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Effective and accurate representation of extended Bloch states on finite Hilbert spaces
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We present a straightforward, noniterative projection scheme that can represent the electronic ground state
of a periodic system on a finite atomic-orbital-like basis, up to a predictable number of electronic states and
with controllable accuracy. By cofiltering the projections of plane-wave Bloch states with high-kinetic-energy
components, the richness of the finite space and thus the number of exactly-reproduced bands can be selectively
increased at a negligible computational cost, an essential requirement for the design of efficient algorithms for
electronic structure simulations of realistic material systems and massive high-throughput investigations.
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I. INTRODUCTION

The electronic structure of solids is commonly described
using plane-wave (PW) basis functions, which represent
naturally the Fourier algebra of periodic systems and whose
completeness is easily improvable up to any desirable
accuracy. However, their delocalized character is often not
appropriate for the description of highly localized electronic
systems unless a very large number of basis functions is
used. For these reasons, the development of minimal-space
solutions such as atomic-orbital (AO) Bloch sums, capable of
capturing with satisfactory accuracy the properties of solids
and molecules on finite Hilbert spaces, has been central
to methodological developments in quantum chemistry and
solid-state physics since the 1970s.1,2

AO representations are desirable not only for computational
accuracy and finiteness of the basis set, but also to gain a better
chemical interpretation of the quantum-mechanical wave func-
tion. They are essential in a gamut of applications such as the
construction of model Hamiltonians for correlated electrons
and magnetic systems; dynamical mean-field theory;3 evalua-
tion of quantum transport properties;4 design of semiempirical
potentials for solids5 and biomolecules;6 calculation of exact-
exchange integrals; and applications within linear scaling
of density-functional theory7 and coupled-cluster,8 quantum
Monte Carlo,9 and GW10 methods. More generally, localized-
space representations are increasingly in demand as novel
materials with stronger electron localization and correlation
are vigorously sought for their rich physical and chemical
properties.11 Moreover, they allow the calculation of the elec-
tronic states of materials on ultradense k-space grids for accu-
rate Brillouin-zone (BZ) integrations, an essential requirement
for the high-throughput computational materials applications
central to the mission of the Materials Genome Initiative.11,12

In the last decade, formidable efforts towards this goal have
resulted in a variety of methodologies using, for instance,
muffin-tin orbitals of arbitrary order (NMTO)13 or maximally
localized Wannier functions (MLWFs)14 to construct minimal
Hilbert spaces. The MLWF method stands as the norm
for maximal localization of the real-space basis starting
from pseudo-potential PW calculations; however, it is not
straightforward either to decide the appropriate number of

target PW bands (energy range) to match, and thus the size of
the Hilbert space, or to achieve convergence for systems with
diffused electrons.

On the other hand, noniterative methods such as direct
projection (Ref. 14, Sec. II.i.1), QUAMBO,15 and QO,16 which
do not seek an iterative construction of the finite Hilbert
space but rely on an AO basis provided as input, are a good
compromise between speed (noniterative postprocessing) and
accurate reproduction of the occupied energy bands while
maintaining AO similarity.

While the primary goal of these methods is to construct real-
space wave functions with high localization, reciprocal-space
Hamiltonians matrices can be built using these wave functions
as well. The resulting band structure can exactly reproduce
unentangled bands (bundles of bands that do not overlap others
in energy across the BZ and are, therefore, isolated by energy
gaps), e.g., the occupied manifold of an insulator or a semi-
conductor like silicon [black curves in Fig. 1(a)]. In general,
however, the bands in metals (or the unoccupied manifold
in semiconductors) are entangled. While the iterative MLWF
method can further enforce reproduction of those bands inside
a frozen energy window via a disentanglement procedure,17

adding an extra layer of computational complexity, the nonit-
erative methods fail to systematically reproduce those bundles,
especially the upper unoccupied states [circles in Fig. 1(a)].

In this article, we present a fast, noniterative procedure that
effectively and accurately reproduces a predictable number
of eigenenergies (bands) regardless of entanglement. The
antibonding fraction of the wave function, scattered through
the quasi-infinite unoccupied subspace of the PW approach, is
efficiently mapped into the finite-space Hamiltonian through
straightforward matrix operations of projections on controlled
basis and sequential filtering to automatically discard all
unphysical solutions.

II. METHODOLOGY

A. Linear-combination-of-AOs (LCAO) representation
of Bloch states

For simplicity, in this work we use the finite Hilbert spaces
defined by the set of pseudo–atomic orbitals (PAOs) φ(r),
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FIG. 1. (Color online) Si band structures from projected LCAO
Hamiltonian matrices H k(κ,N ). Eigenenergies are represented by
circles, triangles, or horizontal solid lines (flat bands). The electronic
structure is expanded in an sp (a,b) and an spd (c,d) finite space. (a,c)
Direct-projection scheme (no filtering, N = M; no shifting, κ = 0).
(b,d) Filtered + shifted projections. Degenerate flat bands (3- and 10-
fold) are rigidly shifted by κ (4.1 and 9.6 eV) and plotted as horizontal
solid lines. Reference PW bands are shown in black (Pn � 0.9) or
gray (Pn < 0.9).

employed in the generation of atomic pseudopotentials. While
the richness of the PAO basis can be systematically increased
by including more radial functions and angular momentum
projectors in the construction of pseudo–wave functions, we
stress that this is just a choice of convenience. Our procedure
is completely general and can be applied to any finite basis,
including polarized and diffused Gaussian sets, thus providing
a direct bridge between the language of solid-state physics and
that of theoretical quantum chemistry.

As the first example we choose silicon (see Fig. 1), where
we have used an sp (minimal) basis set to construct the
Bloch sums, φμk(r) = 1

NV

∑
R e−ik·Rφμ(r − R), that span the

finite Hilbert space �1.18 These Bloch sums can be seen
as the discrete Fourier transform of the corresponding PAO
φμ(r) replicated on a periodic box containing NV lattice
vectors R and, thus, the same number of k vectors in the
BZ. The starting PW Bloch states |ψPW

nk 〉 are obtained using
the QUANTUM ESPRESSO packages.19 For convenience, let
us switch to a Löwdin-orthogonalized basis representation

φ̄μk = ∑
ν(Sk− 1

2 )μνφνk, where Sk
μν = 〈φμk|φνk〉 are the over-

lap matrices. The PW states are projected onto the finite Hilbert
space of the PAOs via the operator P̂ k = ∑

μ |φ̄μk〉〈φ̄μk|. Then
|ψnk〉 = ∑

μ ak
μn|φ̄μk〉, with expansion coefficients

ak
μn = 〈

φ̄μk
∣∣ψPW

nk

〉
.

Similar expansions are used in the LCAO solution of the Kohn-
Sham equation,20 where the Hamiltonian is

Hk = AkEkAk† (1)

and the matrices Ak of the expansion coefficients are found
self-consistently under the orthonormality constraint Ak†Ak =
I . Here Ak is built columnwise from the projection coefficients
ak

μν ; each column represents the LCAO wave function |ψnk〉
for a given band n. Hk and Ak are of dimensions M × M and
M × N , respectively. M is the size of the Hilbert space and
N is the number of PW bands selected for projection. Ek is
an N × N diagonal matrix of the N lowest PW eigenvalues,
Ek = diag(εPW

1 ,εPW
2 , . . . ,εPW

N ).

B. Band projectability

Going back to the example of Si in space �1 (M = 8)
in Fig. 1(a), its corresponding LCAO Hamiltonian Hk yields
a manifold of eight bands (represented by circles), some of
which, especially in the unoccupied energy region, noticeably
deviate from the reference PW bands (gray lines). This stems
from the less than perfect projectability of those unoccupied
PW states onto the inherently incomplete finite space. In
turn, low projectability breaks the unitary constraint of the
LCAO method, AkAk† �= 1. To quantify this effect, we define
a projectability number Pn = min{∑μ ak∗

μna
k
μn,∀k ∈ BZ} as

an a priori test for the representability of each PW band. The
closer Pn is to 1, the better the fidelity of the corresponding
LCAO band. Numerical values of Pn for the systems studied
here are summarized in Table I. We set an arbitrary cutoff of
0.9 as the condition for exact representability so that, with
the minimal space �1, we can expect exact representability
only for the lowest N = 4 PW bands [the complete occupied
manifold; black lines in Fig. 1(a)], with deviations less than
57.2 meV. A richer space, �2 (M = 18),18 which includes d

functions, yields P7 � 0.9 and should therefore support exact
representation of the electronic structure up to N = 7 PW
bands [black lines in Fig. 1(c)], which includes 3 unoccupied
bands. However, the apparently bad reproducibility of the
electronic structure in the energy window 0–10 eV shown
in Fig. 1(c) seems to suggest otherwise.

The progressive loss of representability of the top unoc-
cupied PW bands mentioned above is a common issue even

TABLE I. Projectability (Pn) and BZ rms average of �εn (in eV)
per band n of H k(κ,N ). κ = 0, 9.6, and 10 eV and N = 5, 8, and 13
for Si �1, Si �2, and Mo �3, respectively

Si �1 Si �2 Mo �3
a

n Pn rms Pn rms n Pn rms

1 0.9927 0.0478 0.9953 0.0792 5 0.9979 0.0140
2 0.9622 0.0572 0.9933 0.0555 6 0.9937 0.0183
3 0.9622 0.0252 0.9952 0.0382 7 0.9873 0.0386
4 0.9622 0.0203 0.9967 0.0266 8 0.9924 0.0275
5 0.4755 1.9200 0.9934 0.0267 9 0.9905 0.0302
6 0.0660 0.9771 0.0316 10 0.9286 0.0602
7 0.0941 0.9728 0.0380 11 0.0000 3.5975
8 0.0652 0.8464 0.1382 12 0.0000 3.3524

aThe four semicore bands have exact projectability.
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for more sophisticated noniterative and iterative approaches,
and not at all limited to the LCAO bands obtained as
first-order solutions via the direct-projection scheme. The
following is nonetheless observed: (i) The overall matching
to the lower unoccupied bands significantly improves with the
richer space �2 compared to �1 (cf. circles on solid lines
for the first unoccupied band along the 	-K path and along
	-X for the second and third such bands). (ii) Unoccupied
states increasingly exhibit high-kinetic-energy PW compo-
nents, which do not project well on localized basis. The
low projectability of the upper PW states yields low values
of the ak

mn coefficients. Consequently, the corresponding
LCAO eigenstates consistently default to regions of lower
energy and yield the apparent overall poor reproducibility
shown in Fig. 1(c). (iii) Singular values are introduced in the
Hamiltonian in the case of no projectability, thus the observed
zero-energy LCAO eigenvalues.

C. Band filtering and shifting

In order to resolve points (ii) and (iii), we filter out PW
states with low projectability by choosing all the PW bands
that satisfy Pn � 0.9. The number of these PW bands, N ,
determines the number of columns in the matrix Ak, which is
generally not square and nonunitary.

In the formulation of the LCAO Hamiltonian we can always
define a square M × M matrix [Ak0], which extends Ak with
M − N columns of zeros, and fill Ek with the same number of
zero eigenvalues. Then Eq. (1), can be more generally written
as a product of square matrices:

Hk = [Ak0]diag
(
εPW

1 , . . . ,εPW
N ,0, . . . ,0

)
[Ak0]†. (2)

Since the product [Ak0][Ak0]† is not unitary, the spectrum
of its eigenvalues will contain the first N eigenvalues of AkAk†,
of the form λn = 1 − δn, with 0 � δn � 0.1 guaranteed by
the projectability criterion adopted. The remaining M − N

eigenvalues will all be zero.
Using the canonical representation, [Ak0][Ak0]† =

UDU † we can write [Ak0] = UD
1
2 , where D =

diag(λ1, . . . ,λN,λN+1, . . . ,λM ), and rewrite Eq. (2) as

Hk = Udiag
(
εPW

1 (1 − δ1), . . . ,εPW
N (1 − δN ),0, . . . ,0

)
U †.

This expression explicitly shows that having a nonunitary
space Ak applies a multiplicative factor to each PW eigenvalue.
Filtering the low-projectability bands is a necessary step to
guarantee that these corrections are minimal. The M − N null
eigenvalues appear as degenerate “flat” bands at zero energy
and need to be selectively moved out of the energy window of
interest. To do so we introduce the “shifting” operator,

Ik = I − AkAk† = Udiag(δ1, . . . ,δN ,1, . . . ,1)U †,

and rewrite the Hamiltonian as

H k(κ,N ) = Hk + κIk = Udiag(ε̄1, . . . ,ε̄N ,κ, . . . ,κ)U †.

(3)

Equation (3) is the central result of our work. The Ik oper-
ator allows a selective shifting, by κ , of the M − N flat bands
with negligible effect on the other N high-projectability bands,
with eigenenergy deviations �εn � (1 − Pn)(κ − εPW

n ). The
last factor is interpreted as the energy window between the

highest band under consideration (N th) of energy ∼ κ and a
given PW eigenvalue, and it is maximal for the lowest band
n = 1. In practice, since the upper limit of the energy window
is usually only ∼2–5 eV above Ef , the correction can be made
arbitrarily small by appropriate choice of the projectability
number Pn.

The LCAO band structures (circles and triangles) in
Figs. 1(b) and 1(d) showcase the dramatic improvement, with
respect to Figs. 1(a) and 1(c), which is achieved by filtering
and shifting the low-projectability bands. It confirms the exact
reproducibility of four and seven bands (circles) expected for
the two different spaces, respectively. For further illustration,
we included the projections of an additional PW band (with
Pn < 0.9) in building the Hamiltonians. As expected, this
LCAO band [fifth in Fig. 1(b) and eighth in Fig. 1(d),
represented by triangles] does not exactly reproduce the PW
reference. Nonetheless, the band closely follows the reference
across the BZ, except at X and U-X in Fig. 1(b) and L in
Fig. 1(d), which are the BZ regions where the projectability
is the lowest. The eighth band shows an overall good fidelity,
consistent with the relatively high projectability, P8 = 0.8335.

To demonstrate the performance of our procedure in the
case of entangled bands, we computed the band structure of an
intrinsically delocalized metallic system such as molybdenum
bcc (Fig. 2; �3, M = 13)18 and of a gold nanowire (Fig.
4; �4, M = 90).18 As observed in the silicon case, in both
metallic systems the low-projectability states can default
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FIG. 2. (Color online) Band structure of Mo bcc under space �3.
(a) Direct-projection scheme (N = 13, κ = 0 eV). (b) Filtered +
shifted projection (N = 7, κ = 10 eV). (c) Unfiltered + shifted
projection (N = M = 13, κ = 12.5 eV). The eigenenergies of the
LCAO Hamiltonian H k(κ,N ) are represented by circles. PW bands
of high (Pn � 0.9) projectability are shown by solid black lines;
those of low (Pn < 0.9) projectability, by solid gray lines. The four
low-lying semicore bands (4s4p) are not shown.
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to the bottom of the unoccupied energy region, as in the
direct-projection band structure in Fig. 2(a) for Mo. The effect
of the low-projectability states is more detrimental in the
nanowire case, where they hybridize with states of otherwise
high fidelity and any resemblance to the PW reference is lost
[Fig. 4(a)].

For Mo, the space �3 supports the exact representation of
up to six PW bands (beyond the four semicore bands; not
shown), as listed in Table I for Pn � 0.9. The band struc-
ture from the filtered + shifted scheme [Fig. 2(b)] confirms
the reproducibility of all these PW bands with root-mean-
square (rms) deviations of less than 60.2 meV even for the
large value of κ (10 eV) used here.

In particular cases it may be advantageous to keep the low-
projectability PW states as in the direct-projection scheme;
for instance, the low-projectability PW bands n = 11 and 12
of Mo bcc exhibit local high projectability around H and
P. Applying a κ shift to the direct-projection Hamiltonian,
i.e., H k(12.5,M), yields an expanded range of band-structure
reproducibility, up to 12.5 eV [Fig. 2(c)], which is directly due
to the inclusion of bands 11 and 12.

III. APPLICATIONS OF LCAO HAMILTONIANS

A. Band interpolation

Once the LCAO matrices H k(κ,N ) are known, one can
directly construct the real-space localized Hamiltonian as

H 0R = 1

NV

∑

k

e−ik·RH k(κ,N ). (4)

Conversely, these local matrices allow us to obtain the
interpolated band structure at any arbitrary k vector,21,22 with
the same accuracy defined by the projectability number, by
diagonalizing the interpolated reciprocal-space Hamiltonian,

H k,interpolated =
∑

R

eik·RH 0R.

B. Band decomposition and Fermi surface analysis

A valuable application of this procedure is in the evaluation
of fundamental physical properties of materials that require
an accurate representation of the electronic states across the
whole BZ. A typical example is the calculation of the Fermi
surface of any metal, which typically requires extraordinary
computational efforts. Within our approach the Fermi surface
is straightforwardly obtained by the direct evaluation of the
interpolated band structure of the system via the real-space
Hamiltonians. The Fermi energy of Mo bcc is crossed at
various k points in the three-dimensional BZ. The collection
of all such points defines its Fermi surface, which is shown in
Fig. 3(e). Furthermore, it is determined that the crossing states
can have three distinct atomic characters. Bands of different
character are indicated by circles of different colors at the
crossing of the Fermi level (horizontal dashed line) in Fig. 3(a).
The decomposition of the Fermi surface based on the atomic
character of the crossing states is shown in Figs. 3(b)–3(d).

FIG. 3. (Color online) Fermi surface of Mo bcc bulk. (a) Colored
circles identify the same band crossing the Fermi energy (horizontal
dashed line). Orange, band 1; green, band 2; red, band 3. (b–d)
Individual-band contributions to the Fermi surface. (e) Total Fermi
surface.

C. Electrical conductance

Another straightforward application of LCAO Hamiltoni-
ans is the calculation of the electrical conductance through
a nanowire. Our procedure reduces the problem of calculat-
ing electron transport4,21 to the computationally inexpensive
postprocess of evaluating Eq. (A6). We choose a gold
nanowire23 as a prototypical example. Bands obtained from the
direct-projection scheme are shown in Fig. 4(a). Unphysical
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FIG. 4. (Color online) Band structure and quantum transmit-
tance spectrum of a gold nanowire. (a) Direct-projection and (b)
filtered + shifted (N = 62, κ = 3 eV) band structures are represented
by circles; PW bands, by solid lines. (c) Quantized transmittance of
the nanowire.
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FIG. 5. (Color online) Effect of the nearest principal-layer
approximation on the interpolated band structure (left) and quantized
conductance (right). The principal layer is approximated with
(a) one and (b) two unit cells (=4.71 Å). The (blue) circles are the
eigenvalues of H k and the underlying solid lines are the corresponding
interpolated bands.

zero-energy eigenstates, discussed in Sec. II C, cover the
entirety of the BZ. They are removed by applying a shifting
of κ = 3 eV to the filtered bands (lowest N = 62 bands)
and the resulting LCAO eigenstates are represented by blue
circles in Fig. 4(b). The LCAO real-space Hamiltonians H 00

and H 01 are obtained according to Eq. (4) and the electrical
transmittance T (E), in Fig. 4(c), is computed from these
matrices as described in the Appendix.

Furthermore, formulating the LCAO Hamiltonian H k

directly in reciprocal space allows the discrimination of the
two most common sources of error in electronic transport
simulations: (i) the incompleteness of the finite space, which
is reflected in the mismatch between the PW and the LCAO
band structures [cf. Fig. 5(b)] and can be made arbitrarily
small by our procedure; and (ii) the real-space interaction
truncation in the choice of the principal layer. The latter is
outside the scope of any reciprocal-space mapping procedure
ψPW

nk → ψLCAO
nk . Nonetheless, such error is introduced when

formulating real-space local Hamiltonians H 0R [via Eq. (4)].
This real-space truncation error is reflected in the mismatch
between the interpolated band structure (solid lines) and
the LCAO eigenvalues [(blue) circles] shown in Fig. 5(a)
and can be systematically reduced by increasing the size
of the principal layer. For instance, the mismatch is elim-
inated when doubling the size of the nanowire principal
layer (to a lattice constant of 2 × 4.71 Å), as shown in
Fig. 5(b).

The three applications shown here are implemented in the
GPL open-software packages WANT and QUANTUM ESPRESSO

of Refs. 4 and 19, respectively.

IV. CONCLUSIONS

These results have far-reaching implications, well beyond
the practical applications shown here. In fact, our method
allows control of the size (richness) of the finite Hilbert
space of the basis functions, an archetypal feature in quantum

chemistry, which in turns provides flexibility to converge to
the true infinite-space solution in the limit of infinite PWs.24

Expanding the space increases the number of unoccupied
bands with the concomitant bad reproducibility problem that
challenges current methodologies and has biased solutions
toward minimal basis, which only bypasses the problem by
reducing the number of unoccupied bands.

Contrarily to the spirit of the NMTO and MLWF methods,
our technique does not seek the construction of (heavily
customized, localized) basis functions. Its importance resides
in allowing noniterative reproduction a large number of
energy bands using standard quantum-chemistry basis sets or
equivalent. In that regard, the present methodology completely
supersedes the need for engineered basis functions such as
MLWFs or NMTOs.

The central result of this article, Eq. (3), allows us to
obtain an exact representation of all the PW bands that
complies with our high projectability criterion in a procedure
of negligible computational cost, opening the way to the
design of efficient algorithms for electronic structure simula-
tions of realistic material systems, within the high-throughput
materials framework.25
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APPENDIX: ELECTRICAL CONDUCTANCE
IN PERIODIC NANOWIRES

The set of real-space Hamiltonian H 0R and overlap matrices
S0R, in the general case of a nonorthogonal basis, contain the
necessary information to compute the electronic properties
along the nanowire. In the site representation, the spatial
coordinate r of the wave function is discretized to lattice vector
R, thus, each periodic cell is considered an abstract single
site R.

Following the translational Bloch theorem, a wave function
ψk ≡ ψk

0 evaluated at a generic site r = 0 relates to the next
site, r = −1 or 1, by a phase factor, that is, ψk

−1 = e−iθψk
0

and ψk
1 = eiθψk

0 , where θ = k · 1. In a nonorthogonal LCAO
space, the wave function satisfies the Roothaan equation,

H kψk = E±Skψk. (A1)

Both Hamiltonian and overlap matrices are obtained from
the Fourier transform or the corresponding real-space quanti-
ties:

H k =
∑

R=−1,0,1

eik·RH 0R,

Sk =
∑

R=−1,0,1

eik·RS0R.

The truncation in the Fourier transform corresponds to the
principal-layer approximation. A principal layer is composed
of one or more primitive cells, such that interactions beyond
nearest principal layers are made negligible. Then Eq. (A1)
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FIG. 6. (Color online) Schematic representation of the quadratic
eigenvalue equations (A2) and (A3) as a one-dimensional tight-
binding model.

becomes

[Mλ − h − htλ2]ψk
1 = 0 (A2)

or, equivalently,

[Mλ−1 − ht − hλ−2]ψk
−1 = 0, (A3)

with λ = e−iθ , M± = E±S00 − H 00, h± = H 01 − E±S01,
and the definition ht (E) ≡ h†(E∗). It assumes Hermitian
matrices, i.e., H 0,−1 = (H 01)†.

Equations (A2) and (A3) are standard quadratic eigenvalue
problems of the form a2λ

2 + a1λ + a0 = 0. The solutions λn

represent all the propagating modes of the nanowire. Solutions
with |λn| > 1 are evanescent modes decaying (traveling) to
the right, while |λn| < 1 are evanescent modes traveling
to the left. Modes with |λn| = 1 are standing waves, i.e.,
Bloch states. An infinitesimal imaginary quantity η is added
to the energy, thus the definition E± = E ± iη. In this
way the phase factors are moved slightly away from the
unitary circle and an unambiguous traveling direction can be
assigned.

As a result, half of the 2M solutions of the quadratic
equation are discerned as left-traveling and the other as
right-traveling, denoted by the subscripts < and >, respec-
tively. Compounding all the left-traveling eigenvalues λn< and
eigenvectors ψk

1n< into the M × M matrices �< and U1,<,
respectively, the matrix α< is defined as

α< = U1,<�<(U1,<)−1, (A4)

which satisfies Eq. (A2), i.e., Mα − h − htα2 = 0.
Physically, it represents the propagating modes of a semi-

infinite right wire (starting at site 1) leaking into site 0, as
shown schematically in Fig. 6. Analogously, the effect of all
right-moving modes of a semi-infinite left wire (which starts
at site −1) on site 0 is given by the solutions of Eq. (A3). The
matrix β> that satisfies that equation is

β> = U−1,> (�>)−1 (U−1,>)−1. (A5)

The use of h and ht is inverted in Eq. (A3) with respect to
Eq. (A2). This effectively flips the wave vector of the modes,
i.e., λ ← λ−1 = λ∗, and is accounted by taking the inverse of
� in Eq. (A5).

Finally, in the case of an infinite nanowire, all relevant
electronic properties such as the Green’s function G and the
electrical conductance T are directly obtained from α< and β>

using the following:

�±
L = (h∓)†α±

<, �±
R = (h±)β±

>,

	L/R = i
(
�+

L/R − �−
L/R

)
,

G± = (h±[(α±
<)−1 − β±

> ])−1,

T (E) = trace[	LG+	RG−]. (A6)
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