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Residual resistivity of FeGe under pressure
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Residual resistivity of FeGe under pressure exhibits an anomaly at a critical pressure pc ≈ 19 GPa whose
origin is not understood. In previous theoretical work, it has been suggested that at the critical pressure a minority
spin band starts to become occupied in FeGe. Here we provide further support for this scenario by studying,
within the standard Boltzmann-type transport theory combined with a T-matrix treatment of scattering on dilute
point defects, how the residual resistivity of a helical ferromagnet changes with exchange splitting.
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I. INTRODUCTION

Much attention has been paid recently to two seemingly un-
related isostructural and isoelectronic compounds, namely the
magnetically ordered metal FeGe and the anomalous insulator
FeSi. FeGe becomes magnetically ordered below 279 K with
a large magnetic moment ∼1μB per Fe atom.1,2 Due to the
lack of inversion symmetry, the weak Dzyaloshinskii-Moriya
interaction leads to a formation of long-range spirals3 with
a period of4 ∼700 Å, leading to a rich phenomenology
in applied magnetic fields.5 On the other hand, FeSi is a
small-gap insulator with mysterious magnetic properties at
high temperatures.6,7 Interest in this compound has been
revived after it has been proposed that FeSi is an example
of a Kondo insulator.8,9 It has also been argued that the gap
formation in FeSi represents a simple model for the electronic
structure of quasicrystals.10

A new perspective on the physics of FeSi has been offered
by a seminal study of the FeSi1−xGex alloys11 which has found
a weak first-order transition between a magnetic metal and a
paramagnetic insulator at a critical doping xc. This finding has
lent strong support to the point of view that the anomalous
magnetic properties of FeSi are caused by its proximity to a
nearby ferromagnetic phase.12 For the sake of completeness,
it is worth pointing out that this picture is conceptually
similar to the earlier theories proposing the existence of strong
ferromagnetic fluctuations in FeSi.13,14

The nontrivial point to note here is that since the Ge
atoms are larger than the Si atoms, we have to expect that
the ratio of the kinetic energy to the Coulomb repulsion
energy is smaller in FeGe than in FeSi. Therefore, according
to conventional theories, it is FeGe which should be insulating
and it is FeSi which should be metallic, exactly opposite to
the experimental findings. This anomaly has been explained in
Ref. 15 by noting that as regards the magnetic properties, fairly
conventional physics is being observed: the more correlated
FeGe is magnetically ordered, whereas the less correlated FeSi
has a nonmagnetic ground state. This leads then to the natural
assumption that it is the magnetism which drives the metal-
insulator transition in FeSi1−xGex . Since in ordinary cases it is
just the other way round, namely the metal-insulator transition
is the master and magnetism is the slave, it is very likely that
the electronic transition in FeSi1−xGex represents a novel uni-
versality class of a metal-insulator transition, which has been
dubbed a magnetically induced metal-insulator transition.15

In an interesting recent study by Pedrazzini et al.,16 the
authors have decided to check the highly nontrivial results
of Ref. 11 making use of stoichiometric samples. To this
end, instead of applying chemical pressure by replacing the
Ge atoms in FeGe by the isoelectronic but smaller Si atoms,
Pedrazzini et al. performed high-pressure measurements with
the aim to observe the transition of FeGe at a critical pressure
towards an insulating state. Although pressures as large as
30 GPa have been applied, no transition to an insulating
state has been observed. However, at a critical pressure
pc ≈ 19 GPa, anomalies of the resistivity in the limit of
low temperatures have been observed. It is the purpose of
the present paper to offer a possible explanation of these
anomalies.

Our approach is motivated by the results of recent studies
of a minimal model for the magnetically induced metal-
insulator transition in FeSi1−xGex at zero temperature.17,18

In those works the weak Dzyaloshinskii-Moriya interaction
was neglected and FeGe was modeled as a ferromagnet. It was
found that, according to the minimal model, in between the
fully polarized metallic magnet and the paramagnetic insulator,
there exists a partially polarized metallic phase. In the present
work we build on this finding and we will assume that at
the critical pressure pc ≈19 GPa a fully polarized magnet
becomes partially polarized. Our goal is to check whether this
phenomenology can explain the observed transport anomalies.
We would like to emphasize that although motivated by
Refs. 17 and 18, our results are, to a large extent, independent
of them. In particular, our phenomenology might apply also
to the quite different microscopic model of Ref. 19, since
simulations of its 1D version also found partially polarized
states close to the metal-insulator transition.20 Moreover, also
recent ab initio calculations have found a decreasing magnetic
moment for pressures close to pc.21,22 Our picture seems to
be consistent also with the ab initio studies of metamagnetism
in FeSi which find, in between the paramagnetic insulator and
the large-moment metal, a small-moment metallic phase at
intermediate magnetic fields.23

In Ref. 16 the low-temperature resistivity ρ has been fitted
according to ρ(T ) = ρ0 + AT n, where T is the temperature.
The residual resistivity ρ0, as well as the coefficient A and
exponent n characterizing the inelastic scattering, have been
studied as functions of applied pressure. The following have
been found:
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(i) The residual resistivity ρ0 is roughly constant at
pressures p < pc. In the vicinity of pc, there is a resonant-like
anomaly of ρ0. Finally, for p > pc the residual resistivity ρ0

increases with applied pressure.
(ii) The inelastic part of the resistivity has a canonical

Fermi-liquid form AT 2 at pressures p < pc, and the coefficient
A grows only very weakly with the applied pressure in this
range. For pressures in the vicinity of pc and above, the
absolute value of the inelastic part increases dramatically and
the exponent changes from n = 2 to n ≈ 1.5.

In this paper we concentrate on the observation (i). For
the sake of completeness, at this point we just mention that
the observation (ii) seems to be perfectly consistent with our
picture. In fact, if we imagine describing FeGe by a Hubbard-
like model with an on-site interaction U , then a fully polarized
state is effectively noninteracting and its resistivity should
not exhibit any contribution from electron-electron scattering.
Of course, the presence of small but nonvanishing nonlocal
interactions does lead to a finite (but small) electron-electron
scattering even in this case. The situation changes dramatically
at p > pc, where up-spin electrons do scatter on the down-spin
electrons and vice versa, even if only the on-site interaction
U is retained. This explains the increase of the absolute value
of the inelastic resistivity in a very natural way. As regards
the change of the exponent n, the situation is more involved
and requires a careful examination which will be presented
elsewhere. At this point let us only mention that it might be
important to take into account that the transition from fully to
partially polarized states is a T = 0 quantum critical transition
associated with a soft longitudinal spin-wave mode.24 It is
worth pointing out that a somewhat similar picture based on
spin-disorder scattering has been suggested in Ref. 22.

The plan of this paper is as follows. In Sec. II we
show that, due to the long-range spiral structure, even pure
potential scattering is off-diagonal in the spin index. In
Sec. III we derive, within the Boltzmann transport theory,
a formula for the resistivity of an arbitrarily polarized state
with off-diagonal scattering on a dilute set of point defects.
In Sec. IV we calculate, by a matrix generalization of the
Lippmann-Schwinger equation, exact T matrices for such
scattering, which we then use in the formula for the resistivity.
Finally in Sec. V we present our conclusions.

II. OFF-DIAGONAL SCATTERING

In this section we show that due to the long-range spiral
structure, even pure potential scattering is off-diagonal in
the spin index. In order to proceed, let us assume that the
magnetic field spirals along the spatial z direction according
to B = B(cos qz, sin qz,0). We aim at the simplest possible
description and therefore we assume that the Hamiltonian
describing the electron spinors is

H = − h̄2

2m
� + J

2

(
0 e−iqz

eiqz 0

)
,

where J is the exchange splitting, which has to be large enough
to lead to a fully polarized state in FeGe at ambient pressure.
With increasing pressure, we will assume that J decreases. We
emphasize that our approach is purely phenomenological. For

more microscopic approaches, the reader is referred to, e.g.,
Refs. 21 and 22.

If we introduce the energy difference �k = εk+q − εk,
where q = (0,0,q), the energy eigenvalues of the electrons
are

εkλ = 1

2
(εk+q + εk) + λ

2

√
J 2 + �2

k,

where λ = ±1 is the spin index. The corresponding eigenvec-
tors normalized in a volume V are

ψk,λ = 1√
2V

( √
1 − λαk

λeiqz
√

1 + λαk

)
eik·r,

where we have introduced the notation

αk = �k√
J 2 + �2

k

.

Having described the states of a perfect crystal, let us
proceed with the calculation of their scattering on a point
defect described by the Hamiltonian

H ′ = V δ(x − R).

A simple calculation shows that the matrix element for
scattering on such a potential is

|〈ψk′λ′ |H ′|ψkλ〉|2 = V 2

2V2

[
1 + λλ′(J 2 + �k�k′)√(

J 2 + �2
k

)(
J 2 + �2

k′
)
]
.

Note that since the energy scale �k depends on the electron
wave vector k, the matrix element is nonvanishing not only in
the spin-conserving channel λ′ = λ, but also in the spin-flip
channel λ′ = −λ.

At this point we take into account that due to the long wave-
length of the spiraling,4 q is small and we can safely assume
that J � �k. In this limit the electron energy eigenvalues
simplify to the standard spin-splitting result εk± ≈ εk ± J

2 .
In the spin-conserving channel the scattering matrix ele-

ment can therefore be simplified to

|〈ψk′λ|H ′|ψkλ〉| ≈ |V |
V ,

as should have been expected. The central result of this section
is that, in the spin-flip channel, the scattering matrix element
reads as

|〈ψk′−λ|H ′|ψkλ〉| ≈ |V |
V × |�k − �k′ |

2J
.

Let us estimate now the magnitude of the spin-flip matrix
element at the critical point between fully and partially
polarized states. If we denote the Fermi wave-vector of the
fully polarized state as kN , then the exchange splitting at the

critical pressure pc can be estimated as J ≈ h̄2k2
N

2m
. Because of

the observed large magnetic moment per Fe atom, we have
to take kN to be comparable to π

a
, where a ≈ 4.7 Å is the

lattice constant of FeGe. If we assume that the vectors k and
k′ lie at the majority-spin and minority-spin Fermi surfaces,
respectively, i.e., if k = kN and k′ = 0, then we can set
�k ∼ h̄2kNq

m
� �k′ . Making use of these estimates we find that

the spin-flip matrix element, compared to the spin-conserving
matrix element, is reduced by a factor q

kN
∼ 10−2.
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From now on, the spiral structure becomes irrelevant and
will be completely ignored. Its only effect in the treatment
which follows is to replace the simple potential scattering by
a matrix in spin space, H ′ = V̂ δ(x − R), where

V̂ =
(

V W

W ∗ V

)
. (1)

For the sake of simplicity we will assume that in FeGe there
is only one type of typical point defects, such as vacancies or
interstitials, with concentration nimp. In other words, we will
concentrate only on the most important type of point defects.
From the above considerations it follows that |W |/|V | ∼ 10−2.

III. THE BOLTZMANN EQUATION

In this section we shall derive a formula for the resistivity of
a partially polarized metal, while working within the standard
transport theory as described in Ziman’s textbook.25 The
central object of the theory is the electron distribution function
fkλ, which in the presence of a small applied electric field E

is being sought in the form fkλ = f 0
kλ + 
kλδ(εkλ).

The unknown function 
kλ describing the deviation from
the equilibrium distribution function f 0

kλ has to satisfy the
linearized Boltzmann equation for electrons scattering on point
defects

−eEvz
kλδ(εkλ) = 1

V
∑
k′λ′

Wλλ′
kk′ [
kλδ(εkλ) − 
k′λ′δ(εk′λ′)].

Here we have assumed, without loss of generality, that the
electric field is applied along the z axis and vz

kλ is the
corresponding component of the electron group velocity in
the state kλ.

The scattering from kλ to k′λ′ is elastic; therefore Wλλ′
kk′ =

P λλ′
kk′ δ(εkλ − εk′λ′) and in the Born approximation we have

1

V P λλ′
kk′ = 2πNimp

h̄
|〈ψk′λ′ |H ′|ψkλ〉|2,

where Nimp = Vnimp is the total number of point defects in the
sample. For our simple model of point defects, this implies
P λλ′

kk′ = P λλ′
. In particular, in the spin-conserving channel and

in the spin-flip channel this reads

P ‖ = 2πnimp

h̄
V 2, P ⊥ = 2πnimp

h̄
|W |2.

Applying standard procedures, for the conductivity we find25

σ = 2e2
( ∑

λ

∮
λ

d2k
vkλ

vz
kλ
kλ

)2

∑
λλ′

∮
λ

d2k
vkλ

∮ ′
λ

d2k′
vk′λ′ P

λλ′
kk′ (
kλ − 
k′λ′)2

,

where the symbol
∮
λ
d2k denotes a surface integral along the

Fermi surface for spin component λ.
So far, our treatment of the linearized Boltzmann equation

has been exact. As shown in Ref. 25, the expression for σ

is maximized by the true solution 
kλ of the Boltzmann
equation. Therefore we will estimate the conductivity from
the customary variational solution 
kλ = eEτλv

z
kλ with the

relaxation times τλ for the two spin projections taken as
variational parameters to be optimized.

If we introduce densities of states at the chemical potential
μ for the two spin projections

N0
λ (μ) = 1

(2π )3h̄

∮
λ

d2k

vkλ

,

then the optimal relaxation times τλ which maximize σ are
easily found to be given by the expressions

τλ = 1

P ‖N0
λ (μ) + P ⊥N0

−λ(μ)
. (2)

Note that the scattering rates τ−1
λ have a simple interpretation,

being sums of intraband and interband scattering probabilities.
Let us further assume that the Fermi surfaces are spherical.

In that case we have N0
λ (μ) = mλkλ

2π2h̄2 , where kλ and mλ are
the Fermi wave vector and the effective mass for spin λ,
respectively. Plugging Eq. (2) into the formula for σ , the total
conductivity can be written in a natural form as a sum of the
Drude conductivities for the individual spin projections:

σ = n↑e2τ↑
m↑

+ n↓e2τ↓
m↓

. (3)

In the rest of this paper we will apply Eqs. (2) and (3)
to the experimental data. In the partially polarized states the
numbers of up-spin and down-spin electrons have to satisfy
the condition n↑ + n↓ = n. Our goal will be to determine the
change of the residual resistivity ρ0 = 1

σ
between the fully

polarized state with n↓ = 0 and the partially polarized states
with n↓ > 0.

IV. T-MATRIX DESCRIPTION

In order to go beyond the Born approximation used in the
previous section, in the present section we shall study a lattice
version26 of the continuum model discussed in Sec. II and
we shall construct an exact solution for scattering off a single
point defect described by Eq. (1). We shall assume that the
local Green’s function of an ideal lattice is diagonal in spin
space,

Ĝ0(ε) =
(

G0↑(ε) 0

0 G0↓(ε)

)
.

The exact T-matrix for scattering off the point defect is then
given by the solution of the Lippmann-Schwinger equation27

generalized to the matrix form

T̂ (ε) = V̂ + V̂ Ĝ0(ε)T̂ (ε).

This matrix equation is formally similar to that studied in the
theory of dirty superconductors28 and its solution reads as

T̂ (ε) = [1 − V̂ Ĝ0(ε)]−1V̂ ,

where 1 is a 2 × 2 unit matrix. Performing an explicit matrix
inversion, we find

T̂ (ε) = 1

D(ε)

(
V↓(ε) W

W ∗ V↑(ε)

)
,

where

Vλ(ε) = V − (V 2 − |W |2)G0λ(ε),

D(ε) = 1 − V G0↑(ε) − V↑(ε)G0↓(ε).

165125-3



M. DIAN AND R. HLUBINA PHYSICAL REVIEW B 88, 165125 (2013)

FIG. 1. (Color online) Evolution of the unperturbed density of
states N 0

λ (ε) (dashed lines) and of the band occupation (shaded) with
changing exchange splitting J . The chemical potential μ is indicated
by the vertical dotted line. Left column: Majority band λ = ↑. Right
column: Minority band λ = ↓. Also shown is the local density of
states at the point defect Aλ(ε) for V/ = −0.43 and W/V = 0.2
(full lines).

Note that in the weak-scattering limit V,W → 0 we have
T̂ → V̂ ; i.e., the T matrix reduces to the Born approximation.
However, for finite V̂ the T matrix may develop additional
nonperturbative features which are the subject of this section.

In order to proceed we need to specify the form of the
unperturbed local Green’s function Ĝ0(ε). For the sake of
simplicity, let us assume that the density of states for both spin
projections is semicircular,

N0
↑(ε) = 2

π2

√
2 − ε2, N0

↓(ε) = 2

π2

√
2 − (ε − J )2.

Note that we have assumed that the bandwidths of both the
majority spins ↑ and the minority spins ↓ are the same and
equal to 2. The minority band is rigidly shifted upwards by
the exchange splitting J with respect to the majority band; see
Fig. 1.

In the low-temperature limit which we are interested in, the
chemical potential μ has to be determined from

∑
λ=1,2

∫ μ

dεN0
λ (ε) = n.

For concreteness, from now on we will assume that the band
is quarter filled, i.e., that n = 1

2 . In the fully polarized phase
(which is realized at large exchange splittings J ) the majority
band is therefore half filled and the chemical potential is
μ = 0 in this case. The quantum phase transition from the
fully polarized to the partially polarized state occurs when the
bottom of the minority band drops below μ. This happens at
the critical value Jc = ; see Fig. 1.

Our choice of N0
λ (ε) implies that the unperturbed local

Green’s functions are given by

G0λ(ε) = Mλ(ε) − iπN0
λ (ε),

where the real part

M↑(ε) = Re

[
2ε

2

(
1 −

√
1 − 2

ε2

)]

is a Kramers-Kronig image of N0
↑(ε) and the function M↓(ε)

is given by the same expression, except for the rigid shift
ε → ε − J .

A. Local density of states

Before discussing the results for T̂ (ε), let us point out that
the local Green’s function at the point defect, Ĝ(ε), is given
by the exact equation27

Ĝ(ε) = Ĝ0(ε) + Ĝ0(ε)T̂ (ε)Ĝ0(ε).

This means that the singularities of T̂ (ε) should be reflected
also in the Green’s function at the point defect.

Since the Green’s function Ĝ(ε) has a simple physical
meaning, it will be studied first. From the exact formula for
Ĝ(ε) it follows that the spin-resolved spectral functions at the
point defect are given by

Aλ(ε) = − 1

π
Im

G0λ(ε)[1 − V G0−λ(ε)]

D(ε)
. (4)

Note that for W = 0, the majority and minority spin bands
decouple and Eq. (4) reduces to

Aλ(ε) = N0
λ (ε)

[1 − V Mλ(ε)]2 + [πV N0
λ (ε)]2

,

which is a well-known result for the case of simple potential
scattering off an isolated point defect.27 For sufficiently strong
defect potentials V the local density of states Aλ(ε) is known
to exhibit large deviations from N0

λ (ε).
This behavior is preserved also in the case of coupled bands

described by Eq. (4), as shown explicitly in Fig. 1 for an
attractive defect potential V/ = −0.43, a largish interband
coupling W/V = 0.2, and several values of exchange splitting
J . As is evident from Fig. 1, for J ≈ Jc the singularities
of A↓(ε) are located at ε ≈ 0; therefore they are potentially
relevant for transport.

In Fig. 2 we plot how the local density of states of
the minority band at the defect site A↓(ε) depends on the
parameters V,W characterizing the defect scattering. The
largish value of W/V = 0.2 has again been chosen to amplify
the effects of interband scattering. It can be seen that for weak
defect potentials the local density of states A↓(ε) deviates only
marginally from N0

↓(ε).
For intermediate values of V , the bound states do not form,

but a large reorganization of the density of states at the defect
site takes place. It is worth pointing out that, in this region
of V , even the largish value of W which we have used does
not lead to appreciable changes of A↓(ε) as compared to the
W = 0 result.

Finally, for strong attractive defects with |V | > |Vc|, where
|Vc| ≈ 0.489, a defect bound state forms below the unper-
turbed continuum, if W = 0. For finite interband coupling W ,
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FIG. 2. (Color online) Local density of states of the minority
band A↓(ε) for J =  and several values of V . Left column: W = 0.
Right column: W/V = 0.2. In order to visualize the bound states, the
energy ε has been given a small imaginary part γ = 0.001.

the bound state turns into a Fano-type resonance because of its
coupling to the continuum of majority-spin states. Moreover,
in A↓(ε) one can also observe a delta-function peak with a
small weight, corresponding to the majority-band bound state.

B. Resistivity

In order to account for the nonperturbative effects found in
the density of states, the resistivity will be calculated making
use of Eq. (3), where the lifetime is determined from the optical
theorem27

1

τλ

= −2nimp

h̄
ImTλλ(μ). (5)

One can check readily that this expression reproduces Eq. (2)
in the weak-scattering limit. In particular, also the interband
scattering contributions to Eq. (2) are included in Eq. (5).

In Fig. 3 we plot the evolution, with decreasing exchange
splitting J , of the matrix elements −ImTλλ(μ) at the chemical
potential for a realistic interband coupling W/V = 0.05
and several attractive defect potentials V in the vicinity of
the critical coupling Vc for the bound-state formation. The
majority-band matrix element −ImT↑↑(μ) is seen to be essen-
tially constant for J > Jc and it exhibits a sudden increase
for J < Jc. The minority-band matrix element −ImT↓↓(μ)
exhibits large structure when the chemical potential μ crosses
the Fano resonances below the minority band and also when
μ enters the minority band. The Fano resonances are reflected
also in weak features of −ImT↑↑(μ).

In order to calculate the resistivity, we need an estimate of
the effective mass. We shall take m↑ = m↓ = m, where

m = (4π )2/3 h̄2

a2
(6)

FIG. 3. (Color online) The matrix elements −ImTλλ(μ) as func-
tions of the exchange splitting J for W/V = 0.05 and several values
of V . The upper panel and the lower panel (note the logarithmic scale)
correspond to −ImT↑↑(μ) and −ImT↓↓(μ), respectively. The scale of
J is chosen so that the applied pressure increases from left to right.

is the effective mass consistent with the postulated shape of the
density of states at the band edges and a is the lattice constant,
for which we take its zero-pressure value a = 4.70 Å. Plugging
Eqs. (5) and (6) into Eq. (3), we find

1

ρ0
= e2

2(4π )2/3h̄animp

∑
λ

nλ

−ImTλλ(μ)/
. (7)

Making use of the results for −ImTλλ(μ) in Eq. (7) we finally
obtain the residual resistivity as a function of the exchange
splitting J , see Fig. 4, which is the main result of this
work. As is evident from Fig. 4, the residual resistivity ρ0 is
roughly constant at exchange splittings J > Jc and for J < Jc

it exhibits a sharp increase. Moreover, for attractive defect
potentials V strong enough to induce bound states below the
minority band, there appears also a resonant-like anomaly of ρ0

close to Jc. Thus we have qualitatively reproduced all the main
features of the experimental data. It is also pleasing that the
experimental magnitude of ρ0 is reproduced for a reasonable
concentration nimp = 0.01 of the typical defects.

FIG. 4. (Color online) Residual resistivity ρ0 as a function of the
exchange splitting J for W/V = 0.05 and several values of V . For
the concentration of point defects we take nimp = 0.01.
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As regards the resonant peak in the vicinity of J = Jc,
comparison of the data presented in Figs. 3 and 4 clearly shows
that its physical origin lies in the scattering of the majority-spin
electrons into the resonant states of the minority band. On the
other hand, the smooth increase of ρ0 for J < Jc is caused by
the decreasing number of the majority-spin electrons with high
mobility at the expense of the minority-spin electrons with low
mobility, as well as by the J dependence of −ImT↑↑(μ); see
Fig. 3.

V. CONCLUSIONS

In this paper we have shown that even pure potential
scattering is off-diagonal in the spin index in a helical
ferromagnet such as FeGe. Building on this observation, within
the standard transport theory we have calculated the evolution
of the residual resistivity ρ0 of a helical ferromagnet with
changing exchange splitting J . We have assumed that the
residual resistivity is dominated by scattering on a dilute gas
of identical point defects. The scattering on a single point
defect has been treated exactly. Sharp increase of ρ0 has been
found for the critical exchange splitting Jc where a locally
fully polarized state turns into a partially polarized state.
Furthermore we have shown that resonant-like anomalies of
ρ0 may appear in the vicinity of Jc, if the diagonal point defect
potential is attractive and sufficiently strong.

Exactly this type of anomaly has been observed recently16

in FeGe at a critical pressure pc ≈ 19 GPa. This leads us to
conclude that the effect of pressure on FeGe can be modeled
by a decrease of the exchange splitting until at pc the minority
spin Fermi sheet starts to become populated, resulting in a
locally partially polarized state.

This work was motivated by the finding of intermediate
partially polarized states in theoretical studies of several
microscopic models of the isostructural and isoelectronic
FeSi1−xGex alloys,17–20 as well as of FeGe under pressure21,22

and of FeSi in applied magnetic fields.23 We would like
to emphasize, however, that our results should be quite
independent of the details of the theoretical models and they
should apply to any Lifshitz-type transition with a new Fermi

surface sheet opening at the critical point, provided there exists
a finite scattering amplitude between the bands.

In order to avoid misunderstandings, it should be pointed
out that our calculation does not apply to the residual resistivity
of the alloys FeSi1−xGex , which is a strongly disordered
system with a high concentration of defects unless x is very
close to 0 or 1. The picture presented here is falsifiable by
magnetization measurements of FeGe under pressure. Let us
note that by applying chemical pressure in the FeSi1−xGex

alloys, a weakly magnetic intermediate regime 0.25 < x < 0.4
has in fact already been observed,11 but we are not aware of any
magnetization data for FeGe under pressure. Furthermore, if
the analogy between FeGe under pressure and the FeSi1−xGex

alloys is sound, then we would expect a second phase transition
in FeGe to an insulating state at a higher pressure p′

c.
The authors of Ref. 21 estimate that this should happen at
p′

c ≈ 40 GPa.
Finally, our picture can also be falsified by measuring

the pressure dependence of the total density of states at the
Fermi level N (μ) = ∑

λ=1,2 Nλ(μ), which should exhibit an
additional increase on top of a smooth change in the vicinity
of p = pc. By applying chemical pressure in the FeSi1−xGex

alloys, the density of states has already been determined from
an analysis of the specific-heat data.11 In the intermediate
composition range 0.25 < x < 0.6 an increased value of N (μ)
has in fact been found, the enhancement with respect to the
large-x samples reaching values up to ≈2.3. In order to be able
to describe such large enhancements, most likely we will have
to take into account that fully polarized states are uncorrelated
within the Hubbard model, whereas partially polarized states
do experience mass enhancement due to correlations. The
studies of the density of states and of the finite-temperature
resistivity are therefore genuine many-body problems and as
such they are left for future work.
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1R. Wäppling and L. Häggström, Phys. Lett. A 28, 173 (1968).
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