)

Using the Dyson equation (42) is an exact reformulation of
the noninteracting problem; all orders in the tunneling to the
reservoirs are kept. Next, we consider the Keldysh self-energy
� arising due to the two-particle interaction and again employ
the Dyson equation

G = G0 + G0�G (45)

to obtain the full Green’s function G. The cutoff procedure
used in the FRG consists of two independent auxiliary
reservoirs coupled to each of our two dot sites via hybridization
�.34 Differentiation of the generating functional of the one-
particle irreducible vertex functions with respect to � yields
the above-mentioned infinite hierarchy of flow equations for

the vertex functions which is still exact. The truncation of
this hierarchy is the only approximation within our approach
required to derive a closed set of differential equations which
can be integrated numerically. We use the lowest truncation
order, and the resulting flow equations for the interaction part
of the self-energy are given by

∂���(1,1′) = −i
∑
2,2′

S�
2′2ū121′2′ , (46)

with a multi-index 1 = (t,i,p) with p ∈ {−1,1} labeling the
Keldysh index and

S�
11′ = −

∑
2,2′

G�
12′
[
∂�

[
G�

0

]−1]
2′2G

�
21′ = ∂∗

�G�
11′ . (47)

We introduced the star differential operator ∂∗
� which acts

only on the free Green’s function G�
0 , not on ��, in the

series expansion G� = G�
0 + G�

0 ��G�
0 + · · · . Additionally,

we define

ū121′2′ = δ(t1 − t ′1)δ(t1 − t2)δ(t1 − t ′2)

× δp1,p
′
1
δp2,p

′
2
δp1,p2 (p1)ūi1i2i

′
1i

′
2
(t) (48)

with the antisymmetrized two-particle interaction ūi1i2i
′
1i

′
2
. As a

consequence of the truncation, the FRG results are controlled
to leading order in the interaction strength U . In the RTRG, the
interaction was expressed in terms of the prefactor g = 2U −
U 2 of the flow equations (35), which in the solution of the
latter appears as an exponent. In the FRG, this exponent is only
captured to leading order. To prevent the inflation of parameters
in the following, we still use g when discussing FRG results,
keeping in mind this restriction to the lowest order. The present
FRG procedure was successfully applied to nonequilibrium
transport through correlated quantum dots before.22,34,35 The
cutoff-free problem is recovered after integrating from � =
∞, where one can give analytic expressions for the vertices,
down to � = 0, where the problem corresponds to an effective
noninteracting one with renormalized time-dependent single-
particle parameters.

At the point of particle-hole symmetry ε = 0 for t � ω−1
c

and to leading order in g the only relevant flow equation is the
one for the hopping amplitude between the resonant level and
the first site of the reservoir. It reads as

∂�t�H (t) = πg

8ωc

i∂∗
�GK

1,l(t), (49)

where ∂∗
� acts on the free part of the full equal time Keldysh

component of the Green’s function GK
1,l(t) only. Its initial

condition is t�=∞
H (t) = tH for all t . Employing the projection

technique we arrive at

∂�t�H (t) = i
πgωc

4
∂∗
�

∫
t�H (t ′)[g>(t,t ′)G<(t ′,t)

−g<(t,t ′)G>(t ′,t)]dt ′, (50)

with the structureless reservoir’s Green’s functions g>(<) and
the single level’s Green’s functions G>(<). The greater and
lesser functions are related to the retarded, advanced, and
Keldysh components by a Keldysh rotation.37,38

Already in this simple truncation scheme the logarithmic
terms present in lowest-order perturbation theory in g are
resumed consistently. One obtains a renormalized hopping
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amplitude featuring a power law with interaction-dependent
exponent. This exponent is correct to leading order in the
interaction.35 It was shown that for the time evolution FRG
(Ref. 22) leads to terms exponentially decaying in time
with interaction-dependent decay rates as well as power-
law corrections t−κ with g-dependent exponent κ which is
consistent with the one found within RTRG.21

To obtain analytical results using FRG, we replace tH (t ′)
by tH (t) in Eq. (50), which is justified to order g. To lowest
order in 1/ωc we then obtain

∂�t�H (t)

t�H (t)
= g

2
∂�

[
−i

∫ t

2/ωc

G
A,�
0 (x)

dx

x
+ π

2
G

K,�
0 (t)

]
, (51)

with the noninteracting but reservoir-dressed advanced
Green’s function G

A,�
0 (x) = i exp(−�0x/2) as well as

iGK
0 (t) = exp(−�0t). The high-energy cutoff τ 2

H/τ = ωc/2
has to be introduced by hand as the higher-order terms in 1/ωc

were dropped in Eq. (51). Integrating Eq. (51), we find

tH (t) =
√

TKωc

2
exp

{
−g

2

[
E1

(
�0t

2

)
+ iπ

2
e−�0t

]}
(52)

with E1(z) = ∫∞
z

e−xdx/x being the exponential integral. For
the initial condition ρz(0) = 1, the relaxation dynamics is then
given by

P (t) = GR(t,0)GA(0,t)

+ i

∫∫
GR(t,t1)�K (t1,t2)GA(t2,t)dt1dt2, (53)

with GR/A(t,t ′) = ∓ie∓ ∫ t

t ′ dτ �0(τ )/2θ (±[t − t ′]) and the self-
energy �K (t1,t2) = �0(t1,t2)/(π [t2 − t1]). We return to this
equation when analyzing the behavior for small and asymp-
totically large t . In the former case, the time-dependent
hybridization �0(t) = 4|tH (t)|2/ωc matters, while in the latter
one must also take into account �0(t,t ′) = 4tH (t)t∗H (t ′)/ωc.

3. Dynamics on short times

In the RTRG method, for short times, such that TKt � 1,
the integral in Eq. (34) is dominated by the large values |E| �
|�1|. Therefore, one may use the approximation �1(E) ≈
TK (−iE/TK )−g of Eq. (37) for the relaxation rate, which, since
no information on the infrared cutoff is left, is equivalent to the
poor man’s scaling approximation39,40 here generalized to the
case where the Laplace variable serves as a cutoff parameter.
Expanding the integrand of Eq. (34) in �1(E)/E and defining
the variable z = Et gives the series

P (t) ≈
∞∑

n=0

(−1)n(TKt)n(1+g)
∫
C
e−iz(−iz)−1−n(1+g) dz

2π

=
∞∑

n=0

(−1)n
(TKt)n(1+g)

�(1 + n[1 + g])
, (54)

where �(x) is the gamma function. With g ≡ 1 − 2α this result
coincides precisely with the short-time dynamics obtained
using the noninteracting blip approximation (NIBA) for the
SBM.1,2 However, one should keep in mind that �1(E) ≈
TK (−iE/TK )−g is only a good approximation for large E,
i.e., only the first two terms of the series Eq. (54) can
be trusted. Note that if one neglects g in the denominator

�[1 + n(1 + g)] ≈ �(1 + n) = n!, we obtain the series of the
exponential function and the result can be written as

P (t) ≈ e−(TK t)g TK t . (55)

This coincides with the perturbative result P (t) = e−�t t , where
�t = �(i/t) = TK (TKt)g is the poor man’s scaling solution cut
off at −iE = 1/t . Solving the poor man’s scaling RG equation
along the imaginary axis, i.e., for E = i�, we see that � serves
as a flow parameter which has to be cut off at 1/t . Our finding is
consistent with the generic result that the short-time behavior
probes the high-energy one in Laplace space and, therefore,
can be obtained from poor man’s scaling equations cut off at
the energy scale 1/t (see Refs. 6 and 7).

Up to order n = 1 the same result can be obtained from the
FRG approach. For times ωc � 1/t � TK , the second term in
Eq. (53) can be neglected and the argument of the exponential
integral is small. We can thus replace E1(x) = −γ − ln(x),
which leads to

�0(t) = TKeγg (TKt)g (56)

for the time-dependent renormalized hopping. Here, γ denotes
the Euler constant. Using this, the full retarded Green’s
function at small times is given by

GR(t,0) ≈ −i

(
1 − eγg

2(g + 1)
(TKt)g+1

)
, (57)

leading to

P (t) = 1 − eγg

g + 1
(TKt)g+1 + O([TKt]2). (58)

Here, the power law with interaction-dependent exponent is
resummed correctly up toO(g) and the prefactor is determined
within the same order.

The power-law scaling of 1 − P (t) at TKt � 1 can also be
shown for the numerical data obtained by solving the full FRG
flow equations (without any additional approximations aside
from the lowest-order truncation). To this end, we numerically
compute δln(t) ln[1 − P (t)] = d ln[1 − P (t)]/d ln t as centered
differences, which becomes a constant if 1 − P (t) is given by
a power law. In Fig. 4, we show δln(t) ln[1 − P (t)] for different
g as a function of t on a log-linear scale. For TKt ≈ 10−2,
the data (symbols) become constant and nicely agree with the
exponent predicted by Eq. (58) (dashed lines). The deviations
for t � 10/ωc (=5 × 10−2/th in the figure; the arrows indicate
10TK/ωc) are an effect of the reservoirs bandwidth; for such
times we leave the scaling limit. Further increasing ωc in
the numerical calculations would move this lower bound to
smaller t .

The comparison of the results obtained by our two RG
approaches and the consistency with the results derived using
established methods shows that for small times TKt � 1 both
methods provide controlled access to the relaxation dynamics.

4. Intermediate to long times

The relaxation dynamics for times of the order of the typical
inverse rates of the system and larger is of particular interest,
as it indicates the degree of coherency. For t → ∞, the dot
level becomes half-filled, that is, the spin expectation value in
the z direction of the SBM vanishes. We say that the system is
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10
-4

10
-3

10
-2

10
-1

TK t

1

2
δ ln

(t
) ln

[1
-P

(t
)]

g=0.1910
g=0.0636
g=-0.0636
g=-0.1910

FIG. 4. (Color online) Power-law scaling of 1 − P (t) for TKt �
1 in the relaxation protocol. The data are produced using the numerical
solution of the full FRG flow equations. Symbols represent the time
dependence of the logarithmic derivative for different values of g.
Horizontal dashed lines show the prediction 1 + g of Eq. (58) for the
log-derivative (for the definition of this, see the main text). For TKt �
10TK/ωc band effects start to matter and deviations from power-law
scaling appear. The arrows indicate the g dependent 10TK/ωc (with
ωc/th = 2 × 102).

incoherent if it exhibits a monotonic decay for times TKt � 1.
Nonmonotonicity of P (t), in particular zeros, is characteristic
for coherent behavior.

Within RTRG, the dynamics is determined via Eq. (34),
given by P (t) = i

2π

∫
C dE e−iEtR1(E), and follows from

the nonanalytical features of the resolvent R1(E) = 1/[E +
i�1(E)] in the lower half of the complex plane (see Fig. 5).
We find three singularities parametrized by

z0 = − i 1
2 �∗

2 , z± = ±� − i �∗
1 , (59)

where the decay rates �i > 0 are of the order of TK , whereas
the oscillation frequency 0 < � ∼ gTK . The singularity z0 is a
branching point followed by a branch cut with a discontinuous
O(g) jump. We choose the position of the branch cut on
the negative imaginary axis, which turns out to be the most
convenient choice to calculate the inverse Laplace transform
for the time evolution (see following). z± denote the positions
of two poles which are followed by two branch cuts with an

Re E

Im E[E+iΓ1(E)]−1

C

Γ1
*

Γ2
*/2

Ω

FIG. 5. The nonanalyticities of the propagator [E + i�1(E)]−1 in
Eq. (34) as a function of the complex variable E for positive coupling
g > 0. The main branch cut (thick solid line) and two poles (circles)
with attached second order in g branch cuts (thick dashed lines)
are shown. The thin dashed line shows the integration contour C of
Eq. (34).

O(g2) jump (which can be neglected in leading order). The
pole and branch-cut nonanalyticities lead to two terms in the
time evolution which we denote by

P (t) = Ppole(t) + Pbc(t). (60)

The degree of coherence of P (t) is given by the interplay of
those terms.

An analytical understanding of the nonanalytical features of
R1(E) can be obtained by studying the RG equations (35). We
first see from the RG equation for �2(E) that if E approaches
a pole z± = −i�1(z±) of R1(E), �2(E) obtains a branch cut
with jump ofO(g) starting at z±, which, when inserted into the
RG equation for �1(E), leads to a branch cut for �1(E) with
jump of O(g2). In addition, when E approaches the pole z0 =
−i�2(z0)/2 of R2(E), we see from the RG equation for �1(E)
that �1(E) has a branch cut starting at z0 with jump ofO(g). To
calculate the positions of the singularities up to O(g), we solve
the RG equations by a systematic weak-coupling expansion in
g � 1. For |E − zi | ∼ O(TK ) and g| ln(|E − zi |/TK )| � 1,
we can expand the solution of Eq. (35) in g and can fix the
integration constants by comparing with the solution (37) at
high energies. Up to O(g) we obtain

�1(E)/TK ≈ 1 − g ln
−iE + �2(E)/2

TK

, (61)

�2(E)/TK ≈ 1 − g ln
−iE + �1(E)

TK

. (62)

Since g| ln g| � 1 for g � 1, we can use these equations for
all g2 � |E − zi |/TK ∼ O(1). This allows for a determination
of the positions of zi up to O(g). We note that �1/2(E) has not
been replaced by TK in the argument of the logarithm since it
is a priori not clear whether the argument becomes a negative
real number of O(1), i.e., the O(g) correction of the imaginary
part of �i(E) might be important. However, if E is close to
one of the pole positions iz± = �1(z±) or iz0 = 1

2�2(z0), we
can neglect this effect for the corresponding decay rate since
we can expand around the pole position and use ∂E�i ∼ O(g):

ln[−iE + �2(E)/2] ≈ ln{−i(E − z0) [1 + i∂E�2(z0)/2]}
≈ ln[−i(E − z0)], (63)

ln[−iE + �1(E)] ≈ ln{−i(E − z±) [1 + i∂E�1(z±)]}
≈ ln[−i(E − z±)]. (64)

According to Eqs. (61) and (62), this gives for E = zi +
i�, with 0 < � ∼ O(g2), the real value 1 − g ln(�/TK )
for �1(E)/TK (i = 0) or �2(E)/TK (i = ±). Therefore, to
determine the pole positions z0 or z±, we set �1(E) = TK in
Eq. (62) or �2(E) = TK in Eq. (61), respectively, and obtain
with −iz0/TK = − 1

2 + O(g) and −iz±/TK = −1 + O(g) for
the O(g) correction:

2iz0/TK = �2(z0)/TK ≈ 1 − g ln(−iz0/TK + 1)

≈ 1 − g ln
(− 1

2 + 1
) ≈ 1 + g ln 2 ≈ 2g, (65)

iz±/TK = �1(z±)/TK ≈ 1 − g ln
(− iz±/TK + 1

2

)
≈ 1 − g ln

(− 1 ∓ i�/TK + 1
2

)
≈ 1 + g ln 2 ± iπg ≈ 2g ± iπg. (66)
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Since � must be positive, we see that the equation E +
i�1(E) = 0 has only a solution for positive coupling g > 0. We
note that � = 0 is excluded since E = −i�∗

1 lies on the branch
cut of �1(E). In conclusion, we obtain from Eqs. (65) and (66)
the following result for the decay rates and the oscillation
frequency up to O(g):

�∗
1/2 ≈ 2g TK, � ≈ π g TK, (67)

and we find that the poles at z± exist only for g > 0.
If the Laplace variable E lies exponentially close to one

of the poles, i.e., g ln(|E − zi |/TK ) ∼ O(1), which probes the
regime of exponentially large times g ln(TKt) ∼ O(1), we can
replace �i(E) → �i(zi) on the rhs of the RG equations (35).
Fixing the integration constants by comparison with the
solutions (61) and (62) at intermediate energies, we obtain

E ≈ z0 : �1(E) ≈ TK

[
TK

−i(E − z0)

]g

, �2(E) ≈ 2iz0,

(68)

E ≈ z± : �1(E) ≈ iz±,
(69)

�2(E) ≈ TK

[
1 − g ln

−i(E − z±)

TK

]
.

We note that the solutions (37), (61), (68), and (69) for �1(E)
at high, intermediate, and exponentially small distances from
zi can, in leading order in g, be interpolated by the compact
expression

�1(E) ≈ TK

[
TK

−i(E − z0)

]g

. (70)

One can check numerically that, for the special values E =
z0 + i� ± 0+, with � real, this formula holds even for larger
values of g. Therefore, we will use this result below for the
evaluation of the branch-cut integral to obtain the incoherent
part Pbc(t) of the time evolution. For E exponentially close to
the poles z± a numerical analysis shows that Eq. (70) is correct
for small values of g. For larger couplings, it turns out that an
improved fit is obtained by using

E ≈ z± : �1(E) ≈ TK

[
TK

−i(E − �1(E)/2)

]g

. (71)

This equation can be employed for an improved evaluation of
the pole position and the residuum of the resolvent R1(E). A
straightforward calculation gives the result

�∗
1/TK = 2

g

1+g

[
1 + tan2

(
πg

1 + g

)]−1/2

, (72)

� = �∗
1 tan

(
πg

1 + g

)
= �∗

1 cot

(
π

2

1 − g

1 + g

)
, (73)

1

1 + ∂E�1(z±)
= 1 − g

1 + g
. (74)

The ratio between the oscillation frequency � and the decay
rate �∗

1 , the so-called quality factor, was earlier computed using
improved NIBA (Ref. 10) and a field theoretical approach.41

Our result is consistent with the one obtained within those

approaches. Employing Eqs. (72) and (74), we obtain directly
from Eq. (34)

Ppole(t) = 2
1 − g

1 + g
cos(�t) e−�∗

1 t �(g). (75)

For �2(E) it is more difficult to find interpolation formulas
valid for all values of E since this function behaves as a power
law for high energies but like a logarithm for E close to
z±. Inserting Eq. (70) into the RG equation (35) for �2(E),
approximating �1(E) → z± for sign(Re[E]) = ±, and taking
another derivative, gives the differential equation for a special
case of the hypergeometric function

y(1 − y)
d2�2

dy2
+ [1 − (1 + g)y]

d�2

dy
= 0 , (76)

with y = (z± − E)/(z± − z0). In principle, this equation can
be solved providing an interpolation formula for �2(E) valid
for all E and small g. However, since �2(E) is not needed for
an evaluation of the time evolution of the diagonal matrix
elements of the density matrix, we do not further discuss
this issue. We note that �2(E) appearing in the resolvent
R2(E) is important for the dynamics of the off-diagonal matrix
elements but those can not be measured: It is impossible to
prepare an initial state which is off diagonal in the charge
states.

We next aim at the position of z0 = −i�∗
2/2 for larger

values of g. Replacing �1/2(E) → �∗
2 on the rhs of the RG

equations (35) provides a very good approximation as can be
verified numerically. Based on this, we show in Appendix D
how an improved solution can be found for �2(E) close to the
imaginary axis for E = z0 + i�, with � > 0. It leads to the
improved formula

�∗
2

2
≈ TK

[
πg

2 sin(πg)

] 1
1+g

. (77)

We note that although the RG equations (35) are only
consistent up to O(g), we have evaluated the analytical
results (72), (73), and (77) for the position of the singular-
ities taking higher-order corrections in g into account. This
analysis is motivated by the fact that the ratio �/�∗

1 agrees
precisely with previous results from NIBA and field theoretical
approaches which are nonperturbative in g. Therefore, there
is some hope that also the improved result (77) for �∗

2 is
valid for larger values of g. To the best of our knowledge,
the rate �∗

2 describing the energy broadening of the local
state has so far only been analyzed in leading order in g

(see Ref. 10).
Finally, we analyze Pbc(t), given by the branch-cut inte-

gral [we take E = z0 − ix ± 0+ with 0 < x < ∞ and use
�1(E)∗ = �1(−E∗)]

Pbc(t)

= 1

π
e− �∗

2
2 t Im

∫ ∞

0

e−xt

�∗
2/2 + x − �1(z0 − ix − 0+)

dx,

(78)

where �1(z0 − ix − 0+) ≈ TK (TK/x)ge−iπg is taken from
Eq. (70). For intermediate to long times TKt � 1, it is a very
good approximation to replace the slowly varying function
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xg → t−g since the exponential function e−xt in the integrand
of Eq. (78) restricts the integration range to the regime
x ∼ O(1/t). This leads to the result

Pbc(t) ≈ 1

π
Im

{
e−γt tE1

([
1

2
�∗

2 − γt

]
t

)}
, (79)

with γt = TK (TKt)ge−iπg and the exponential integral E1.
Combined with Ppole(t), this result covers the limit

g → 0, where γt = TK − i0+sign(g) and E1(�∗
2/2 − γt ) =

−π sign(g). This gives together with Eq. (75) Pbc(t) =
−e−TK tsign(g) and Ppole = 2e−TK t θ (g), leading to the exact
result P (t) = e−TK t and TK = �0 for g = 0.

The contribution from the branch-cut integral in the regime
1 � TKt � 1/g for small |g| � 1 can also be analyzed
by observing that the resolvent R1(z0 − ix + 0+) − R1(z0 −
ix − 0+) has a sharp Lorentzian peak at x ∼ TK/2:

R1(z0 − ix + 0+) − R1(z0 − ix − 0+)

≈ −2π sign(g)δTK (TK t)g sin(π |g|)
× (x + 1

2�∗
2 − TK [TKt]g cos[πg]

)
, (80)

where δη(x) = 1
π
η/(x2 + η2). For t � 1/g, the peak width is

much narrower than the typical scale on which the function
eiEt = e− 1

2 �∗
2 t e−xt varies, i.e., we can replace the Lorentz peak

by a δ function and get

Pbc(t) ≈ −sign(g) e−TK (TK t)g cos(πg)t ≈ −sign(g) e−�∗
1 t . (81)

Note that this leads to a contribution of O(1) and not
of O(g).

In contrast, for long times TKt � 1/g, we can
use the asymptotic expansion E1(z) ≈ e−z/z and find
from (79)

Pbc(t) ≈ − sin(πg)

π

1∣∣ 1
2�∗

2/TK − (TKt)geiπg
∣∣2 1

(TKt)1−g
e− �∗

2
2 t .

(82)

Although this term is of O(g) it will dominate over Ppole(t)
[Eq. (75)] of the time evolution as to leading order in g its
decay rate is only half of that of the coherent term.

For exponentially large times (TKt)|g| � 1, the branch-cut
contribution (82) can be approximated for |g| � 1 and �∗

2 ≈
TK by

Pbc(t) ≈ −g[1 + 3�(−g)]
e−TK t/2

(TKt)1+|g| . (83)

This result was earlier obtained using improved NIBA.10

Note the power-law correction to the exponential decay
already mentioned in the Introduction. We emphasize that
this approximation is only justified for times so large that
Ppole(t) can safely be neglected compared to the dominating
term Pbc(t). Thus, the interesting competition of the branch-cut
and pole contributions for g > 0 on time scales of up to a few
T −1

K can only be studied by keeping Eq. (79). In fact, it is
this competition which for g > 0 can lead to nonmonotonic,
that is, coherent behavior of P on time scales TKt ∼ − ln g;
on asymptotic ones the dynamics is always monotonic due
to the dominating branch-cut contribution. On the coherent
side of the coherent-to-incoherent transition but close to it the

0 5 10
Tkt

10
-4

10
-2

10
0

|P
(t

)|

g=0.0636
g=-0.0636

FIG. 6. (Color online) |P (t)| for all time scales. For g > 0 the
competition of the two Eqs. (75) and (79) manifest in the sign change
of P (t), appearing as a dip on the logarithmic scale. The partially
coherent (g > 0, red squares) and incoherent (g < 0, purple crosses)
dynamics are compared.

dynamics can thus only be classified as partially coherent.
This must be contrasted to the relaxation dynamics of the
SBM at small spin-boson coupling α � 1 and the one of the
classical damped harmonic oscillator in its coherent regime
(sufficiently weak damping) for which oscillatory behavior
can be observed even on asymptotically large times.1,2,15–18

Analyzing the analytical expressions (75) and (79) for P (t),
one finds that up to a certain coupling g1 > 0 only a single
local minimum associated with a single transition through
zero appears. For g1 < g < g2, with a certain g2, a second
zero is found and so on. As our approach is limited to
|g| � 1, we can only speculate about how this behavior
crosses over to the coherent behavior with infinitely many
zeros obtained at small α. From the results (72) and (77), we
suspect that beyond a characteristic coupling of order g ∼ 0.4
[α = (1 − g)/2 ∼ 0.3] the finite frequency poles lie closer to
the real axis than the branching point, and oscillatory dynamics
dominates at large times.

The discussed behavior is confirmed by the full numerical
solution of the (approximate) FRG and RTRG flow equations.
In Fig. 6, we show |P (t)| obtained from FRG for small |g| on
a linear-log scale. For g > 0, the zero appears as a dip. For
negative g, there are no poles, so Pcoh = 0. Analyzing Eq. (79)
shows that it contains two terms of the same sign both showing
exponential decay with the different rates �∗

1 and �∗
2/2. In this

regime, the dynamics is clearly incoherent (see the crosses in
Fig. 6). In Fig. 1 of Ref. 11 we present a detailed comparison of
P (t) obtained from the approximate analytical solution of the
RTRG flow equations given in Eqs. (75) and (79), as well as the
numerical solution of those and the FRG flow equations. This
figure also contains a data set from the regime g1 < g < g2

showing two zeros.
For g > 0, the asymptotic long-time behavior can also be

accessed analytically using FRG. For those, the second term
of Eq. (53) is the dominant one since it decays slower than
the first one (see below). As Im[P (t)] = 0, the second term of
Eq. (53) only has a nonzero contribution for Im[�K (t1,t2)] =
Im{4tH (t)t∗H (t ′)/[ωcπ (t2 − t1)]} �= 0. Therefore, we concen-
trate on this imaginary part, where tH (t) is given by Eq. (52),

165133-12



QUENCH DYNAMICS OF A DISSIPATIVE QUANTUM . . . PHYSICAL REVIEW B 88, 165133 (2013)

which leads to

Im[�K (t1,t2)]

= TK Im

{
exp

[
− iπg

4
(e−�0t1 − e−�0t2 )

]}

× 1

π (t2 − t1)
+ O(g2)

= TK Im

{
exp

[
− iπg

4
e−�0T/2(e�0�t/2 − e−�0�t/2)

]}

× 1

π�t
+ O(g2), (84)

with T = t1 + t2 and �t = t2 − t1. The integrals in the second
term of Eq. (53) are dominated by times TK (t − t1/2) � 1
such that for (TKt)|g| � 1 one can also use (TKt1/2)|g| � 1
inside the integral. For t → ∞, we can thus replace e−�0T/2

in Eq. (84) by its time-averaged value over [t,2t] and using
�0�t ∝ �0/TK � 1 find

Im[�K (�t ; t)] = TK

π�t
Im

(
exp

[
−i

πg

2

�t

t
e−�0t/2

])
. (85)

This self-energy is formally equivalent to one which arises
due to a noninteracting reservoir held at chemical potential
μt = −πg

2t
e−�0t/2, where t can be viewed as a parameter. Using

this and �0/TK � 1 (which holds for g > 0), Eq. (53) for large
times simplifies to Eq. (83). A posteriori we can justify that
we only considered the second term of Eq. (53) as it decays
exponentially with rate TK/2 while the first term leads to an
exponential decay with rate TK .

The consistency of all our analytical and numerical results
for the relaxation dynamics for intermediate to large times
and the agreement to established results in the cases in
which a comparison is meaningful confirms that our two RG
approaches provide controlled access to the dynamics of the
SBM close to the coherent-to-incoherent transition.

Finally, we note that for small couplings g � 1, it is
tempting to interpolate the results (81) for 1 � TKt � 1/g

and (82) for 1/g � TKt by taking the sum of both terms.
Adding the pole contribution (75) provides the following result
for P (t):

P (t) ≈ e−�∗
1 t [2 cos(�t)θ (g) − sign(g)]

− g
1[

1
2�∗

2/TK − (TKt)g
]2 1

(TKt)1−g
e− 1

2 �∗
2 t . (86)

This formula can be used for g � 1 and TKt � 1 and covers
the correct limiting cases of TKt � 1/g and TKt � 1/g since
the second term is of O(g) but decays with a smaller decay
rate. Therefore, the first term will dominate for TKt � 1/g,
whereas the second one dominates for TKt � 1/g. However,
we note that this equation covers the intermediate-time regime
TKt ∼ 1/g only on a qualitative level. It will be very helpful
for a qualitative discussion of the quench protocol considered
in the next section.

B. Quench protocols

The dynamics resulting out of different types of parameter
quenches in the IRLM was studied earlier,15,36,42,43 but no

thorough analysis of the role of non-Markovian memory was
presented so far.

1. RTRG approach

We begin with adapting the general approach to quenches
using the RTRG method described in Sec. II B to the IRLM.
Inserting Eq. (24) in Eq. (23) and using the form Rf/i(E) =
R̃

f/i

� (E)Z′
f/i(E) of the resolvent, we obtain for t0 = 0

ρf (t) = i

2π

∫
e−iE(t−tq ) R̃

f

�(E) Z′
f (E) ρ(tq)dE

− i

∫ ∞

0

∫∫
e−iE(t−tq )e−iE′tq

×
∑
η=±

R̃
f

�(E) G̃f
η (E) R̃

f

�(E + i�) Z′
f (E + i�)R̃i

�

× (E′ + i�) G̃i
−η(E′) R̃i

�(E′) Z′
i(E

′)ρ(0)
dE dE′

(2π )2
d�,

(87)

where G̃
f/i
η (E) = Z′

f/iG
f/i
η (E). According to Eq. (33), the

first term on the rhs gives the following contribution to 〈σz〉(t):
Pf (t − tq)〈σz〉(tq) = Pf (t − tq)Pi(tq)〈σz〉(0),

where Pi/f (t) is the dot occupancy (spin expectation value)
computed without a quench as given in Eq. (34) using the
parameters of Hi

tot and H
f
tot, respectively. For the function P (t),

this gives the contribution Pf (t − tq)Pi(tq).
The second term on the rhs of Eq. (87) can be evaluated

by inserting the matrix structure of R̃
f/i

� , Z′
f/i and G̃

f/i
η ,

as provided in Appendix C. Since we are interested in the
diagonal elements of the density matrix, a straightforward
analysis shows that only the following parts of the various
resolvents contribute:

R̃
f/i

� (E) → 1

E + i�
f/i

1 (E)

(
τ− 0
0 0

)
,

R̃
f/i

� (E + i�) → 1

E + i� + i�
f/i

2 (E + i�)/2

(
0 0
0 1

)
.

Neglecting � in the slowly varying function Z′(E + i�) and
inserting the matrix structure of Z′ and the vertices G̃

f/i
η , we

find after straightforward algebra for the part determining the
diagonal matrix elements of the density matrix that in Eq. (87)
we can employ the replacement∑

η=±
R̃

f

�(E) G̃f
η (E) R̃

f

�(E + i�) Z′
f (E + i�)

× R̃i
�(E′ + i�) G̃i

−η(E′) R̃i
�(E′) Z′

i(E
′) ρ(0)

→ −i 2Ui

√
Zf (E)Zi(E′)�f

1 (E)�i
1(E′) R

f

1 (E) R
f

2

× (E + i�) Ri
2(E′ + i�) Ri

1(E′)
1

2

(−1

1

)
〈σz〉(0),

where R
f/i
n (E) = 1/[E + i�

f/i
n (E)/n]. As a result, the

contribution of Eq. (87) to the function P (t) can be
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written as

P (t) = P f (t − tq)P i(tq)

− gi

∫ ∞

0
F

f

� (t − tq)F i
�(tq)d�, (88a)

where gi ≈ 2Ui in leading order, and the functions F
i/f

� (t) are
defined by

F
i/f

� (t) =
∫

e−iEtR
i/f

2 (E + i�)

×R
i/f

1 (E)
√

Zi/f (E) �
i/f

1 (E)
dE

2π
(88b)

and describe the effective emission of a single fermionic
excitation by the dot before the quench (F i) and its absorption
after the quench (Ff ). The subsequent analytical evaluation
of this formula in leading order in g is shown in Appendix E.
We note that this analysis is only qualitative, but in essence
backed up by the numerical solution of the full RG equations,
since we need results in the intermediate-time regime either
for T

f

K (t − tq) � 1/gf or for T i
Ktq � 1/gi , where Eq. (86)

for the relaxation protocol is only qualitative. However, these
interpolation formulas are sufficient for a discussion of the
competition between the two terms of P (t) in Eq. (88a)
describing the effects without and with memory from the
dynamics before the quench.

2. FRG approach

In a two-lead geometry, quenches of the single-particle
parameters (but not the two-particle interaction U ) of the
IRLM were earlier studied in Ref. 36 using FRG. The focus
was on systems driven by an applied bias voltage. Within the
FRG approach also the interaction can carry an arbitrary time
dependence, such that the approach developed in this paper
can directly be applied to the problem of present interest.

3. Interaction quenches

To illustrate the physics of a quench, which is substantially
different from the one of the simple relaxation process, we ini-
tially study the instantaneous transition between the (partially)
coherent (g > 0) and the incoherent (g < 0) regimes, keeping
the absolute value |g| fixed. The characteristic energy scales
T

i/f

K before and after the quench differ by orders of magnitude.
As a consequence, the new small parameter A2 appears which
is given by the ratio of the smaller Kondo temperature at
negative coupling and the larger one at g > 0. Substituting
the expressions for T

i/f

K ≈ �0(ωc/�0)gi/f from Eq. (38) for
g � 1, we obtain A ≈ (�0/ωc)|g|.

a. Coherent-to-incoherent quench. We first consider a
quench from gi = g > 0 to gf = −g < 0. The dynamics of
the system in the (partially) coherent regime implies at least
one local minimum and one zero of P (t) in the absence of a
quench. The position of the first zero of the relaxation protocol
will be denoted as t∗ in the following. In the absence of the
memory term from the quench, obtained within RTRG by
leaving out the second term in Eq. (88a), P (t) after the quench
is monotonically decaying to zero. In the systems memory
from the dynamics before the quench, that is, the second term
of Eq. (88a), however, the tendency to change the sign of P (t)

is kept even at t > tq . Thus, if the quench is performed at
time tq < t∗, nonmonotonic behavior appears for t > tq for
which the time evolution is already performed with a negative
coupling. In Appendix E, we show that Eq. (88) can be written
as

P (t) ≈ e−�
∗f

1 (t−tq )−�∗i
1 tq [2 cos(�itq) − 1]

− gAS−
T

f

K t
S+

T i
K t

e−�
∗f

2 (t−tq )/2−�∗i
2 tq /2

T
f

K t
, (89)

where A =
√

T
f

K /T i
K and the function S± is defined as

S±
x = (x/2)±g/2

(x/2)±g − 1/2
. (90)

Note that we have included for P f (t − tq)P i(tq) only the
first term of Eq. (86). The contributions of O(g) resulting
from the second term of Eq. (86) lead to a stronger decay
compared to the second term of (89). The first term of Eq. (89),
corresponding to the coherent contribution, and the second
one, describing the system memory, have different signs for
tq < t∗, and therefore compete. If 2 cos(�itq) − 1 � g, then,
right after the quench the first term dominates, but, due to the
twice larger decay rate, becomes recessive later. This leads to
a local minimum and a sign change after the quench. With tq
approaching t∗, 2 cos(�itq) − 1 decreases and the time scale
at which the second term dominates approaches tq from above.
For times tq > t∗, the first one is already negative, so both terms
just add up and no local minimum or zero of P (t) appears. In
the lower panel of Fig. 7, the absolute value of Eq. (89) is
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FIG. 7. (Color online) Time evolution of the spin expectation
value P (t) in the quench protocol. The coupling is quenched from
gi > 0 to gf = −gi < 0. The time of the quench tq is varied as
indicated by the vertical dotted lines. If tq is smaller than the time t∗ of
the first zero of P (t) in the absence of the quench, the non-Markovian
memory transfers the nonmonotonic behavior to the time regime
after the quench in which the time evolution is performed with a
negative coupling constant. Note that the time axis is chosen to be
T i

K t before the quench and T
f

K t after it. Since T i
K and T

f

K can differ
by orders of magnitude scaling, the time axis in this way is physically
meaningful. Upper panel: P (t) obtained from the numerical solution
of the FRG (symbols) and RTRG (lines) flow equations. Lower panel:
the analytical RTRG result (89). Curves are shown only for times
T

f

K (t − tq ) � 1 for which this result is applicable.
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shown on a linear-log scale for fixed gi = 0.1, different tq , and
the times of validity of this expression (see above).

The analytical prediction of Eq. (89) is confirmed by the
numerical solutions of the FRG and RTRG flow equations.
The corresponding |P (t)| are shown in the upper panel of
Fig. 7 (symbols: FRG; lines: RTRG). If tq (indicated by
the vertical dotted lines) is larger than t∗ (given by the dip
position of the blue curve with tq to the right of the dip),
P (t) after the quench does not show a local minimum and/or
zero (blue curve). In the opposite case (green and yellow),
nonmonotonic behavior is transferred deep into the regime in
which the time evolution is performed with a negative g. For
the case in which tq is significantly to the left of t∗ (yellow
curve), the FRG and the RTRG data show sizable differences
at large t . In this case, the zero of P (t) is transferred to
very large times, that is, deeply into the regime in which
the time evolution is performed with a negative coupling
constant. At those times, the overall exponential decay already
suppressed |P (t)| to a very small value (of the order 10−6 in the
figure). Therefore, any small difference in the P (t) obtained
by the two approximate methods leads to a drastically different
appearance of the curves (e.g., a sizable shift of the zero) on
the linear-log scale of the plot.

b. Incoherent-to-coherent quench. We next study the op-
posite interaction quench with gi = −g < 0 to gf = g > 0
and show that monotonic behavior may prevail even after
the quench. Again, the non-Markovian memory is responsible
for this surprising behavior. To gain analytical insights, we
consider Eq. (88) in the limit T i

Ktq � T
f

K (t − tq) � 1. As
described in detail in Appendix E, we obtain the approximate
expression

P (t)

P (tq)
=
[

1 − 2A

S−
T i

K tq

]
e−�

∗f

1 (t−tq )

× [2 cos{�f (t − tq)} − 1] + A

S+
T

f

K tq

S−
T i

K tq

e−�
∗f

2 (t−tq )/2, (91)

with A =
√

T i
K/T

f

K . We left out the second term of Eq. (86)

for the calculation of P f (t − tq) in the first term of Eq. (88a)
since it leads to a subleading contribution O(gf ) to Eq. (91).
We are not interested in exponentially large times and can thus
set S± = 2 in Eq. (91). It simplifies to

P (t)

P (tq)
≈ (1 − A)e−�

∗f

1 (t−tq )[2 cos{�f (t − tq)} − 1]

+Ae−�
∗f

2 (t−tq )/2. (92)

This expression shows that because of A ≈ (�0/ωc)|g|, the
oscillatory term of the dynamics after the quench is suppressed
with decreasing g. A critical gc is found such that for g < gc

the relaxation is monotonic after the quench, even though the
time evolution is performed with a positive coupling constant.
This result is again confirmed by FRG calculations revealing
the independence of the qualitative behavior of P (t) from
the time of the quench tq (see Fig. 8). We here refrain from
showing results obtained from the numerical solution of the
RTRG equations and just mention that those are consistent
with the behavior described above.
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FIG. 8. (Color online) Time evolution of the spin expectation
value P (t) in the quench protocol obtained from the numerical
solution of the FRG flow equations. Here, the coupling is quenched
from gi < 0 to gf = −gi > 0. Note that the time axis is chosen to
be T i

Kt before the quench and T
f

K t after it. Different lines correspond
to different quench times tq increasing from left to right. Upper
panel: gf < gc, that is, the time evolution even after the quench
is monotonic even though it is performed with a positive coupling
constant. The non-Markovian memory heavily affects the dynamics
after the quench. The qualitative behavior is independent of tq . Lower
panel: gf > gc; nonmonotonic behavior is found after the quench.
This is again independent of tq .

The transfer of monotonic dynamics across the quench
can be explained as follows. In the case of the relaxation
protocol with g > 0, there are two competing terms with
different relaxation rates and prefactors, which result from
the pole ∼e−�

∗f

1 (t−tq )[2 cos{�f (t − tq)} − 1] and branch cut

∼ge−�
∗f

2 (t−tq )/2 contributions. The latter follows from the non-
Markovian terms in the von Neumann equation, and therefore
represents the memory of the system. For the sake of simplicity
of the qualitative explanation, we here use the simplified
expressions omitting the power-law dependencies. Due to the
small prefactor g, the oscillating term always dominates at
times T

f

K (t − tq) ∼ 1, but due to the twice larger decay rate is
subdominant at larger times. After the quench, the memory
term remains the same, i.e., ∼ge−�

∗f

2 (t−tq )/2−�∗i
2 tq /2, where

the exponent contains the contributions collected starting at
t = 0. The contribution without memory from the dynamics
before the quench, which is equal to e−�

∗f

1 (t−tq )[2 cos{�f (t −
tq)} − 1], where t − tq is the time passed after the quench,
needs to be multiplied by the value of the density matrix at
tq , which is ge−�∗i

2 tq /2. Thus, the competing terms after the

quench are ∼ge−�
∗f

1 (t−tq )−�∗i
2 tq /2[2 cos{�f (t − tq)} − 1] and

∼ge−�
∗f

2 (t−tq )/2−�∗i
2 tq /2, and, depending on more subtle pref-

actors [see Eq. (92)], the nonoscillatory term may dominate
even right after the quench.

4. Quench of the level position

Up to now, we exclusively considered the case of vanishing
level energy ε = 0 or, for the SBM, vanishing Zeeman splitting
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FIG. 9. (Color online) Time evolution of the spin expectation
value P (t) after a quench of the Zeeman splitting from zero to ε/TK =
5 obtained within FRG. The stationary value Pstat �= 0 was subtracted
and the data are presented on a linear-log scale. The behavior for
systems with different couplings [g = 0.0636 (dashed red line) and
g = 0.1910 (dotted-dashed blue line)] does not significantly differ
from the noninteracting case (black solid line). The inset shows |P (t)|
before the quench.

in both the relaxation as well as the quench protocols. We
next study the response of the system to abruptly changing ε

for g � 0. For this we only use the flexible FRG approach
in which finite ε can straightforwardly be included. We
start out with the case of a quench from ε = 0 to a value
much larger than TK . The instantaneous increase of the level
position from zero (that is, resonance) to a large value results
in a behavior of P (t) similar to the one observed in the
relaxation protocol with a time-independent large ε; for details
see Refs. 21 and 22. For a finite Zeeman field, the spin
expectation value does no longer vanish at large times (the
level occupancy does not approach 1

2 ). In Fig. 9, showing P (t)
for different g we thus subtracted the stationary value Pstat.
Qualitatively, the dynamics can be described by considering
two main contributions: the nonoscillatory term e−�∗

1 (t−tq )

stemming from a pole on the imaginary axis and the term
(TK/ε)e−�∗

1 (t−tq )t/2 sin[ε(t − tq)]/[ε(t − tq)] originating from
a pair of branch cuts positioned away from the imaginary
axis. Initially, the second term is suppressed due to the small
prefactor TK/εt , so that only weak oscillations on top of an
exponential decay are observed (see Fig. 9). At larger times,
TK (t − tq) � 2 ln(ε/TK ), due to the twice smaller decay rate
the second term dominates, revealing a weaker decay which is
overlaid by (relatively) strong oscillations.

Results for P (t) for the reversed quench from large ε to zero
are presented in Fig. 10. For g > 0, the behavior of the spin
expectation value after the quench (lines in Fig. 10) resembles
the one found within the relaxation protocol in the (partially)
coherent regime (symbols in Fig. 10). However, there is a
substantial difference between the two cases for g = 0. In the
quench protocol at large t , the decay with the relaxation rate
�0/2 dominates, which is absent in the relaxation protocol.
This effect can be understood from the analytical expression
for P (t) after an ε quench at g = 0, which is given in Ref. 15.

Non-Markovian memory plays a subdominant role for those
types of quenches.
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FIG. 10. (Color online) Time evolution of the spin expectation
value P (t) after a quench of the Zeeman splitting from ε/TK = 10
to zero for different g (lines) obtained within FRG. For comparison,
|P (t)| of the relaxation protocol is shown (symbols). Inset: P (t)
before the quench at TKtq = 22.5.

5. Current in a two-reservoir setup with level position quench

The developed methods can be easily generalized for the
problem of transport through a two-lead quantum dot, where
the current in the reservoirs can be measured. The following
setup is considered: at t = 0 the dot level with large ε is
coupled to the reservoirs held at different chemical potentials
μL/R = ±V/2 and the time evolution is performed. After
relaxation into the stationary state, ε is quenched to a value
making it resonant with the left lead. Due to the finite voltage
V applied across the dot, the model can no longer be mapped
onto the SBM. We still discuss the time evolution of this model
in this paper as it can partly be understood in terms of the SBM
physics described above.

Typical data for the current in the left (upper panel) and
right lead (lower panel) in this setup are shown in Fig. 11. The
surprising finding is that despite the large bias V/TK = 10,
the left lead current only has a slight trace of oscillations with
frequency of the reservoir bias V . In two lead setups with
finite bias voltage, the latter usually dominates the current (see
Refs. 21 and 22); in the present case this can be inferred from
the right current (dashed blue line in the lower panel). Instead,
the oscillatory part of the left current is characterized by the
SBM frequency � appearing for g > 0; see the dip at TKt ≈
17.5 in the dashed blue line of the upper panel of Fig. 11. For
small g, � is proportional to g and thus zero for g = 0 (solid
black line in the upper panel). This is a clear evidence that
depending on the precise setup, the largest low-energy scale,
in the present case V , may not serve as a cutoff of the RG flow
and is thus not visible in all observables.

The additional dip in the left lead current right after the
quench at TKtq = 11.75 reflects the power-law decay of P (t)
in the relaxation protocol at small times given in Eq. (58).
During the relaxation process, the tunnel coupling to the left
lead, which is in resonance with the dot level, is dominating
over the right one, that is, fermions predominantly hop from the
dot level to the left lead and back. The left current can thus be
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FIG. 11. (Color online) Time dependence of the left (upper panel)
and right (lower panel) currents in a two-lead setup with a bias voltage
V/TK = 10 applied symmetrically across the dot. At time TKtq =
11.75, that is, after reaching the stationary state with respect to the
initial preparation, the level position ε is abruptly lowered from 10TK

to that being resonant with the left lead ε − V/2 = 0. Black solid
lines show the noninteracting case, while blue dashed lines are FRG
data obtained for g = 0.3184. Insets: Time evolution of the left and
right currents with ε − V/2 = 0 initially and no parameter quench at
a later time.

approximated as JL(t) ≈ ∂tP (t), with P (t) = 2〈d†d〉(t) − 1,
and the time dependence of the current for short times is ∝tg .
This leads to the first dip right after the quench in the upper
panel of Fig. 11.

For large times TKt � 17, the right current shows oscilla-
tions which do not involve transitions through zero (see the
dashed blue line in the lower panel of Fig. 11 which becomes
smooth for TKt � 17). Those are absent if one computes
the right current with the level being initially resonant with
the left lead and no additional parameter quench at a later
time (relaxation protocol) (see the lower inset). In this case,
dips appear which are associated to zeros of the current. This
difference can be explained as follows. In the quench protocol
in addition to the oscillating term with decay rate �∗

2/2,
(TK/ε)e−�∗

2 t/2 sin(εt)/(εt) a monotonic contribution with the
same rate ∝e−�∗

2 t/2 must appear. Adding those up leads to
the observed exponential decay with rate �∗

2/2 overlaid by
oscillations with frequency ε. This monotonic term is absent
in the relaxation protocol and can thus be attributed to the
system memory from before the ε quench.

V. CONCLUSIONS

Using two complementary RG methods, we have provided a
comprehensive study of the relaxation dynamics in the Ohmic
SBM. The SBM is considered to be the prototype model
for a microscopic description of dissipation in open quantum
systems. We exploit the mapping of the SBM onto the IRLM.
We have studied two basic protocols: a relaxation protocol in
which at time t = 0 the system is prepared in a product state
and the time evolution is performed with the SBM Hamiltonian
as well as a quench protocol in which in addition at time tq > 0
a parameter of the Hamiltonian is abruptly changed. While the
FRG was used earlier to study quenches in locally correlated

quantum systems, we here extended the RTRG to this type of
nonequilibrium setup. A comparison of the results obtained
using our two approximate methods shows that both provide
controlled access to the dynamics of the SBM close to the
coherent-to-incoherent transition. In the limit of exponentially
large times of the relaxation protocol, a comparison to
established results derived by other approaches is possible
and further substantiates this. Crucially, we present original
results for intermediate to long times providing a profound
understanding of the details of the relaxation dynamics in
all time regimes of interest, in particular those relevant for
discussing the crossover from coherent to incoherent behavior.

Our first central result concerns the classification of the
dynamics in the relaxation protocol with Zeeman splitting
ε = 0 as coherent or incoherent. We have shown that for
spin-boson couplings α less than 1

2 but close to this value,
the dynamics should be denoted as partially coherent as
only a few local minima (and associated zeros) of the spin
expectation value P (t) can be observed on intermediate times
while the asymptotic dynamics is purely monotonic. We have
confirmed that for 1

2 < α < 1 the dynamics is monotonic, that
is, incoherent. The main focus of our work is on the role of
the non-Markovian memory in the quench dynamics. We have
identified several situations in which the latter dominates the
physics. Most prominent are the effects in interaction quenches
across the (partially) coherent-to-incoherent transition. In this
case, nonmonotonic behavior can be transferred deep into a
regime in which the time evolution is performed with coupling
constant α > 1

2 and P (t) might become monotonic for times
at which α < 1

2 . Both effects are surprising manifestations of
non-Markovian memory. We have shown that the latter plays
a subdominant role in the dynamics resulting out of quenches
of the Zeeman splitting ε.

We finally left the framework of the SBM and considered a
quench in a two-lead IRLM with a finite bias voltage applied
across the dot. If the level is quenched on resonance with one
of the leads, SBM physics is found in this setup. In addition,
non-Markovian memory has a sizable effect in this system.

For future research in the field of relaxation and quench
dynamics in open quantum systems, we note that the RTRG
and FRG methods are quite flexible tools to discuss various
models, physical quantities, and initial setups. Whereas the
RTRG requires a weak system-bath coupling, the FRG needs
weak local interactions in the quantum system. In this respect,
the two methods are complementary and a huge parameter
regime can be covered. Aside from the local density matrix,
other physical observables such as the particle and heat
current for biased situations, spectral densities, and explicitly
time-dependent Hamiltonians can be treated. All correlated
initial conditions at time t = 0 can be studied which can be
realized by the time dynamics out of an uncorrelated setup at
some past time t0 < 0.36 Within the RTRG, this means that the
system and bath should be decoupled at t = t0, whereas for the
FRG the total density matrix at t = t0 should not contain any
correlations from interactions. At t = 0, correlations are built
up by the real-time dynamics such that, in the limit t0 → −∞,
all equilibrium density matrices containing arbitrary local
interactions and system-bath correlations can be used as
initial condition. Furthermore, by using sequences of different
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quenches at different times, together with the possibility to
choose a finite value for t0, many more initial conditions even
in nonequilibrium setups can be studied.

An interesting aspect of our approach is the possibility
to investigate non-Markovian dynamics of open quantum
systems and to analyze the relation to concepts of quan-
tum non-Markovianity discussed within information theoretic
approaches.5 Several measures have been proposed to char-
acterize the degree to which the dynamics of a given system
is non-Markovian. For weak-coupling models, our methods
provide controlled access to the reduced density matrix, that is,
all diagonal and nondiagonal matrix elements, from which the
proposed measures of non-Markovianity can be determined.
However, for the specific example of the Ohmic SBM close to
the coherent-to-incoherent transition (at α = 1

2 ), the coupling
constant α is of order 1 and we rely on the mapping to the
IRLM, where a weak-coupling expansion in the parameter
g = 1 − 2α is possible. As a consequence, we were only able
to discuss the spin expectation value of the SBM in the z

direction since this observable can be directly related to the
local occupation probability of the IRLM. In contrast, the spin
expectation values in the x or y directions can not be related
to the off-diagonal elements of the local density matrix of
the IRLM but is a rather complicated nonlinear observable
involving reservoir degrees of freedom. Therefore, for the
SBM close to α = 1

2 , it would be interesting to investigate
the time evolution of the off-diagonal elements of the reduced
density matrix using alternative approaches.
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APPENDIX A: DIAGRAMMATICS IN LIOUVILLE SPACE

We here show how the diagrammatic expansion developed
in Ref. 3 for time-translational-invariant systems can be
extended to the general case of time-dependent Hamiltonians
in a straightforward way. We start from a total Hamiltonian of
the form Htot(t) = Hres(t) + HS(t) + V (t), where

Hres(t) =
∑

α

[Hα + δμα(t) Nα]

=
∑
kν

[εkν + δμα(t)]a†
kνakν (A1)

describes a set of noninteracting reservoirs with time-
dependent chemical potentials μα + δμα(t) (α denotes the
reservoir index and ν ≡ αnσ contains in addition the channel
index n and the spin index σ ), HS(t) is any time-dependent
Hamiltonian operator describing the isolated local quantum
system, and V (t) is a generic interaction between the local
system and the reservoirs which, following the notation of
Ref. 3, is written in the compact form (n = 1,2, . . .)

V (t) = 1

n!
g12...n(t) : a1a2 . . . an : . (A2)

Here, a1 =∑k δ(ω − εkν + μα)(a†
kνδη+ + akνδη−) are the

reservoir field operators in continuum notation, and 1 ≡
ηνω is a multi-index containing the information for

creation/annihilation operators (η = ±) and characterizing the
reservoir state (εkν = ω + μα is the energy of the reservoir
state). Implicitly, we sum over all discrete indices ηi and
νi and integrate over the frequencies ωi . : . . . : denotes
normal-ordering w.r.t. the reservoir equilibrium distribution
and g12...n is any vertex operator acting only on the local system
characterizing the change of the local state in an interaction
process. For its determination for concrete models respecting
the correct sequence of fermionic field operators, we refer to
Ref. 3.

For times t < t0, the local system is assumed to be
decoupled from the reservoirs such that the total initial density
matrix has the product form

ρtot(t0) = ρ(t0) ρeq
res, (A3)

where ρ(t0) is any initial density matrix for the local system
and ρ

eq
res =∏α ρ

eq
α describes each reservoir α in grand-

canonical equilibrium ρ
eq
α = 1

Zα
e−(Hα−μαNα)/Tα , characterized

by its chemical potential μα and temperature Tα (we set
kB = h̄ = 1).

To describe the time evolution for times t > t0, we in-
troduce the Liouville operators Ltot(t) = [Htot(t),·], Lres(t) =
[Hres(t),·], LS(t) = [HS(t),·], and LV (t) = [V (t),·], such that
the time evolution for the reduced density matrix ρ(t) =
Trresρtot(t) of the local system can be written as (T denotes the
time-ordering operator)

ρ(t) = Trres T e
−i
∫ t

t0
Ltot(t ′)dt ′

ρtot(t0)

= 〈T e
−i
∫ t

t0
[Lres(t ′)+LS (t ′)+LV (t ′)]dt ′ 〉res ρ(t0), (A4)

where 〈. . .〉res = Trres . . . ρ
eq
res denotes the average w.r.t. the

equilibrium reservoir distribution. Expanding Eq. (A4) in LV

we find

ρ(t) = �(t,t0) ρ(t0), (A5)

� =
∞∑

m=0

(−i)m 〈(�(0) (LV �(0))m)〉res, (A6)

where �(t,t ′) is an effective propagator acting only in
Liouville space of the local system, and we used a compact
matrix notation in time space with the continuum matrix
elements

�(0)(t,t ′) = θ (t − t ′) T e−i
∫ t

t ′ [Lres(τ )+LS (τ )]dτ , (A7)

LV (t,t ′) = δ(t − t ′ − 0+) LV (t). (A8)

To find a diagrammatic representation for �(t,t ′) and a self-
consistent kinetic equation for ρ(t), we proceed as in Ref. 3
and integrate out the reservoir field operators by using the
representation

LV = 1

n!
σp1...pnG

p1...pn

1...n (t) : A
p1
1 . . . Apn

n : , (A9)

where pi = ± denote the Keldysh indices (over which we sum
implicitly), σp1...pn is a Liouvillian sign operator acting on the
local system (only necessary for fermions), and G

p1...pn

1...n (t) is a
Liouvillian vertex operator related to the vertex operator g1...n

(for the precise definitions see Ref. 3). A
p

1 are reservoir field
superoperators acting in Liouville space, defined by A

p

1 b =
a1bδp+ + ba1δp− when acting on a reservoir operator b. In-
serting Eq. (A9) in Eq. (A6), shifting all field superoperators to
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the right by using the identity A
p

1 Lres(t) = [Lres(t) − x1(t)]Ap

1
with x1(t) = η[ω + μα + δμα(t)], applying Wick’s theorem
with the following contraction of field superoperators (the
upper/lower case refers to bosons/fermions)

γ
pp′
11′ = A

p

1 A
p′
1′ =

{
1
p′

} 〈
A

p

1 A
p′
1′
〉
res, (A10)

and using TrresLres = 0, we arrive at the diagrammatic repre-
sentation

� = �S +
∞∑

m=2

∑
diagrams

(±)Np

S

(∏
γ
)

(−i)m

×�S

(
G�

X1
S

)
. . .
(
G�

Xm−1
S

)
G�S , (A11)

with

�X
S (t,t ′) = θ (t − t ′) T e−i

∫ t

t ′ (LS+X)(τ )dτ , (A12)

G(t,t ′) ≡ (Gp1...pn

1...n

)
(t,t ′)

= δ(t − t ′ − 0+) G
p1...pn

1...n (t), (A13)

and �S ≡ �X=0
S . The quantity Xi(t) appearing in the prop-

agator �
Xi

S is defined as the sum over all xj (t) = ηj [ωj +
μαj

+ δμαj
(t)] from contractions running over this propagator

with the index j stemming from the vertex standing left to
this propagator. Np is the number of crossings of fermionic
contractions and S =∏i mi! is a symmetry factor needed for
each pair i of vertices connected by mi equivalent lines (see
Ref. 3 for more details and the derivation of the diagrammatic
rules).

∏
γ stands for the product of all contractions Eq. (A10)

and, for brevity, the indices of the vertices G have not been
indicated in Eq. (A11). Explicitly, the contraction is given by

γ
pp′
11′ = δ11̄′ p′

{
η

1

}
ρν(ω) fα(p′ηω), (A14)

where 1̄ ≡ −η,νω and δ11′ = δηη′δνν ′δ(ω − ω′). ρν(ω) =∑
k δ(ω − εkν + μα) denotes the density of states and fα(ω) =

1/(eω/Tα ∓ 1) is the Bose/Fermi function of reservoir α.
By grouping all diagrams in sequences of irreducible blocks

� (where each propagator has at least one contraction crossing
over it), we find

� = �S

∞∑
k=0

(−i � �S)k, (A15)

where

� = i

∞∑
m=2

∑
diagrams

(±)Np

S

(∏
γ
)

irr
(−i)m

×G�
X1
S . . . G�

Xm−1
S G (A16)

denotes the sum over all irreducible diagrams indicated by
(
∏

γ )irr. From (A15) we find that the propagator can be
determined from the self-consistent equation

� = �S (1 − i � �). (A17)

Expanding �S in LS we find

�S = θ (1 − i LS �S), (A18)

where LS(t,t ′) = LS(t)δ(t − t ′ − 0+) and θ (t,t ′) = θ (t − t ′).
Inserting this equation in Eq. (A17), we obtain

� = θ (1 − iL�) (A19)

= θ

∞∑
k=0

(−iLθ )k, (A20)

where we have introduced the effective Liouvillian

L = LS + �. (A21)

A self-consistent kinetic equation for ρ(t) can be derived
by taking the time derivative of Eqs. (A5) and (A19). We find

∂t� = δ − i L�, (A22)

where (∂t�)(t,t ′) = ∂
∂t

�(t,t ′) and δ(t,t ′) = δ(t − t ′ − 0+).
Inserting this relation in ρ̇(t) = (∂t�)(t,t0)ρ(t0) leads to the
kinetic equation

i ρ̇(t) =
∫ t

t0

L(t,t ′) ρ(t ′)dt ′. (A23)

We note that the compact matrix notation in time space
allows us to write all equations straightforwardly in Fourier
space by using the Dirac notation 〈t |E〉 = 1√

2π
e−iEt . This

leads to

LS(E,E′) = 1

2π

∫
ei(E−E′)tLS(t)dt, (A24)

A(E,E′) = 1

2π

∫∫
eiEt−iE′t ′A(t,t ′)dt dt ′, (A25)

δ(E,E′) = 1

2π

∫
ei(E−E′)t dt = δ(E − E′), (A26)

θ (E,E′) = 1

2π

∫∫
t>t ′

eiEt−iE′t ′dt dt ′ = i

E
δ(E − E′), (A27)

where A ≡ �,�S,L,�. For ρ(E) we use the special definition

ρ(E) =
∫

dt eiE(t−t0) ρ(t) θ (t − t0), (A28)

such that Eqs. (A5) and (A23) read as, in Fourier space,

ρ(E) =
√

2πe−iEt0�(E,t0)ρ(t0), (A29)

E ρ(E) = iρ(t0) +
∫

L(E,E′) e−i(E−E′)t0 ρ(E′)dE′. (A30)

For the special case of a time-translational-invariant Hamilto-
nian, all objects A(t,t ′) = A(t − t ′) depend only on the relative
time difference and LS is independent of time. This gives

LS(E,E′) = δ(E − E′) LS, (A31)

A(E,E′) = δ(E − E′)
∫ ∞

0
eiEt A(t)dt ≡ δ(E − E′) A(E),

(A32)

�(E,t0) = 1√
2π

eiEt0 �(E). (A33)

Inserting Eqs. (A26), (A27), (A31), and (A33) in
Eqs. (A18), (A19), and (A29), we obtain

�S(E) = i

E − LS

, (A34)
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�(E) = i

E − L(E)
, (A35)

ρ(E) = �(E) ρ(t0). (A36)

For the diagrammatic representation of �(E) we obtain from
Eq. (A16) the result

�(E) =
∞∑

m=2

∑
diagrams

(±)Np

S

(∏
γ
)

irr

×GRS(E + X1) . . . GRS(E + Xm−1) G, (A37)

with the resolvent RS(E) = −i�S(E) = 1/(E − LS). Conve-
niently, the frequency integration over the variables ω̄ = ηω

appearing in the quantities Xi are performed by closing the
integration contour in the upper half of the complex plane
where, except for the density of states and the Bose/Fermi
function appearing in the contraction Eq. (A14), the integrand
is analytic.

APPENDIX B: QUENCH DYNAMICS

If, at a certain quench time t = tq , the properties of the
Hamiltonian are discontinuously changed, it is convenient to
define propagators and effective Liouville operators corre-
sponding to the time evolution after and before the quench
as well as to the memory by

Af (t,t ′) = A(t,t ′) θ (tq − t ′), (B1)

Ai(t,t
′) = θ (tq − t) A(t,t ′), (B2)

Af i(t,t
′) = θ (t − tq) A(t,t ′) θ (tq − t ′), (B3)

with A ≡ �,�S,�,L,LS . Since LS,f i = 0 we get Lf i = �f i .
Due to the form (A20) of the propagator we obtain the central
equation

�f i(t,t
′) = �f (t,tq) �i(tq ,t

′) − i (�f �f i �i)(t,t
′), (B4)

which holds in the generic case even if the Hamiltonian is time
dependent before and after the quench. The relation between
the density matrix ρf (t) = ρ(t)θ (t − tq) after the quench and
the one at the initial time t0 < tq before the quench (where the
local system and the reservoirs are assumed to be decoupled)
can be calculated from

ρf (t) = �f i(t,t0) ρ(t0). (B5)

For the special case of a time-independent Hamiltonian
before and after the quench (which we discuss in this paper),
the propagators �f/i after and before the quench depend
only on the relative time difference. Introducing the special
Fourier transformation for the memory parts (where tq is used
as reference time and the prefactor 1

2π
is omitted)

Af i(E,E′) =
∫∫

eiE(t−tq )−iE′(t ′−tq ) Af i(t,t
′)dt dt ′, (B6)

and using Eq. (A32) we obtain for Eq. (B4) in Fourier space

�f i(E,E′) = �f (E) [1 − i �f i(E,E′)] �i(E
′), (B7)

with

�f (E) = i

E − Lf (E)
, (B8)

�i(E
′) = i

E′ − Li(E′)
. (B9)

The diagrammatic representation of this formula is illustrated
in Fig. 1(a).

The diagrammatic expansion for −i�(E,E′) can be ob-
tained from Eq. (A16) as

−i �f i(E,E′) =
∫∫

eiE(t−tq )−iE′(t ′−tq )

×
∞∑

m,m′=1

∑
diagrams

(±)Np

S

(∏
γ
)

irr
(−i)m+m′

× (Gf �
X

f

1
S,f . . . Gf �

X
f
m

S,f

)
(t,tq)

× (�Xi
m

S,i Gi �
X

′,i
1

S,i . . . Gi �
X

′,i
m′−1

S,i Gi

)
× (tq ,t

′)dt dt ′, (B10)

where X
f

k , k = 1, . . . ,m, contain the chemical potentials after
the quench, whereas the variables Xi

m and X
′,i
k′ , k′ = 1, . . . ,m′,

involve the chemical potentials before the quench. Performing
the time integrals and using that Gf/i is independent of time
and �S,f/i(t,t ′) = �S,f/i(t − t ′) depends only on the relative
time difference gives a product in Fourier space for the two
expressions left and right to the quench with the result

−i �f i(E,E′)

=
∞∑

m,m′=1

∑
diagrams

(±)Np

S

(∏
γ
)

irr

×Gf R
f

S

(
E + X

f

1

)
. . . Gf R

f

S

(
E + Xf

m

)
Ri

S

(
E′ + Xi

m

)
×Gi Ri

S

(
E′ + X

′,i
1

)
. . . Gi R

i
S

(
E′ + X

′,i
m′−1

)
Gi , (B11)

with the resolvents R
f/i

S (E) = −i�S,f/i(E) = 1/(E − L
f/i

S ).
As a result, we get the usual diagrammatic rules with the
difference that the quench time has to be introduced in one
propagator, all resolvents left (right) to the quench contain
the Fourier variable E (E′), and all vertices, Liouvillians,
and chemical potentials appearing left (right) to the quench
are associated with the ones after (before) the quench.
Furthermore, following Ref. 8, it is possible to sum over
all contractions which do not cross over the quench, such
that the full effective vertices Gf/i(E) and the full resolvents
Rf/i(E) = 1/[E − Lf/i(E)] appear left/right to the quench
with the result

−i �f i(E,E′)

=
∞∑

m,m′=1

∑
diagrams

(±)Np

S

(∏
γ
)

quench

×Gf (E) Rf

(
E + X

f

1

)
. . . Gf

(
E + X

f

m−1

)
Rf

(
E + Xf

m

)
×Ri

(
E′ + Xi

m

)
Gi

(
E′ + Xi

m

)
Ri

(
E′ + X

′,i
1

)
. . . Gi

(
E′ + X

′,i
1

)
. . . Ri

(
E′ + X

′,i
m′−1

)
Gi

(
E′ + X

′,i
m′−1

)
.

(B12)
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In this form, all contractions have to cross over the quench,
indicated by (

∏
γ )quench, leading automatically to a connected

diagram. Examples of diagrams are shown in Fig. 1(b).

APPENDIX C: RTRG FOR IRLM

Here, we present the results of the RTRG method for the
IRLM, as they have been derived in Ref. 21 by using the
Matsubara cutoff scheme or alternatively in Ref. 31 by the
E-RTRG method. We consider the special case of one single
reservoir at zero temperature with chemical potential μ = 0
and consider the particle-hole symmetric case ε = 0.

The quantities Z′(E) and L̃�(E) defined in Eq. (15) are
4 × 4 matrices in Liouvillian space in the basis (00,11,10,01),
where 0/1 denote the unoccupied/occupied states of the local
state. Writing each 4 × 4 matrix in terms of four 2 × 2 blocks,
Z′(E) and L̃�(E) can be written as

Z′(E) =
(
1 0

0 Z(E)1

)
, (C1)

L̃�(E) = −i

(
�1(E)τ− 0

0 1
2�2(E)1

)
, (C2)

where τ± = 1
2 (1 ± σx), and the functions Z(E) = Z(−E∗)∗

and �1/2(E) = �1/2(−E∗)∗ fulfill the RG equations

∂

∂E
Z(E) = U 2 Z(E)

E + i�2(E)/2
, (C3)

∂

∂E
�1(E) = −g

�1(E)

E + i�2(E)/2
, (C4)

∂

∂E
�2(E) = −g

�1(E)

E + i�1(E)
, (C5)

with g = 2U − U 2. The initial conditions at E = iωc are given
by Z = 1 and �1 = �2 = �0.

With Eq. (C2), the resolvent R̃�(E) = 1/[E − L̃�(E)]
defined in Eq. (14) can be decomposed as

R̃�(E) = 1

E

(
τ+ 0
0 0

)
+ 1

E + i�1(E)

(
τ− 0
0 0

)

+ 1

E + i�2(E)/2

(
0 0
0 1

)
. (C6)

The effective vertices G̃1(E) = Z′(E)G1(E) and G̃12(E) =
Z′(E)G12(E), where G1 =∑p G

p

1 and G12 =∑pp′ G
pp′
12

denote the vertices averaged over the Keldysh indices, contain
only the index 1 ≡ η = ± characterizing creation/annihilation
reservoir field operators (note that we consider the single reser-
voir case without spin). The effective vertices are explicitly
given by

G̃+(E) =
√

Z(E)�1(E)

2π

×

⎛
⎜⎝ 0

1/Z(E) 0
−1/Z(E) 0

0 0
1 − iπU 1 + iπU

0

⎞
⎟⎠ , (C7)

G̃−(E) =
√

Z(E)�1(E)

2π

×

⎛
⎜⎝ 0

0 −1/Z(E)
0 1/Z(E)

1 + iπU 1 − iπU

0 0 0

⎞
⎟⎠ , (C8)

G̃+−(E) = −G̃−+(E) =
(

0 0
0 Uσz

)
, (C9)

and G̃++ = G̃−− = 0.

APPENDIX D: BRANCHING POINT POSITION

Here, we show how to derive the improved formula (77)
for the position of the branching point z0 = −i�∗

2/2 of the
resolvent R1(E) = 1/[E + i�1(E)], which is at the same time
the pole of the resolvent R2(E) = 1/[E + i�2(E)/2], i.e.,
fulfills the equation z0 = −i�2(z0)/2 or �2(z0) = �∗

2 . We start
from the RG equations (35) for E = z0 + i�, with � > 0, i.e.,
the regime of the imaginary axis above the branch cut of R1(E).
By comparison with the numerical solution, we find that a very
good approximation consists in replacing �1/2(E) → �∗

2 on
the rhs of the RG equations. This leads to the solution (70)
for �1(E), which, when inserted in the RG equation for �2(E)
and using E = −i�∗

2/2 + i� gives the following differential
equation for the determination of �2:

d�2

d�
= −g

TK

� + �∗
2/2

(
TK

�

)g

. (D1)

This equation has to be solved with the boundary conditions

�2
�→∞−→ TK

(
TK

�

)g

, (D2)

�2
�→0−→ �∗

2 . (D3)

Taking another derivative with respect to � and defining the
variable x = −�/(�∗

2/2), we obtain the following special case
of the hypergeometic differential equation:

x(1 − x)
d2�2

dx2
+ [g − (1 + g)x]

d�2

dx
= 0. (D4)

Denoting the hypergeometric function by F (a,b,c,x), this
equation has the following two elementary solutions:

F (0,g,g,x) = 1(−x)1−g F (1 − g,1,2 − g,x). (D5)

Since the hypergeometric function is analytic for |x| < 1, the
second elementary solution has a branch cut from the power
law (−x)1−g , which is chosen such that the branch cut for
�2(E) lies on the negative imaginary axis. The solution for
|x| < 1 can then be written as

�2 = �∗
2 + λ (−x)1−g F (1 − g,1,2 − g,x), (D6)
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where we have used the boundary condition (D3) that �2 = �∗
2

for x → 0. The coefficient λ can be determined by taking
the derivative w.r.t. x and comparing with the differential
equation (D1) for x → 0. Using F (a,b,c,0) = 1 we obtain
from Eq. (D6)

d�2

d�
= − 2

�∗
2

d�2

dx

x→0−→ 2

�∗
2

λ(1 − g)

(
�∗

2/2

�

)g

,

which, when compared with Eq. (D1), gives λ =
− g

1−g
TK ( TK

�∗
2/2 )g , i.e., the solution for |x| < 1 reads as

�2 = �∗
2 − g

1 − g
TK

(
TK

�∗
2/2

)g

(−x)1−gF (1 − g,1,2 − g,x).

(D7)

To find the analytical continuation to the regime |x| > 1, we
use the relation

F (1 − g,1,2 − g,x) = �(2 − g)�(g)

�(1)�(1)
(−x)g−1F

(
1 − g,0,1 − g,

1

x

)
+ �(2 − g)�(−g)

�(1 − g)�(1 − g)
(−x)−1F

(
1,g,1 + g,

1

x

)

= (1 − g)
π

sin(πg)
(−x)g−1 + 1 − g

g

1

x
F

(
1,g,1 + g,

1

x

)
, (D8)

where we have used �(2 − g)/�(1 − g) = (1 − g),
�(1 − g)/�(−g) = −g, and �(2 − g)�(g) = (1 − g)�(1 −
g)�(g) = (1 − g) π

sin(πg) in the last step. Inserting Eq. (D8) in
Eq. (D7) gives the following solution for |x| > 1:

�2 = �∗
2 − πg

sin(πg)
TK

(
TK

�∗
2/2

)g

+ TK

(
TK

�

)g

F

(
1,g,1 + g,

1

x

)
. (D9)

Comparing this solution with the asymptotic boundary condi-
tion (D2), we find that the first two terms on the rhs of Eq. (D9)
have to cancel each other, leading to the result (77) for �∗

2 :

�∗
2

2
≈ TK

(
πg

2 sin(πg)

) 1
1+g

. (D10)

APPENDIX E: INTERACTION QUENCHES

In this Appendix we present the detailed calculation of
the second term of Eq. (88a) for the interaction quench
between the coherent and the incoherent regimes. To compute
the memory contribution to P (t) we start from Eq. (88b)
and restrict ourselves to small couplings |gi/f | � 1 such
that gi/f ≈ 2Ui/f . We use the notation a = i/f , ti = tq , and
tf = t − tq , and calculate the functions Fa

�(ta) in leading order
in ga by dropping all contributions from the resolvents of order
O(ga). Therefore, we replace �a

2 (E) → �∗a
2 in the resolvent

Ra
2 (E) and approximate the Z factors Za(E) ≈ 1. The latter

follows from the solution of the RG equation (C3), which in
leading order reads as

Za(E) ≈
(−iE + 1

2�∗a
2

ωc

)U 2
a

. (E1)

For |E| ∼ T a
K , this gives Za ∼ (T a

K/ωc)U
2
a ∼ 1 for small |Ua|.

With these approximations, Eq. (88b) reads as

Fa
�(ta) ≈ 1

2

∑
σ=±

∫ √
�a

1 (E)

E+i�a
1 (E)

e−iEta

E+i
(
�+ 1

2�∗a
2

)− σ0+
dE

2π
,

(E2)

where we added a small imaginary part iσ0+ to � and
have taken the average of σ = ± in order to define the
integrand on the branch cut of the first resolvent. Closing the
integration contour in the lower half-plane, there are two pole
contributions at E = ±�a − i�∗a

1 of the first resolvent (for
ga > 0), one pole contribution at E = −i(� + 1

2�∗a
2 ) + σ0+

of the second resolvent, and a branch-cut contribution starting
at E = −i 1

2�∗a
2 from the function �a

1 (E). Neglecting terms of
O(ga), we consider only the contribution of O(1) of the branch
cut. This part is relevant in the regime of intermediate times
�∗a

1 ta ∼ 1/ga and stems from the Lorentzian form of the jump
of the resolvent Ra

1 (E) across the branch cut centered at E ∼
−i�∗a

1 [see the discussion around Eq. (80)]. Therefore, we
approximate this peak by a true δ function such that the branch-
cut contribution is approximately given by a pole contribution
at E = −i�∗a

1 with Ra
1 (E) ≈ −sign(ga)/(E + i�∗a

1 ) close to
this pole according to Eq. (80).

Using Eq. (70) for �a
1 (E) and neglecting terms O(ga), we

can split the various pole contributions as

Fa
�(ta) ≈ Fa

�,1(ta) + Fa
�,2(ta), (E3)

with

Fa
�,1(ta) = [2 cos(�ata) θ (ga) − sign(ga)] e−�∗a

1 ta

× Re

√
�∗a

1

�∗a
1 − 1

2�∗a
2 − � + i0+ , (E4)

Fa
�,2(ta) = −Re

√
T a

K

[ T a
K

�

]ga/2
e−(�+ 1

2 �∗a
2 )ta

T a
K

[ T a
K

�

]ga− 1
2�∗a

2 − � + i0+
. (E5)

Note that when considering the product F
f

� (tf )F i
�(ti) entering

the second term for P (t) in Eq. (88a), there is no divergence
for the subsequent integral over � close to � ∼ �∗a

1 − 1
2�∗a

2
since the principal values of the two resolvents are centered
at different positions. The combination F

f

�,1(tf )F i
�,1(ti) will

be neglected in the following since it has the strongest decay
∼e−�

∗f

1 tf e−�∗i
1 ti . For the case ga = −gā < 0 (with ā = f/i

for a = i/f ), the combination Fa
�,2(ta)F ā

�,1(tā) contains an
exponentially decaying factor e−�ta for the integration over
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� in Eq. (88a). This restricts the integration range to � �
1/ta � �∗a

1 < �
∗,ā
1 , where we have used that �∗a

1 ≈ 2gaT a
K

is larger for a positive interaction than for a negative one.
Therefore, we can neglect −� + i0+ in all denominators of
the resolvents occurring in Eqs. (E4) and (E5). Furthermore,
we can approximate (T a

K/�)ga ≈ (T a
Kta)ga in Eq. (E5). The

same holds for the combination F
f

�,2(tf )F i
�,2(ti), except that

an exponential factor e−�(ti+tf ) = e−�t occurs such that we get
(T a

K/�)ga ≈ (T a
Kt)ga in Eq. (E5). With these approximations,

we can easily calculate the final integral over � to get the
second term of Eq. (88a) for the two quench protocols.

a. In the coherent-to-incoherent quench, the coupling
before tq is positive and has the same absolute value as
the one afterwards: gi = −gf = g > 0. The combinations
F

f

�,2(tf )F i
�,1(ti) and F

f

�,2(tf )F i
�,2(ti) are both purely decaying

after the quench with decay rate 1
2�

∗f

2 . However, since

F i
�,1(ti) ∼ e−�∗i

1 ti and F i
�,2(ti) ∼ e− 1

2 �∗i
2 ti , the combination

F
f

�,2(tf )F i
�,2(ti) will dominate. Together with −gi = −g,

�∗i
2 ≈ 2gT i

K , and �
∗f

2 ≈ 2−gT
f

K , this leads to the result

−gi

∫ ∞

0
F

f

�,2(t − tq)F i
�,2(tq)d�

≈ −g
e− 1

2 �∗i
2 tq− 1

2 �
∗f

2 (t−tq )

t

× 1√
T i

KT
f

K

(
T i

Kt/2
)g/2(

T i
Kt/2

)g − 1
2

(
T

f

K t/2
)−g/2(

T
f

K t/2
)−g − 1

2

. (E6)

Introducing the function S±
x defined in Eq. (90) in the main

text, we obtain the second term of Eq. (89).
b. The incoherent-to-coherent quench has the opposite signs

of the couplings gf = −gi = g > 0. Here, we consider both
combinations F

f

�,1(tf )F i
�,2(ti) and F

f

�,2(tf )F i
�,2(ti) since the

first one is oscillating after the quench, whereas the second one
is purely decaying. Using �∗i

1/2 ≈ 2−gT i
K and �

∗f

1/2 ≈ 2gT
f

K , we

obtain∫ ∞

0
F

f

�,1(t − tq)F i
�,2(tq)d�

≈ −{2 cos[�f (t − tq)] − 1}

× e− 1
2 �∗i

2 tq−�
∗f

1 (t−tq )

tq

2√
T ∗i

K T
∗f

K

(
T i

Ktq/2
)−g/2(

T i
Ktq/2

)−g − 1
2

(E7)

and ∫ ∞

0
F

f

�,2(t − tq)F i
�,2(tq)d�

≈ e− 1
2 �∗i

2 tq− 1
2 �

∗f

2 (t−tq )

t

× 1√
T ∗i

K T
∗f

K

(
T i

Kt/2
)−g/2(

T i
Kt/2

)−g − 1
2

(
T

f

K t/2
)g/2(

T
f

K t/2
)g − 1

2

. (E8)

For t − tq � tq , we can replace t by tq in the last equation.
Furthermore, using Eq. (86), we can use for T i

Ktq � 1

P i(tq) ≈ g e− 1
2 �∗i

2 tq

(
S−

T i
K tq

)2
T i

Ktq
. (E9)

Therefore, the sum of the two contributions (E7) and (E8)
multiplied by −gi = g [i.e., the contribution to P (t) from the
quench] can be written as

−gi

∫ ∞

0
F

f

� (t − tq)F i
�,2(tq)d�

≈ A

[
− 2

S−
T i

K tq

e−�
∗f

1 (t−tq ){2 cos[�f (t − tq)] − 1}

+
S+

T
f

K tq

S−
T i

K tq

e−�
∗f

2 (t−tq )/2

⎤
⎦P i(tq), (E10)

where A =
√

T i
K/T

f

K = (�0/ωc)g < 1. This leads straightfor-
wardly to Eq. (91).
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