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Spin liquid states in the vicinity of a metal-insulator transition
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We study in this paper quantum spin liquid states (QSLs) at the vicinity of the metal-insulator transition.
Assuming that the low-energy excitations in the QSLs are labeled by “spinon” occupation numbers with the
same Fermi surface structure as in the corresponding metal (Fermi-liquid) side, we propose a phenomenological
Landau-like low-energy theory for the QSLs and show that the usual U (1) QSLs is a representative member of
this class of spin liquids. Based on our effective low-energy theory, an alternative picture to the Brinkman-Rice
picture of the Mott metal-insulator transition is proposed. The charge, spin, and thermal responses of QSLs are
discussed under such a phenomenology.
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I. INTRODUCTION

Quantum spin liquid states (QSLs) in dimensions d > 1
have been a long-sought dream in condensed matter physics,
which has not been confirmed in realistic materials until rather
recently.1 These states are electronic Mott insulators that are
not magnetically ordered down to the lowest temperature due
to strong quantum mechanical fluctuations of spins and/or
frustrated interaction. Various exotic properties have been
proposed to exist in QSLs. For instance, charge neutral and
spin-1/2 mobile objects, spinons, were proposed to emerge
in such electronic states at low temperature accompanied
by different kinds of (emerging) gauge fields. The spinons
may be gapped or gapless and may obey either boson or
fermion statistics. These new particles and gauge fields, which
characterize low-energy behaviors of the system, do not appear
in the parent Hamiltonian and “emerge” as a result of strong
correlation.

In the past few years, several experimental candidates
for QSLs have been discovered that support the existence
of gapless fermionic spinon excitations. The best-studied
example is a family of organic compounds κ−(ET)2Cu2(CN)3

(ET)2 and Pd(dmit)2 (EtMe3Sb) (dmit salts).3 Both materials
are Mott insulators in proximity to the metal-insulator tran-
sition because they become superconductor (ET) or metal
(dmit) under modest pressure. Despite the large magnetic
exchange J ≈ 250 K observed in these systems, there is no
experimental indication of long-range magnetic ordering down
to temperature ∼30 mK. The linear temperature dependence
of the specific heat and Pauli-like spin susceptibility were
found in both materials at low temperature, suggesting that
the low-energy excitations are spin-1/2 fermions with a
Fermi surface.4,5 This Fermi-liquid-like behavior is further
supported by their Wilson ratios, which are close to 1. The
thermal conductivity experiments on the ET salts found a
large contribution to κ beside phonons with κ/T much
reduced below 0.3 K (Ref. 6), while κ/T approaches to
a constant down to the lowest temperature in dmit salts.7

All these experimental observations point to the scenario
that the low-lying excitations in these Mott insulators are
mobile fermionic particles (spinons) that form a Fermi surface
like their parent electrons [U (1) spin liquid state]. Besides
ET and dmit salts, the Kagome compound ZnCu3(OH)6Cl2,

the three-dimensional hyper-Kagome material Na4Ir3O8. and
the newly discovered triangular compound Ba3CuSb2O9 are
also considered to be candidates for QSLs with gapless
excitations.8–10

Several experiments were proposed to probe mobile
spinons in the U (1) spin liquid state. For example, a giant
magnetoresistance-like experiment was designed to measure
mobile spinons through oscillatory coupling between two
ferromagnets via a quantum spin liquid spacer.11 The thermal
Hall effect in insulating quantum magnets was proposed as
an example of thermal transport of spinons, where different
responses were used to distinguish between magnon- and
spinon transports.12 The spinon life time and mass as well
as gauge fluctuations can be measured through the sound
attenuation experiment.13 Despite all these proposals, a generic
method to compare the theoretical prediction of QSLs to the
experimental data is still missing at the phenomenological
level.

The purpose of this paper is to build a generic phe-
nomenological theory for spin liquids with (large) Fermi
surfaces. Starting from the fact that these QSLs are electrical
insulators but good thermal conductors, we propose a unified
Fermi-liquid-type effective theory that describes both Fermi
liquids and QSLs with large Fermi surfaces. The theoretical
framework allows us to compute the thermodynamics, trans-
port, and electromagnetic response of QSLs coherently and
compare the results with experiments.

The paper is organized as follows. In Sec. II, we discuss
our formulation of Landau’s Fermi-liquid-type effective theory
for both Fermi liquid and spin liquid states. In Sec. III,
we discuss electromagnetic response where we calculate
both AC conductivity and the dielectric function for the
QSLs. In Sec. IV, the renormalization of thermodynamics
quantities are discussed. In Sec. V, we discuss the transport
equation for quasiparticles where the scattering amplitude and
thermal conductivity are computed based on the transport
equation. In Sec. VI, we point out the connection between
our theory and U (1) gauge theory and propose an alternative
picture from Brinkman-Rice’s for the Mott metal-insulator
transition. The important implication of the Pomeranchuk
instability is pointed out. Section VII is devoted to the
summary.
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II. PHENOMENOLOGICAL THEORY: LANDAU’S
FERMI-LIQUID-TYPE EFFECTIVE THEORY

In a Fermi liquid, when electron-electron interactions are
adiabatically turned on, the low-energy excited states of
interacting N -electron systems evolve in a continuous way,
and therefore remain in one-to-one correspondence with the
states of noninteracting N -electron systems. The same labeling
scheme through fermion occupation number is assumed in the
theories of the U (1) spin liquid state. We shall make the same
assumption here when we consider general fermionic QSLs
with finite spinon Fermi surfaces, although the one-to-one
correspondence with the states of noninteracting electron
systems is not protected by adiabaticity and should be viewed
as an ansatz.

With this assumption, the low-energy excitations in the
QSLs with finite spinon Fermi surfaces are labeled by the same
occupation numbers as free fermions. The difference between
Fermi liquids and QSLs is that the excitations in Fermi liquids
are quasiparticles that carry both charges and spins, whereas
the excitations in QSLs are expected to carry only spins. In
particular, DC charge transport exists in Fermi liquid states,
but vanishes in QSLs (insulators). Meanwhile, there exists a
large electronic contribution to thermal conductivity at low
temperature in these insulating states because of mobile spin
excitations. These two phenomena provide additional criteria
to specifying the Fermi-liquid-type effective theory for QSLs.

The assumption that the low-energy excitations in these
QSLs are labeled by the same occupation numbers as free
fermions suggests that the excitation energy �E = E − EG

for these states are also given by a Landau-type expression14,15

�E =
∑
pσ

ξpδnpσ + 1

2

∑
pp′σσ ′

f σσ ′
pp′ δnpσ δnp′σ ′ + O(δn3),

(1)

where ξp = p2

2m∗ − μ is the (single) spinon energy measured
from the chemical potential μ, m∗ is the spinon effective mass,
and σ and σ ′ are spin indices. δn pσ = npσ − n0

pσ measures the
departure of the spinon distribution function from the ground
state distribution n0

p = θ (−ξp). f σσ ′
pp′ is the interaction energy

between excited spinons. A spherical, rotational invariant
Fermi surface is assumed here for simplicity. In this case
we may write f σσ ′

pp′ in terms of spin symmetric and spin

antisymmetric components f σσ ′
pp′ = f s

pp′δσσ ′ + f a
pp′σσ ′. For

isotropic systems, f s(a)
pp′ depends only on the angle θ between p

and p′ and we can expand f
s(a)
pp′ = ∑∞

l=0 f
s(a)
l Pl(cos θ ) in three

dimensions and f
s(a)
pp′ = ∑∞

l=0 f
s(a)
l cos(lθ ) in two dimensions,

where Pl’s are Legendre polynomials. The Landau parameters,
defined by

F
s(a)
l = N (0)f s(a)

l ,

provide a dimensionless measure of the strengths of the
interactions between spinons on the Fermi surface, where N (0)
is the Fermi surface density of states. The low-temperature
properties of the QSLs are completely determined by the
spinon mass m∗ and the interaction f σσ ′

pp′ (or F
s(a)
l ) as in Fermi

liquid theory.

Notice that the energy functional �E for our QSLs is so far
identical to that for Fermi liquids. To describe QSLs, additional
conditions have to be imposed to ensure that the excitations
in the effective low-energy theory carry zero charge. We
propose and shall demonstrate in the following that the QSLs
distinguish themselves from Fermi liquids by having a strong
constraint on the Landau parameters F s

1 .
We start with the observation that the charge current J

carried by quasiparticles in Fermi liquid theory (and in QSLs)
is given by

J = m

m∗

(
1 + F s

1

d

)
J(0), (2a)

where J(0) is the charge current carried by the corresponding
noninteracting fermions and d is the dimension. [See the
Appendix for the derivation of Eq. (2a)).] For translational
invariant systems, the charge current carried by quasiparticles
is not renormalized and m∗

m
= 1 + F s

1
d

(Ref. 15). However,
this is in general not valid for electrons in crystals where
Galilean invariance is lost. In this case m∗

m
�= 1 + F s

1
d

and
the charge current carried by quasiparticles is renormalized
by quasiparticle interaction. On the other hand, the thermal
current JQ is only renormalized by the effective mass in Fermi
liquid theory,

JQ = m

m∗ J(0)
Q , (2b)

where J(0)
Q is the corresponding thermal current carried by

noninteracting electrons. (See the Appendix for details.) Thus,
in the special case 1 + F s

1 /d → 0 while m∗
m

remains finite,
J → 0 and JQ �= 0, suggesting that the electronic system is
in a special state where spin-1/2 quasiparticles do not carry
charge due to interaction, but they still carry entropy (i.e.,
electric insulating but thermal conducting). This is exactly
what we expect for spinons in QSLs. We note that it is crucial
that F s

1 is independent of m∗
m

for this mechanism to work.
The charge carried by the quasiparticles (the building blocks

of our effective theory) and elementary excitations should
be distinguished carefully in our theory. The building blocks
(described by δnpσ ’s) are chargeful quasiparticles, whereas
elementary excitations are eigenstates of Landau’s transport
equation with charge renormalized by 1 + F s

1 /d and becomes
zero in the limit q = 0 and ω = 0. In general, the charge
degrees of freedom are recovered at finite q and ω as we shall
see when we study the electromagnetic responses of QSLs in
the next section.

III. ELECTROMAGNETIC RESPONSES

To put our argument in a more quantitative framework we
study the electromagnetic responses of a Fermi liquid system
with 1 + F s

1 /d → 0. The charge and (transverse) current
response functions are given by the standard Fermi liquid
forms14,16,17

χd (q,ω) = χ0d (q,ω)

1 − (
F s

0 + F s
1 (q,ω)

d+F s
1 (q,ω)

ω2

q2

)
χ0d (q,ω)

N(0)

, (3)
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and

χt (q,ω) = χ0t (q,ω)

1 − F s
1 (q,ω)

d+F s
1 (q,ω)

χ0t (q,ω)
N(0)

, (4)

where χ0d (q,ω) and χ0t (q,ω) are the density-density and
(transverse) current-current response functions for a Fermi
gas with effective mass m∗ but without Landau interactions,
respectively. The longitudinal current-current response func-
tion χl is related to χd through

χd (q,ω) = (q2/ω2)χl(q,ω)

and the AC conductivity σl(t) is related to χl(t) by

σl(t)(q,ω) = e2χl(t)(q,ω)/iω,

where q = |	q|. In the singular limit 1 + F s
1 /d → 0, it is clear

that higher-order q,ω-dependent terms should be included in
the Landau interaction to obtain finite results. Expanding at
small q and ω, we obtain

1 + F s
1 (q,ω)/d

N (0)
∼ α − βω2 + γtq

2
t + γlq

2
l , (5)

where qt ∼ ∇× and ql ∼ ∇ are associated with the trans-
verse (curl) and longitudinal (gradient) parts of the small 	q
expansion. α = 0 in the QSLs. Putting this into the charge
response function χd , we find that to ensure that the system
is in an incompressible (insulator) state, we must have γl = 0.
The other possibility F s

0 → ∞ implies complete vanishing of
charge responses in the insulating state.

With this parametrization we obtain for the AC conductivity
at small ω,

σ (ω) = ωσ0(ω)

ω − iσ0(ω)/βe2
, (6)

where σ0(ω) = e2χ0t (0,ω)/(iω) = e2χ0l(0,ω)/(iω). The last
equality is valid as long as F s

0 is finite. Equation (6) was
first obtained in the U (1) gauge theory approach to spin
liquid in a slightly different form18 and predicts the power-
law conductivity Re[σ (ω)] ∼ ω3.33(ω2) (in two dimensions)
at frequency regime ω > (<)(1/τ0,kBT /h̄), where τ0 is the
elastic scattering time.18 The dielectric function is given at
small q,ω by

ε(q,ω) = 1 − 4πe2

q2
χd (q,ω) ∼ 1 + 4πβe2 + O(q2), (7)

also in agreement with the result obtained in U (1) gauge
theory.18

IV. THERMODYNAMICS

Our picture of QSLs has several immediate experimental
consequences. We shall discuss the theromadynamics of QSLs
in this section and leave transport properties to the next section.

One of the important experimental evidences supporting
the existence of gapless fermionic spinon exciations is linearly
temperature-dependent specific heat. The finite specific heat
ratio indicates finite density of states at the Fermi level. In
Fermi liquid theory, the specific heat ratio γ is renormalized by

the effective mass m∗ through the density of states,14 namely,

γ = CV

T
= m∗

m

C
(0)
V

T
= m∗

m
γ (0),

where C
(0)
V and γ (0) are the specific heat and the specific

heat ratio for the corresponding noninteracting electron gas,
respectively. Since m∗/m remains finite in the QSL phase, γ

is predicted to be finite at the QSLs.
The spin susceptibility χP will be renormalized by the spin

antisymmetric Landau parameter Fa
0 as well as the effective

mass m∗ (Ref. 14). It gives rise to

χP = m∗

m

1

1 + Fa
0

χ
(0)
P ,

where χ
(0)
P is the Pauli susceptibility for the corresponding

noninteracting electron gas. It is clear that magnetic suscepti-
bility χP is also nonsingular in the QSLs.

Combining the specific heat ratio and spin susceptibility
together, we find that the Wilson ratio

R = 4π2k2
BχP

3(gμB)2γ
∼ (

1 + Fa
0

)−1

is generally of order O(1), which is one of the experimental
observations in QSLs.

The QSLs have zero compressibility as can be seen from
the dielectric function (7).

V. TRANSPORT PROPERTIES

The transport properties in the QSLs can be computed using
the Landau transport equation. We expect that the transport life
times will be dominated by scattering in the current-current
channel, which is the most singular scattering channel in the
limit 1 + F s

1
d

→ 0 . We shall show that the effect of scattering
in this channel is equivalent to results obtained from U (1)
gauge theory.

In the Landau transport equation, which is essentially a
Boltzmann equation, the transition probability W (1,2; 3,4) for
a two quasiparticles scattering process in an isotropic Fermi
liquid, 1 + 2 → 3 + 4 with i ≡ (pi,σi), is given by 2π times
the squared moduli of the quasiparticle scattering amplitude

W (1,2; 3,4) = 2π |A(1,2; 3,4)|2.
We are interested in the situation that the momentum transfer
q = p1 − p3 is small and p = 1

2 (p1 + p3) and p′ = 1
2 (p2 +

p4) are close to the Fermi momentum pF as shown in Fig. 1.
In this case, the scattering amplitude depends mainly on the
relative orientation of the vector p, p′ and q, and on the
the energy transfer ω = εp+q/2 − εp−q/2 = εp′+q/2 − εp′−q/2.
The transition probability can be written as

W (1,2; 3,4) = 2π |App′(q,ω = εp+q/2 − εp−q/2)|2.

A. Quasiparticle scattering amplitude

We shall neglect the spin indices in the following for brevity.
The spin-degeneracy factor 2 will be inserted when the need
arises. The quasi-particle scattering amplitude App′(q,ω) is
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p1=p+q/2

p2=p'-q/2 p3=p-q/2

p4=p'+q/2

FIG. 1. (Color online) Two quasiparticle scatterings in a Fermi
liquid. Two in-going quasiparticles with momenta p1 and p2 interact
with each other, resulting in two out-going quasiparticles with
momenta p3 and p4. The momentum conservation requires that
p1 + p2 = p3 + p4. The momentum transfer is c = p1 − p3 = p4 −
p2. By introducing p = 1

2 (p1 + p3) and p′ = 1
2 (p2 + p4), the four

momenta p1, p2, p3 and p4 can be written in terms of p, p′ and +.

then given by the following equation,

App′(q,ω) −
∑
p′′

fpp′′χ0p′′ (q,ω)Ap′′p′ (q,ω) = fpp′ ,

where χ0p(> ,ω) is the susceptibility

χ0p(q,ω) = n0
p−q/2 − n0

p+q/2

ω + ξp−q/2 − ξp+q/2
� q · vp

q · vp − ω

∂n0
p

∂ξp

,

with n0
k = nF (ξk). We shall assume that the scattering is

dominating by the l = 1 channel and approximate

fpp′ ∼ p · p′

p2
F

f s
1 .

It is then easy to show that

App′ (q,ω) = p · p′

p2
F

f s
1

1 − χ1(q,ω)f s
1

, (8)

where

χ1(q,ω) = 1

V

∑
p

p2

p2
F d

(
n0

p−q/2 − n0
p+q/2

ω + ξp−q/2 − ξp+q/2 + iδ

)
.

For small (q,ω) we have

χ1(q,ω) ∼ −N (0)

d

[
1 + ig(d)

ω

vF q

]

for ω 
 vF q, where q = |q|, g(2) = 1 and g(3) = π
2 . In

the limit N (0)f s
1 /d = F s

1 /d → −1, using the expansion [see
Eq. (5)]

f s
1 = d

N (0)
(−1 − βω2 + γtq

2),

we obtain

App′(q,ω) � d

N (0)

p · p′

p2
F

1

−ig ω
vF q

+ γtq2
, (9)

where the last factor is exactly the gauge field propagator in
U (1) gauge theory.

B. Thermal conductivity

Following Pethick,19 we use a variational approach20 to
derive the thermal conductivity κ from the transport equation.
The thermal resistivity for a Fermi liquid is given by

1

κ
= 1

4

∑
1,2,3,4

W (1,2; 3,4)n0
1n

0
2

(
1 − n0

3

)(
1 − n0

4

)

× (φ1 + φ2 − φ3 − φ4)2

( ∑
1

φ1ξ1v1 · u
∂n0

1

∂ε1

)−2

× δ(ε1 + ε2 − ε3 − ε4)δσ1+σ2,σ3+σ4δp1+p2,p3+p4 , (10)

where n0
i = nF (ξi) is the Fermi distribution function with i =

1,2,3,4, ξi = εi − μ, φi is defined by ni = n0
i − φi

∂n0
i

∂εi
, vi is

the quasiparticle velocity, u is an arbitrary unit vector along
which the temperature gradient ∇T is applied.

We shall make the usual approximation φi = ξivi · u. To
the order we are working with the approximation that the
quasiparticle velocity may be replaced by vF and∑

1

φ1ξ1v1 · u
∂n0

1

∂ε1
=

∑
1

(ξ1v1 · u)2 ∂n0
1

∂ε1

= 4m∗N (0)

d

∫
dξ (ξ + μ)ξ 2 ∂n0(ξ )

∂ξ

= −4m∗N (0)

d

π

3
εF (kBT )2

= −2π

3

n

m∗ (kBT )2,

where n is the fermion density and the relation d(n/m∗) =
N (0)v2

F is used.
Introducing ξ̄p = 1

2 (ξp+q/2 + ξp−q/2) and using the con-
ditions q = p1 − p3 = p4 − p2 and ω = εp+q/2 − εp−q/2 =
εp′+q/2 − εp′−q/2, we have

m∗(ξ1v1 + ξ2v2 − ξ3v3 − ξ4v4)

= (ξ̄p + ω/2)(p + q/2) + (ξ̄p′ − ω/2)(p′ − q/2)

− (ξ̄p − ω/2)(p − q/2) − (ξ̄p′ + ω/2)(p′ + q/2)

= (ξ̄p − ξ̄p′)q + ω(p − p′)
= (ξp − ξp′)q + ω(p − p′),

and

〈(φ1 + φ2 − φ3 − φ4)2〉
= 〈[(ξ1v1 + ξ2v2 − ξ3v3 − ξ4v4) · u]2〉
= 1

d
(ξ1v1 + ξ2v2 − ξ3v3 − ξ4v4)2

= 1

m∗2d
[(ξp − ξp′ )q + (p − p′)ω]2,

where 〈· · ·〉 means averaging over different u.
Putting App′ (q,ω) into Eq. (10), and using the identity

n0
1(1 − n0

3) = (n0
1 − n0

3)/[1 − eβ(ε1−ε3)], we obtain

1

κ
∝ 1

T 4

∑
q,p,p′

∫
dω

|App′(q,ω)|2
(eβω − 1)(1 − e−βω)

× [nF (ξp−q/2) − nF (ξp+q/2)]δ(ω − p · q/m∗)

× [nF (ξp′+q/2) − nF (ξp′−q/2)]δ(ω − p′ · q/m∗)

× [(ξp − ξp′)2q2 + (p − p′)2ω2],
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where we have used the δ functions to simplify the expres-
sion. Replacing nF (ξp−q/2) − nF (ξp+q/2) and nF (ξp′+q/2) −
nF (ξp′−q/2) by ω∂nF

∂ξp
and ω ∂nF

∂ξp′ , respectively, which is valid at
small q and ω, we obtain

1

κ
∝ 1

T 4

∑
q,p,p′

∫
dω

ω2|App′(q,ω)|2
(eβω − 1)(1 − e−βω)

× ∂nF

∂ξp

∂nF

∂ξp′
δ(ω − p · q/m∗)δ(ω − p′ · q/m∗)

× [(ξp − ξp′)2q2 + (p − p′)2ω2].

Let θ (θ ′) be the angle between p(p′) and q, and integrating
over ξp and ξp′ , we obtain

1

κ
∝ 1

T 4

∑
q,p̂,p̂′

∫
dω

ω4|App′(q,ω)|2
(eβω − 1)(1 − e−βω)

(p̂ − p̂′)2

× δ(ω − qvF cos θ )δ(ω − qvF cos θ ′).

Assuming that the scattering is dominated by the F s
1 channel

and using Eq. (9), we obtain

1

κ
∝ 1

T 4

∑
q

∫
dω

ω4

(eβω − 1)(1 − e−βω)

1

g2 ω2

v2
F q2 + γ 2

t q4

∝ 1

T 4

∫
dω

ω4

(eβω − 1)(1 − e−βω)
ω−(4−d)/3

∝
(

kBT

εF

)(d−1)/3

,

εF = p2
F /2m∗ is the spinon Fermi energy. The expression rep-

resents the thermal resistivity coming from inelastic scattering
between fermions. At low temperature the inelastic scattering
is cutoff by elastic impurity scattering rate 1/τ0, which gives
rise to

κel

T
= 1

d
γ ∗v2

F τ0,

where γ ∗ = CV /T is the specific heat ratio and vF is the spinon
Fermi velocity. The total thermal conductivity is therefore
given by

κ

T
∝ max

[
h̄

k2
B

(
kBT

εF

)(4−d)/3

,
d

γ ∗v2
F

1

τ0

]−1

.

The same result is obtained in U (1) gauge theory in two
dimensions.22

VI. DISCUSSIONS

A. Relation to the U(1) gauge theory

The U (1) spin liquid is actually a member of the QSLs
described by our phenomenology keeping scattering in the
l = 0,1 channels only. To show this we start with a Landau
Fermi liquid with interaction parameters F s

0 and F s
1 (q,ω) only.

The long wavelength and low dynamics of the Fermi liquid is
described by an effective Lagrangian

Leff =
∑
k,σ

[
c
†
kσ

(
i

∂

∂t
− ξk

)
ckσ − H ′(c†,c)

]
, (11)

where c
†
kσ (ckσ ) are spin-σ fermion creation (annihilation)

operators with momentum k, and

H ′(c†,c) = 1

2N (0)

∑
q

[
F s

1

v2
F

j(q) · j(−q) + F s
0 n(q)n(−q)

]

(12)

describes the current-current and density-density interactions
between quasiparticles,17 where q = (q,ω) and vF = h̄kF /m∗
is the Fermi velocity.

The current and density interactions can be decoupled by
introducing fictitious gauge potentials a and ϕ (Hubbard-
Stratonovich transformation) with

H ′(c†,c) →
∑

q

[
j · a + nϕ − 1

2

(
n

m∗
d

F s
1

a2 + N (0)

F s
0

ϕ2

)]
,

(13)

where n is the fermion density. We have used the equality
d(n/m∗) = N (0)v2

F in writing down Eq. (13).
The Lagrangians (11) and (13) can be rewritten in the

standard form of U (1) gauge theory by noting that the fermion
current is given in this representation by

j = −i

2m∗
∑

σ

[ψ†
σ∇ψσ − (∇ψ†

σ )ψσ ] − n

m∗ a,

where ψσ (r) = ∫
e−ik·rckσ in the Fourier transform of ckσ . The

Lagrangian can be written as

L =
∑

σ

∫
ddr

[
ψ†

σ

(
i

∂

∂t
− ϕ

)
ψσ − H (ψ†

σ ,ψσ )

]

+L(ϕ,a), (14a)

where

H (ψ†
σ ,ψσ ) = 1

2m∗ |(∇ − ia)ψσ |2 (14b)

and

L(ϕ,a) = 1

2

∫
ddr

[
n

m∗

(
1 + d

F s
1

)
a2 + N (0)

F s
0

ϕ2

]
. (14c)

Notice how the n
2m∗ a2 term in L(ϕ,a) arises from the

introduction of the diamagnetic term in H (ψ†
σ ,ψσ ).

Using Eq. (5), we find that in the small q limit, the transverse
part of L(ϕ,a) is given in the spin liquid state by

Lt (ϕ,a) = − n

2m∗

∫
ddr

[
β

(
∂a
∂t

)2

− γt (∇ × a)2

]
. (15)

The longitudinal part of the gauge potential ϕ is screened
as long as F s

0 �= 0. Lagrangian (14) together with (15) is
the standard Lagrangian used to describe U (1) QSLs. It is
interesting to note that a nonzero 1 + F s

1 (0,0)
d

leads to a mass
term for the gauge field a, in agreement with slave-boson/rotor
approaches where a metallic state appears with condensation
of bosons/rotors.16,21

B. Alternative picture of Mott transition

The close relation between Fermi liquid and spin-liquid
states suggests that the (zero temperature) metal-insulator
transition between the two states is characterized by the
change of Landau parameter 1 + F s

1 (0,0)/d → 0+ across the
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critical region
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0T

FIG. 2. (a) Schematic zero temperature phase diagram for Mott
transition. U is the Hubbard interaction strength and t is the hopping
integral. The electron quasiparticle weight and quasiparticle charge
current ∼1 + F s

1 /d vanishes at the critical point while the effective
mass remains finite. (b) Schematic phase diagram showing finite
temperature crossovers and possible instability toward gapped phases
at lower temperature. There exists a (finite temperature) critical region
around Uc where our phenomenological theory is not applicable.

transition. The nature of the metal-insulator transition within
the Fermi liquid framework was first addressed by Brinkman
and Rice23 where they proposed that a metal-insulator (Mott)
transition is indicated by diverging effective mass m∗

m
→ ∞

and inverse compressibility κ → 0 at the Mott transition point,
with correspondingly a vanishing quasiparticle renormaliza-
tion weight Z ∼ m

m∗ → 0. The diverging effective mass and
vanishing quasiparticle weight suggest that the Fermi liquid
state is destroyed at the Mott transition, and the Mott-insulator
state is distinct from the Fermi liquid state at the metal
side.

Here we propose an alternative picture where the Fermi
surface is not destroyed, but the quasiparticles are converted
into spinons at the Mott transition. In particular, the effective
mass m∗/m may not diverge at the metal-insulator transition
although Z → 0 in this picture. A schematic phase diagram
for the Mott (metal-QSLs) transition is presented in Fig. 2,
where we imagine a Hubbard-type Hamiltonian with hopping
t and on-site Coulomb repulsion U . The system is driven
to a Mott-insulator state at zero temperature at U = Uc,
where 1 + F s

1 (U > Uc)/d = 0. Our picture is supported by
the experimental fact that the potential candidates for the U (1)
QSLs with large Fermi surfaces (ET and dmit salts) are all
closed to the metal-insulator transition. We caution that in
general a finite (T �= 0) region exists around the Mott transition
point where the physics is dominated by critical fluctuations
and our phenomenological theory is not applicable. We note
that an alternative phenomenology for the Mott transition from
a semimicroscopic starting point24 has a qualitatively similar
conclusion as our present work. The relation between the two
works is not clear at present.

C. Pomeranchuk instability

Experienced researchers in Fermi liquid theory will recog-
nize that the point 1 + F s

1 /d = 0 is in fact a critical point in
Fermi liquid theory. The Fermi surface is unstable with respect
to deformation when 1 + F s

1 /d < 0. The stability of the
1 + F s

1 /d = 0 point is required in QSLs where quasiparticles
(spinons) become chargeless. The resulting QSLs we obtain
here are marginally stable because of large critical fluctuations.
The large critical fluctuations give rise to singular corrections
to thermodynamics quantities (specific heat, for example) and
transport coefficients (various scattering life times) at two di-
mensions as first pointed out in U (1) gauge theory. The Pomer-
anchuk criticality is an alternative way to express these results.

The presence of Pomeranchuk criticality suggests that
QSLs with large Fermi surfaces are in general rather sus-
ceptible to formation of other more stable QSLs at lower
temperature, like the Z2 QSLs or valence bond solid (VBS)
states that gap out part or the whole Fermi surface. The
resulting phase diagram at the vicinity of Mott transition thus
has the generic feature shown in Fig. 2(b), where the system
is driven into a gapped QSL at low temperature T < Tc(U ) at
the insulating side. The nature of the low-temperature QSLs
depends on the microscopic details of the system and cannot be
determined from our phenomenology. Our theory is applicable
at T > Tc(U ), when the spin liquid is still in the large-Fermi
surface phase.

VII. CONCLUSION

In summary, we formulate a Fermi-liquid-type phenomeno-
logical theory for quantum spin liquid states in the vicinity of
the metal-insulator transition. The phenomenology takes into
account the fact that DC electrical current and compressibility
vanish while the thermal current keeps finite in QSLs. Phys-
ically, the phenomenology implies that the charge degrees of
freedom of quasiparticles are frozen at q = 0 and ω = 0. The
finite specific heat ratio, spin susceptibility, and the fact that
the Wilson ration is of an order of unity indicate spin degrees of
freedom are still active in this limit. The frozen charge degrees
of freedom are recovered at finite q and ω as indicated by the
power-law ωη-dependent AC conductivity. We also show that
the U (1) spin liquids are a member of the class of QSLs de-
scribed by our phenomenology. We also propose an alternative
picture of the Mott transition and discuss the phase diagram.
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APPENDIX: RENORMALIZED CURRENTS

In this Appendix we derive the renormalized currents in
Fermi liquid theory [(Eqs. (2a) and (2b) in the main text]. The
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local equilibrium quasiparticle occupation numbers and their
fluctuations have to be considered carefully. The excitation
energy of an additional quasiparticle with momentum p is
given by

ε̃p = εp +
∑
p′

f s
pp′δnp′ ,

where εp = p2

2m∗ . The corresponding local equilibrium occupa-
tion number is ñ0

p ≡ nF (ε̃p − μ), and the departure from local
equilibrium reads

δñp = np − ñ0
p = δnp − ∂n0

∂εp

∑
p′

f s
pp′δnp′ ,

where δnp = np − n0
p. The charge current J carried by quasi-

particles is related to the particle density by the conservation
law

∂ρ

∂t
+ ∇r · J = 0.

The density fluctuation δρ(r,t) should be expressed in terms
of the sum of δñp(r,t) (i.e., fluctuation away from local
equilibrium)

δρ(r,t) =
∑

p

δñp(r,t)

and

∂

∂t
δρ + ∇r ·

∑
p

δñpvp = 0.

Therefore,

J =
∑

p

δñpvp =
∑

p

δnpjp,

where

jp = vp −
∑
p′

f s
pp′

∂n0

∂εp′
vp′ .

Using the relation∑
p′

∂n0

∂εp′
fpp′vp′ =

∑
p′

∂n0

∂εp′
N−1

F

∑
l

F s
l Pl(cos θ )vp′

= 1

d
F s

1 vp

∫
dε′ ∂n0

∂ε′ = 1

d
F s

1 vp,

where NF = N (0), we find that the renormalized charge
current is

J = m

m∗

(
1 + 1

d
F s

1

)
J(0),

when J0 is the electric current in the absence of interaction.
Notice that Pl(cos θ ) is replaced by cos(lθ ) in two dimensions.

Similarly the thermal (energy) current JQ is given by

JQ =
∑

p

δñp(εp − μ)vp

=
∑

p

(εp − μ)vp

(
δnp −

∑
p′

∂n0

∂εp

fpp′δnp′

)

=
∑

p

δnp

[
(εp − μ)vp −

∑
p′

∂n0

∂εp′
fpp′(εp′ − μ)vp′

]
.

Notice that∑
p′

∂n0

∂εp′
fpp′(εp′ − μ)vp′

=
∑
p′

∂n0

∂εp′
N−1

F

∑
l

F s
l Pl(cos θ )(εp′ − μ)vp′

= 1

d
F s

1 vp

∫
dε′ ∂n0

∂ε′ (ε′ − μ) = 0

to leading order. Therefore the renormalized thermal current
is given by

JQ = m

m∗ J(0)
Q .

We observe that the thermal current is not renormalized by the
factor (1 + 1

d
F s

1 ).
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