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Hour-glass magnetic spectrum arising from a striped cluster spin-glass ground state
in La1.75Sr0.25CoO4
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We report inelastic neutron scattering results that reveal an hour-glass magnetic excitation spectrum in
La1.75Sr0.25CoO4. The magnetic spectrum is similar to that observed previously in La1.67Sr0.33CoO4, but the
spectral features are broader. We show that the spectrum of La1.75Sr0.25CoO4 can be modelled by the spin dynamics
of a system with a disordered cluster spin glass ground state. Bulk magnetization measurements are presented that
support the proposed glassy ground state. The observations reiterate the importance of quasi-one-dimensional
magnetic correlations and disorder for the hour-glass spectrum, and suggest that disordered spin and charge
stripes exist at lower doping in La2−xSrxCoO4 than previously thought.
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I. INTRODUCTION

The distinctive hour-glass magnetic spectrum first came to
prominence in neutron scattering measurements of hole-doped
layered copper-oxide superconductors.1–11 It is characterized
by four incommensurate peaks in momentum space, which
with increasing energy first disperse inwards towards the
square-lattice antiferromagnetic wave vector (π,π ) then dis-
perse outwards again but with a rotation of 45◦ around (π,π ).
Various different models have been proposed to account
for the hour-glass spectrum in the layered cuprates, from
strong coupling models that contain stripelike correlations
to weak coupling models based on itinerant magnetism.12

If spin fluctuations play a role in copper-oxide supercon-
ductivity, then an understanding of the hour-glass spec-
trum would be an important step towards a microscopic
model.

Qualitatively, the same hour-glass spectrum has recently
been observed in neutron scattering measurements of certain
layered cobalt and manganese oxide insulators.13,14 This sug-
gests that in spite of their very different electronic properties,
the superconducting cuprates could harbor the same type
of magnetic correlations as found in the layered cobaltates
and manganates. Because the cobaltates and manganates
have well localized electrons, their magnetic dynamics are
relatively easy to understand. Hence, the key requirement for
the hour-glass spectrum could be identified as short-range
quasi-one-dimensional magnetic correlations, the conditions
for which are created in these systems by disordered stripe
phases.13,14

In this paper, we examine in more detail the influence
of disorder on the magnetic spectrum of striped phases.
Stripes are a form of complex order in which charges doped
into an antiferromagnet condense into parallel arrays, which
modulate the magnetic order, such that charge stripes form
antiphase domain walls of the background antiferromagnetic
order. Even the best-correlated stripe phases have a degree of
disorder, as revealed, for example, by spin-glass features in the
magnetization of stripe-ordered cuprates,15 nickelates,16 and
cobaltates.17 The amount of disorder varies with doping, and

it is of interest to investigate the concomitant changes in the
hour-glass spectrum.

The La2−xSrxCoO4 family exhibits nearest-neighbour (nn)
antiferromagnetic (AFM) order at x = 0 (Refs. 18 and 19)
and robust checkerboard charge ordering of Co2+ and Co3+ at
x = 0.5 (Refs. 20 and 21). A phase showing magnetic order
consistent with short-range stripes has been reported for 0.3 �
x < 0.5 (Ref. 22). Charge order has been directly measured
in samples at x = 0.5 (see Ref. 20). The hour-glass magnetic
spectrum was observed in a sample with x = 0.33 (see Ref.
13). The main features of the hour-glass spectrum could be
reproduced by a cluster spin glass model developed for period-
3 stripes.23

Here, we present inelastic neutron scattering (INS) mea-
surements of La1.75Sr0.25CoO4 (x = 0.25). This compound is
near the border between the AFM and stripe ordered phases
proposed in Ref. 22, where the ground state is likely to be
strongly influenced by competing phases. We find that the
magnetic spectrum has an hour-glass shape consistent with
period-4 stripes, and that the stripes have a higher degree of
disorder than the period-3 stripes present in La1.67Sr0.33CoO4.
We extend the cluster glass model23 to period-4 stripes, and
show that the model qualitatively describes the main features
of the observed spectrum of La1.75Sr0.25CoO4.

II. EXPERIMENTAL DETAILS

A single crystal of La1.75Sr0.25CoO4 with mass 14.3 g
was grown by the optical floating-zone method. Initially,
polycrystalline La1.75Sr0.25CoO4 was prepared from La2O3,
SrCO3, and Co3O4 (>99.99% purity) by solid-state reaction.
The starting materials were reacted in air at 1200 ◦C for 48 h
then reground and sintered in air at 1225 ◦C for 48 h. No
impurity phases could be detected in the product by x-ray
powder diffraction. The powder was then pressed into rods
and sintered in air at 1250 ◦C for 24 h. The crystal growth
was performed in a four-mirror image furnace in flowing
high purity argon at a growth speed of 2 mm h−1 with
counter-rotation of the feed and seed rods at 25 rpm. Previous
growth experiments on La2−xSrxCoO4+δ compounds have
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shown that it is difficult to achieve oxygen stoichiometry,
with most as-grown crystals having an excess of oxygen
when x � 0.3. To achieve stoichiometry the as-grown crystal
underwent an anneal in a reducing atmosphere of CO2:CO at
850 ◦C for 12 h.

Sample characterization data were obtained by several dif-
ferent techniques. Electron Probe Microanalysis (EPMA) was
performed with a Jeol JXA-8600. Results from ten positions
on the sample surface were averaged to improve accuracy and
provided an estimate of the cation ratios. The error of the
ratio was calculated from the standard deviation of the results
across these positions. X-ray powder diffraction, performed
on a X’Pert PRO PANalytical diffractometer, was used to
check phase purity and for basic structure analysis. Finally,
magnetic susceptibility and thermo-remnant magnetization
measurements were performed with a superconducting quan-
tum interference device (SQUID) magnetometer (Quantum
Design).

Neutron scattering spectra were recorded on the MAPS
and MERLIN time-of-flight chopper spectrometers at the ISIS
facility. The MAPS spectrometer was used with relatively high
incident neutron energies (Ei) of 80, 120, and 300 meV to
survey the spectrum over a wide range of energy, E. The energy
resolution on MAPS was approximately 5% of Ei at E = 0,
decreasing slightly with increasing E. The MERLIN spec-
trometer was subsequently used with Ei = 20 meV to measure
the lower-energy region of the spectrum with higher resolution,
and to measure the spectrum up to 50 meV with an optimized
incident energy of 60 meV. In both experiments, the samples
were mounted in a 4He closed-cycle refrigerator (CCR) and
aligned with the c axis parallel to the incident neutron beam. In
this fixed orientation, the intensity was mapped as a function of
E and wave vector Q = (H × 2π/a,K × 2π/a,L × 2π/c),
where a and c are tetragonal lattice parameters, and the
out-of-plane wave vector component L varies with E. Previous
measurements on La2−xSrxCoO4 have shown that for energies
greater than a few meV the magnetic correlations between
the CoO2 layers are negligible,13 and so the dispersion in the
out-of-plane direction can be neglected. This means that the
dispersion in the (H,K) plane can be measured directly when
the incident neutron beam is perpendicular to the layers.

The magnetic scattering intensity is described by the partial
differential cross-section, which in the dipole approximation
is given by24

∂2σ

∂�∂E
= kf

ki

(
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2
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f 2(Q)
∑
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(
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α

)
Sαα(Q,E), (1)

where ki and kf are the incident and final neutron wave vectors,
respectively, (γ r0/2)2 = 72.8 mb, f (Q) is the magnetic form
factor for Co2+, and (1 − Q̂2

α) is the orientation factor. Q̂α =
Qα/Q is the α component of the unit vector parallel to Q. The
scattering function Sαα(Q,E) describes the magnetic correla-
tions between the α components of the magnetic moments
(α = x,y,z in Cartesian coordinates) and is dependent on
M(Q), the Fourier transform of the magnetization,

Sαα(Q,E) =
∑

j

|〈j |Mα(Q)|0〉|2δ(E − Ej (Q)
)
, (2)

where |0〉 is the ground state and |j 〉 is an excited state with
energy Ej .

The raw data were corrected for detector efficiency, for
the time-independent background, and for the kf/ki factor in
the differential cross-section, Eq. (1), and measurements of
a standard vanadium sample at each incident energy were
used to normalize the spectra and place them on an absolute
intensity scale. All measurements were made at T = 6 K, the
base temperature of the CCR.

III. RESULTS

A. Structural and chemical analysis

Figure 1 shows the x-ray powder diffraction pattern
recorded at room temperature from the powdered single
crystal sample of La1.75Sr0.25CoO4. Additionally, a profile
fit from a Rietveld refinement of the data performed with
the FULLPROF suite of programs is presented.25 The crystal
structure of La1.75Sr0.25CoO4 is described by the space group
I4/mmm, and the tetragonal unit-cell parameters were refined
as a = 3.86348(7) Å and c = 12.6193(3) Å at 300 K. No
evidence for additional phases in the sample could be found in
the diffraction data.

Knowledge of the Sr and O content of the sample is
important to confirm the doping in the system. By assuming
the total occupancy of the La/Sr site to be stoichiometric, we
determined the Sr content (x) from EPMA and (separately)
from refinement of the x-ray diffraction data. These values are
presented in Table I. The more precise value is from EPMA,
although the quoted error does not include the possibility
of a small systematic error in the calibration. The results
in Table I indicate a very slight deficiency in Sr, but are
close to the nominal composition of x = 0.25. The oxygen
is expected to be near stoichiometry due to the annealing
process performed postgrowth. An indirect check of the
oxygen content is presented in Sec. III C, which confirms
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FIG. 1. (Color online) X-ray powder diffraction pattern of
La1.75Sr0.25CoO4 with Rietveld profile refinement of the tetragonal
structure at room temperature. Red circles show the measured data
points, the black line is the profile refinement, the green bars show
the positions of the refined peaks, and the blue line is the residual
(the difference between the data points and refinement). The pattern
shows no evidence of impurity phases.
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TABLE I. Compositional analysis of La2−xSrxCoO4+δ . The Sr
content (x) is determined in three different ways: (i) from weighed
starting materials, (ii) from EPMA, and (iii) from x-ray occupancy re-
finement. The parameter ζ is determined from the magnetic ordering
vector Qm = (0.5,0.5) ± (ζ,ζ ) observed by neutron diffraction. The
oxygen excess (δ) is calculated from the relation 2ζ = x + 2δ = nh,
which is applicable to an ideal stripe structure with a total number of
holes nh and one hole per site in the charge stripes. All values are per
formula unit of La2−xSrxCoO4+δ .

Nominal doping 2ζ x δ

Weighed 0.25 −0.0130(1)
x = 0.25 0.2240(3) EPMA 0.238(4) −0.007(2)

X-ray 0.22(3) 0.00(2)

this expectation. Hereafter, we will assume the nominal
composition La1.75Sr0.25CoO4.

B. Magnetic characterization

Figure 2(a) shows the susceptibility of La1.75Sr0.25CoO4

with the measuring field H applied parallel to the a axis. Below
18 K, there is a splitting of the zero-field-cooled (ZFC) and
field-cooled (FC) susceptibilities indicative of a spin freezing
transition. The feature in the ZFC measurement at 5 K is an
artefact of the magnetometer. The insert to Fig. 2(a) shows
the FC and ZFC susceptibilities for temperatures between 2
and 300 K and measuring fields along the a and c axes. The
susceptibility is strongly anisotropic at low temperatures with
χa > χc, and is qualitatively similar to that of La1.67Sr0.33CoO4

(Ref. 13) although χc has a weaker temperature variation in
La1.75Sr0.25CoO4.

Several irreversibility effects are seen in the thermo-
remnant magnetization (TRM) of La1.75Sr0.25CoO4, shown in
Fig. 2(b). To obtain these data, the sample was first cooled to
2 K in a field of 104 Oe, then the field was removed and the
temperature varied in the sequence 2→10→2→30 K. Overall,
the TRM decays with increasing temperature. However, as
the temperature sweep is reversed from 10→2 K, the TRM
remains constant. As the sample is warmed again, the TRM
remains constant until rejoining the initial decay trend at 10 K.
Measurements of the relaxation of the TRM are presented in
Fig. 2(b), insert. The sample was cooled to 2 K in an applied
field of 104 Oe, after which the field was removed and the
TRM measured at regular time intervals over about 36 h. A
characteristic decay in the TRM can be seen in the data.

The magnetometry results for La1.75Sr0.25CoO4 exhibit two
of the hallmarks of spin glass behavior. The first is a spin
freezing transition in the susceptibility, as seen in Fig. 2(a).
This can be understood as a glassy freezing in of the induced
magnetic order (in the FC case) or lack of induced order
(in the ZFC case) at 18 K.26 Furthermore, the pronounced
memory effect shown in Fig. 2(b) illustrates the melting
of a frozen induced magnetic order. The second spin-glass
hallmark is the characteristic decay trend seen in Fig. 2(b)
insert. This decay was fitted to a stretched exponential of the
form M(t) = M0 exp[−αt (1−n)] + Mbgd, and the value of the
stretching exponent n was found to be n = 0.6171(8). This
exponent approaches that of an ideal spin glass, n = 2/3 (see
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FIG. 2. (Color online) Susceptibility and magnetization of
La1.75Sr0.25CoO4. (a) Temperature dependence of the magnetic
susceptibility measured with a field of 1000 Oe applied parallel
to the a axis. The insert shows the anisotropy in the magnetic
susceptibility for fields parallel to the a and c axes. (b) Memory effect
observed in the thermoremnant magnetization. The insert shows the
measured decay of TRM with time (blue points) and a fitted stretched
exponential (red line), as described in the text.

Ref. 27). Similar results have been found for the lightly-doped
cuprates15 and nickelates,16 but with different exponents.
Although the precise nature of the spin-glass state seems to
be material dependent, it appears that spin-glass behavior is
a universally shared property associated with the imperfect
stripe order of real-world materials.

C. Magnetic diffraction

Figure 3(a) shows the measured elastic neutron scattering
in the (H,K) plane in two-dimensional (2D) reciprocal space.
The scattering, which is diffuse in character, is centered around
the two-dimensional AFM wave vector QAFM = (0.5,0.5) [ ≡
(π,π ) for a square lattice], and is elongated along the (1,1) and
(−1,1) directions. Figures 3(c) and 3(d) show line cuts passing
through QAFM along the (H,0.5) and (H,1 − H ) directions.

Previous neutron diffraction studies of hole-doped
La2−xSrxCoO4 compounds with 0.3 < x < 0.5 have found
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FIG. 3. (Color online) Short-range magnetic order in
La1.75Sr0.25CoO4. (a) Elastic diffuse neutron scattering intensity
in the (H,K) plane measured with Ei = 20 meV and integrated
over the energy range −1 < E < 1 meV. The intensity is given in
units of mb sr−1 f.u.−1. (b) Fit to the elastic data using a pattern
of four bivariant Lorentzian peaks. The peaks are centered on
Qm = QAFM ± (ζ,ζ ) and QAFM ± (ζ,−ζ ). Peak centers are shown
as black circles. Peak widths are measured along the q‖ and q⊥
directions (labeled) to determine the correlation lengths parallel and
perpendicular to the stripe direction, respectively. (c) and (d) Line
cuts through the data (blue points) and fit (red line) depicted in (a)
and (b) along the (H,0.5) and (H,1 − H ) directions, respectively.
(e) Schematic diagram of perfect period-4 stripe order. Open
circles denote Co3+ ions with S = 0, while black arrows show
Co2+ ions with S = 3/2. The grey dashed line indicates the stripe
parallel direction. The nearest-neighbour (solid red) and interstripe
(dashed red) exchange interactions, J and J ′, respectively, are
labeled. This orientation of stripes gives rise to magnetic peaks
at Qm = QAFM ± (ζ,ζ ) positions. Equivalent domains with stripes
oriented perpendicular to those depicted in (e) would give rise to
peaks at the QAFM ± (ζ,−ζ ) positions.

a fourfold pattern of broad incommensurate magnetic peaks
centered on the in-plane wave vectors Qm = QAFM ± (ζ,ζ )
and QAFM ± (ζ,−ζ ).13,22 The incommensurability ζ scales
with the hole doping x, such that 2ζ = x. These results
have been interpreted as arising from a crystallization of
holes into diagonal stripes of Co3+, which modulate the
background AFM order on the majority Co2+ sites—see
Fig. 3(e). Such stripe formation is well established in the
isostructural layered nickelates La2−xSrxNiO4 for 0.15 < x <

0.5 (see Refs. 28–30).

The “X”-shaped pattern of diffuse scattering seen in
Fig. 3(a) is consistent with four broad and overlapping incom-
mensurate peaks surrounding QAFM, and is therefore indicative
of short-range stripe order. To quantify this interpretation,
we fitted the elastic data to an intensity distribution modeled
with four bivariant elliptically-contoured Lorentzian peaks.
This description of the peaks is equivalent to the scattering
cross section for anisotropic two-dimensional disorder given
by Savici et al.31 The centers of the four peaks were shifted by
equal amounts ζ away from QAFM to fit the incommensurate
pattern. The best fit was obtained with 2ζ = 0.2240(3), and
the resulting intensity distribution is presented in Fig. 3(b).
The calculated distribution is in reasonable agreement with
experiment, although the model has a small excess of intensity
at QAFM.

The value of the incommensurability parameter 2ζ =
0.2240 estimated from this analysis is close to the incommen-
surability 2ζ = 0.25 for ideal period-4 stripes. The difference
may be at the same level as the uncertainties in the analysis, but
if we naively equate the value of 2ζ with the hole doping then
it suggests a slightly lower doping than is accounted for by the
nominal Sr content of x = 0.25, consistent with the chemical
analysis results presented in Table I. The slightly low value of
2ζ could also be accounted for by a small deficiency in the
oxygen content. The values of the oxygen excess δ obtained
from the relation 2ζ = x + 2δ, which assumes that the stripe
period is determined by the total hole concentration from Sr
and O, are also given in Table I. The oxygen deficiency values
determined this way are very small indeed, which supports our
earlier assertion that the crystals are essentially stoichiometric
in oxygen.

The elastic diffuse scattering also allows us to quantify
the degree of disorder. As the Lorentzian peaks are elliptical,
there are two characteristic magnetic correlation lengths, one
parallel and the other perpendicular to the stripe direction.
The correlation lengths are defined as the inverse of the half
width at half maximum (HWHM) of the incommensurate
peaks in the respective directions. Instrumental resolution
was not explicitly included in the analysis because it has a
negligible effect on the diffuse signal.32 These directions are
indicated in reciprocal and real space in Figs. 3(b) and 3(e).
From the fit we find ξ

‖
M = 7.0 Å and ξ⊥

M = 3.5 Å. These values
indicate an increase in disorder in La1.75Sr0.25CoO4 compared
with La1.67Sr0.33CoO4 for which we found ξ

‖
M = 10 Å and

ξ⊥
M = 6.5 Å (see Ref. 13).

D. Magnetic excitation spectrum

Figure 4 provides an overview of our neutron scattering
data on the magnetic spectrum of La1.75Sr0.25CoO4. The
key features of the data in order of increasing energy are
(i) low-energy branches dispersing inwards from the four
incommensurate wave vectors Qm towards QAFM, (ii) near-
vertical dispersion at QAFM between about 10 and 18 meV,
and (iii) an outward dispersion of intensity away from QAFM

above about 18 meV, with a four-peak pattern that is rotated by
45◦ with respect to the four low energy peaks. The spectrum
has all the characteristic features of the hour-glass spectrum,
and is very similar to that observed in La1.67Sr0.33CoO4. The
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FIG. 4. (Color online) Hour-glass magnetic spectrum of
La1.75Sr0.25CoO4 measured on the MERLIN spectrometer. Data below
and above 17 meV were measured with Ei = 20 and 60 meV,
respectively. The intensities in each plane have been scaled by
different factors to help visualize the overall spectrum.

main difference is that the intensity is broader in Q, consistent
with the shorter magnetic correlations in La1.75Sr0.25CoO4.

Figures 5(a)–5(e) show a series of constant-energy slices
at increasing energies through the spectrum to emphasize the
distribution of intensity in the (H,K) plane, and the left half
of Fig. 6 is an energy-wave vector slice that shows dispersion
of the intensity and, in particular, the energy broadening at
QAFM (i.e., the saddle point of the hour-glass, centered at Es ≈
12 meV). In the lower part of this figure (E < 11.25 meV),
the wave vector on the horizontal axis is along the (H,H )
direction and in the upper part it is along the (H,0) direction.
In both parts, the center of the horizontal axis is at QAFM and
plots the magnitude of Q in units of 2π/a.

IV. ANALYSIS AND DISCUSSION

The observations of signature spin-glass behavior in the
magnetization results and a very broad INS spectrum indicate
that disorder is central to any theoretical description of
magnetic excitations in La1.75Sr0.25CoO4. In previous stud-
ies, the hour-glass spectrum was shown to arise from the
combined effects of quasi-one-dimensional AFM correlations
and disorder.13,14 The measured hour-glass spectra have been
compared with spectra calculated by spin wave theory (SWT)
for ideal stripes, and disorder has been included by numerical
broadening. Recently, however, Andrade et al.23 developed a
microscopic model which describes a system with short-range
stripe order as a disordered cluster spin glass (DCSG). The
model was applied to the case of La1.67Sr0.33CoO4, and
the calculated magnetic spectrum was found to give a very
good description of the observed hour-glass spectrum in this
material, and captured salient features of the data that could

not be satisfactorily accounted for by numerically broadened
SWT. We now extend this DCSG model to the case of
La1.75Sr0.25CoO4.

A. DCSG Model

To describe disordered stripes with short-range order, we
use the model proposed in Ref. 23 (which itself was adapted
from a model proposed for fluctuating stripes in cuprates in
Ref. 33). We start by modeling stripes of Co2+ and Co3+
ions. We assume the charge order to be static on the time
scale of the magnetic fluctuations, such that the spin sector
can be analyzed for a set of frozen charge configurations.34

Those configurations correspond to imperfect stripes. We
construct an Ising model for variables ni on the sites i

of a square lattice, where ni = 0 refers to a Co2+ and
ni = 1 to a Co3+ ion. The model is chosen such that it has
perfect stripe configurations with charge ordering wave vector
QC = (0.5 ± 0.25,0.5 ∓ 0.25) and (0.5 ± 0.25,0.5 ± 0.25) as
ground states at fixed filling 〈nh〉 = 1/4. Monte Carlo (MC)
simulations of this model on Na × Na lattices are used to
generate charge configurations away from this ordered state,
i.e., with well-defined short-range order.35 Representative
results are in Fig. 7(a) showing multiple stripe domains and
various types of defects. We characterize these configurations
by their correlation lengths ξ

‖
C (ξ⊥

C ) parallel (perpendicular)
to the stripe direction, in the same fashion as defined for the
magnetic correlation length as in Figs. 3(b) and 3(e).

To model the magnetism, we place localized S = 1/2 spins
on the Co2+ sites of a 2D disordered stripe configuration as in
Fig. 7(a). We assume the Co3+ sites are spinless, as found in
previous studies of La2−xSrxCoO4 (Refs. 13, 21, and 36). The
spins are assumed to interact via Heisenberg exchanges as in
Fig. 3(e):

Hsp =
∑
〈i,j〉

∑
α

J α
ij S

α
i Sα

j . (3)

The first sum runs over the lattice sites with ni = 0 according
to a given charge configuration {ni}, and α = x,y,z. As in
Ref. 23, we assume that the nearest-neighbor coupling J has
the same form as in the undoped parent compound: J x =
J (1 + ε), J y = J , and J z = J (1 − δ). The parameters δ and
ε control the spin anisotropy with δ = 0.28 and ε = 0.013.
Because the coupling across a Co3+ ion, J ′, is considerably
smaller than J , we assume it to be isotropic. Interlayer
couplings are neglected. For imperfect charge order, Hsp

describes frustrated magnetism due to the antiphase-domain-
wall property of stripes. It is precisely this combination of
disorder and frustration, which leads to a DCSG.23

To access the spin dynamics, we first determine locally
stable classical states of Hsp for a given charge configuration
{ni}, taking into account the glassy nature of the problem.23 An
example of such ground state is illustrated in Fig. 7(b), which
nicely shows clusters with local AFM order and essentially
random relative orientations. We then calculate the excitation
spectrum ofHsp using linear spin-wave theory on finite lattices.
Deviations from a classical state are represented by noninter-
acting bosons modeling Gaussian magnetic fluctuations. The
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FIG. 5. (Color online) Constant-energy slices at (a) 〈E〉 = 4.5, (b) 9, (c) 11.25, (d) 18, and (e) 22.5 meV through the magnetic spectrum of
La1.75Sr0.25CoO4. Data were measured on the MERLIN spectrometer using Ei = 20 meV (a)–(c) and Ei = 60 meV (d) and (e). The intensity
is in absolute units of mb sr−1 meV−1 f.u.−1. DCSG model simulations are shown at the energies (f) ω = 0.2, (g) 0.4, (h) 0.5, (i) 0.8, and
(j) 1.0 expressed in multiples of JS. The simulations have been performed with J ′/J = 0.05, and JS = 22.5 meV was chosen to obtain an
approximate match between the simulations and data. The simulated charge-disordered ground state was characterized by a correlation length
ξ

‖
C = 5a. The squared magnetic form factor f 2(Q) and the orientation factor for in-plane magnetic fluctuations (see Appendix A) have been

included in the simulations. The simulated intensities have been scaled for ease of comparison with the data. (k)–(o) Line cuts through the
respective 2D experimental (blue points) and simulated (red line) data along the (H,1−H ) (k)–(m) and (H,0.5) (n) and (o) directions.

spectrum is described by the total scattering function,

Ssim(Q,E) =
[ ∑

α

Sαα(Q,E)

]
avg

, (4)

where Sαα(Q,E) is the same as that defined for Eq. (2),
with now Mα (Q) being the Fourier-transformed spin operator.
The neglect of orbital angular momentum in the model
means that intensities calculated from the Sαα functions are
not quantitatively comparable with the real system. Where
necessary, we have scaled the intensity of the simulated
spectra to match the experimental data. We express energies in
multiples of JS, i.e., E = ωJS. The [...]avg notation expresses
that we average the Sαα(Q,E) summation over 80 spin states
obtained from 40 charge configurations.

B. Comparison of DCSG model results
to measured excitation spectrum

In order to assess the results of these simulations we have
plotted 2D slices alongside the experimental data in Figs. 5
and 6. The simulated spectrum Ssim(Q,E) has been multiplied
by f 2(Q), the squared dipole form factor of Co2+ (Ref. 37)
and by a weighting factor that corresponds to the Q-dependent
orientation factor in Eq. (1) for the case when the magnetic
fluctuations are constrained to a plane—see Appendix A.
The justification for neglecting the out-of-plane fluctuations
is that the large planar anisotropy in La1.75Sr0.25CoO4 and

the particular geometry employed in the experiments make
both the data and Ssim(Q,E) rather insensitive to out-of-plane
fluctuations in the energy range covered in Figs. 5 and 6, i.e.,
Szz(Q,E) � {Sxx(Q,E) + Syy(Q,E)}. This approximation is
discussed in more detail in Appendix B.

The simulations have been scaled such that JS = 22.5 meV.
This value was found to give a good match between the
positions of the main hour-glass features in the experimental
and simulated data. The inter-stripe exchange parameter, J ′,
was fixed to J ′/J = 0.05. This ratio was obtained from SWT
based on perfect stripe order in La1.67Sr0.33CoO4 (Ref. 13), and
it also gave a good description of the hour-glass dispersion
calculated with the DCSG model.23 We will assume J ′/J
remains unchanged for La1.75Sr0.25CoO4. The level of disorder
used in the model was chosen through comparison with
various simulated spectra. Figures 5 and 6 show simulations
characterized by ξ

‖
C = 5a. This value was used as it reproduces

the main features in the spectrum.
The DCSG simulations qualitatively reproduce all the

features of the hour-glass spectrum outlined above and
measured in La1.75Sr0.25CoO4. The distribution of intensity
across the Brillioun zone, shown in Figs. 5(f)–5(j), illustrates
this good match. However, there are discrepancies between
the simulations and experimental data, which are emphasized
in the line cuts shown in Figs. 5(k)–5(o). The first is that
the experimental data appears to be broader than simulations.
Some (but not all) of this additional broadening is due to
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FIG. 6. (Color online) Dispersion of the scattering intensity
in La1.75Sr0.25CoO4. Lower panels (E < 11.25 meV, ω < 0.5JS)
shows the dispersion along the Q = (H,H ) direction. Upper panel
(E > 11.25 meV, ω > 0.5JS) shows the dispersion along the (H,0)
direction. The left half shows neutron scattering data collected
on the MERLIN spectrometer. Two incident energies were used,
Ei = 20 meV for data in the lower panel, and Ei = 60 meV in the
upper panel. The intensity is in absolute units of mb sr−1 meV−1 f.u.−1.
DCSG model simulations are plotted on the right half of the
figure. The simulations have been performed with J ′/J = 0.05, and
JS = 22.5 meV. The simulated charge-disordered ground state was
characterized by a correlation length ξ

‖
C = 5a. The squared magnetic

form factor f 2(Q) and the orientation factor for in-plane magnetic
fluctuations (see Appendix A) have been included in the simulations.
The simulated intensities have been scaled for ease of comparison
with the data.

the spectrometer resolution, which is not included in the
simulations. The second shortcoming of the simulation is the
overestimation of intensity at the magnetic zone center, most
noticeably in Figs. 5(l) and 5(m) and between 5 and 15 meV in
Fig. 6. In the experimental data below 11 meV, there are broad
but nearly resolved incommensurate excitations originating
from the Qm positions which disperse inwards towards QAFM,
whereas in the simulation, over the same energy range the
intensity is always largest at QAFM. This suggests that the
simulation contains more regions of local AFM order than in
the real system, although some of the discrepancy might be
reduced if the parameters of the model were further refined
against the data.38

Figure 8 contains momentum-averaged spectra related to
the momentum-averaged partial scattering functions

Sαα(E) =
∫

Sαα(Q,E) dQ∫
dQ

. (5)

These functions are proportional to the local susceptibilities,
and are a measure of the densities of magnetic modes for
each magnetic polarization direction. The actual experimental
quantity plotted in Fig. 8 is (γ r0/2)2Sexpt(E), the momentum-

(a)

(b)

FIG. 7. (Color online) (a) Disordered charge configuration with
ξ

‖
C ≈ 5a and ξ⊥

C ≈ 3.5a, obtained from the Ising model for N = 40.
Black (red) circles correspond to Co3+ (Co2+) ions. (b) Corresponding
real-space spin configurations in classical ground states of Hsp with
ξ

‖
M ≈ 4.5a and ξ⊥

M ≈ 2.5a. The dots show the nonmagnetic sites,
while the arrows show the x and y components of the Si (the z

components are tiny due to the strong anisotropy caused by δ).

averaged intensity corrected for the squared magnetic form
factor f 2(Q) and the factor [(1 − Q̂2

a) + (1 − Q̂2
b)]/2 corre-

sponding to the orientation factor for in-plane fluctuations—
see Appendix A. As mentioned earlier, and detailed in
Appendices A and B, the experiment is relatively insensitive
to out-of-plane magnetic fluctuations, so

Sexpt(E) ≈ Sxx(E) + Syy(E). (6)

The data points in Fig. 8 are obtained from the integrals of
the pattern of four bi-variant Lorentzians previously used
to describe the elastic diffuse scattering and now fitted to
a series of constant-energy slices. The solid line shows the
in-plane magnetic scattering Sxx(E) + Syy(E) calculated from
the DCSG model for La1.75Sr0.25CoO4 with ξ

‖
C = 5a, and the

dotted line is the calculation for perfectly ordered period-4
stripes (ξ ‖

C = ∞). Both simulations were performed with
J ′/J = 0.05, and the simulated intensities have been scaled
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FIG. 8. (Color online) Momentum-averaged scattering of
La1.75Sr0.25CoO4. Experimental points are calculated by the method
described in the text from the INS spectra recorded on MERLIN.
Blue (green) points indicate values fitted to data measured with
Ei = 20 meV (60 meV). Scaled DCSG simulations of the in-plane
magnetic scattering for ξ

‖
C = 5a disordered stripes (solid line) and

ξ
‖
C = ∞ perfect stripe order (dotted line) are also plotted. Both

simulations are performed with JS = 22.5 meV and J ′/J = 0.05.

so that the DCSG curve matches the experimental data at low
energies. A comparison of the two simulated curves shows that
as well as generally broadening the features of the spectrum,
disorder also has the effect of shifting the saddle-point feature
down in energy, from about 15 meV in the case of ideal
stripes to approximately 12 meV for disordered stripes. This
downshift of the saddle point was also observed in the DCSG
simulations of La1.67Sr0.33CoO4 (see Ref. 23).

The DCSG simulation gives a reasonable description of the
features observed in the experimental data, which extends up
to ∼50 meV. The simulations show additional features above
∼50 meV extending up to a maximum energy of 4JS, which
is the expected band width for period-4 stripes (because spins
in the middle of an AFM stripe are coupled to four nearest
neighbors by an exchange interaction J—see Fig. 3). These
high-energy features are due to magnon bands associated with
the AFM order of period-4 stripes39,40 together with modes
arising from local spin configurations present due to disorder.
Unfortunately, the signal was too weak in our measurement
to obtain useful data above ∼50 meV. Measurements with
sufficient sensitivity to probe these high-energy modes could
provide useful information on local AFM correlations in
La1.75Sr0.25CoO4.

V. CONCLUSIONS

We have observed evidence of short-range stripe order and
the distinctive hour-glass magnetic spectrum in the layered
cobaltate La1.75Sr0.25CoO4. The results show that the stripe
phase in La2−xSrxCoO4+δ extends to lower doping than repre-
sented in the phase diagram proposed by Cwik et al. in Ref. 22,
and that the hour-glass spectrum is robust to quite considerable

amounts of disorder, characterized in La1.75Sr0.25CoO4 by
magnetic correlation lengths of ξ

‖
M = 7.0 Å and ξ⊥

M = 3.5 Å
parallel and perpendicular to the stripes.

The disordered cluster spin glass ground-state (DCSG),
proposed in Ref. 23 to describe the disordered period-3 stripe
phase found in La1.67Sr0.33CoO4, qualitatively reproduces
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FIG. 9. (Color online) (a) Momentum-averaged partial scattering
functions Sxx (blue line), Syy (red line), and Szz (green line), simulated
for the case where ξ

‖
C = 5a, J = 22.5 meV, and J ′/J = 0.05.

(b) The partial scattering functions weighted by the orientation
factors in the INS cross-section. The orientation factors are cal-
culated from the variation of Q with energy in the time-of-flight
spectrum, with the in-plane component of Q fixed at (0.5,0.5).
The neutron incident energy was Ei = 60 meV, as used in the
experiment. (c) Comparison of the scattering from the in-plane
fluctuations Sxx + Syy (solid black line) with the actual combination
of scattering functions present in the experimental INS spectrum,
Sxx(E) + Syy(E) + ηSzz(E) with η = 2(1 − Q̂2

c)/(1 + Q̂2
c) (dashed

black line). The in-plane fluctuations are seen to dominate the
experimental spectrum over the entire bandwidth.
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all the features of the measured hour-glass spectrum of
La1.75Sr0.25CoO4. Investigations of the magnetic excitations
at higher energies than reported here could lead to a fuller
understanding of the DCSG ground state in La1.75Sr0.25CoO4.

ACKNOWLEDGMENTS

We wish to thank N. R. Charnley for his valuable assistance
with the EPMA measurements and analysis. We thank R. D.
Johnson for assisting with the powder diffraction analysis.
This work was supported by the UK Engineering and Physical
Sciences Research Council and by the DFG through Grant
Nos. FOR 960 and GRK 1621.

APPENDIX A: SCATTERING FROM IN-PLANE
FLUCTUATIONS

The neutron inelastic scattering cross-section, Eq. (1),
contains the sum of partial scattering functions weighted
by factors that filter out the components of the magnetic
fluctuations along the scattering vector Q:

SINS(Q,E) =
∑

α

(
1 − Q̂2

α

)
Sαα(Q,E). (A1)

The DCSG simulations, on the other hand, sum the partial
scattering functions without the weighting factors—Eq. (4):

Ssim(Q,E) =
∑

α

Sαα(Q,E). (A2)

In general, SINS and Ssim are not proportional to one another
and so cannot be compared quantitatively. However, as we
show here, SINS and Ssim are proportional to one another for the
special case where the magnetic fluctuations are constrained
to a plane and are domain-averaged. As shown in Appendix B,
this case applies to La1.75Sr0.25CoO4 due to the strong planar
anisotropy and the particular experimental configuration used
here.

We denote the easy direction for the spins within the plane to
be x, and we assume an equal probability for x to be parallel
to the a and b axes of the tetragonal crystal lattice. Setting
Szz(Q,E) = 0 in Eqs. (A1) and (A2) and averaging over the
two domains, we find

〈SINS(Q,E)〉
= 1

2

[(
1 − Q̂2

a

)
Sxx(Q,E) + (

1 − Q̂2
b

)
Syy(Q,E)

]
+ 1

2

[(
1 − Q̂2

a

)
Syy(Q,E) + (

1 − Q̂2
b

)
Sxx(Q,E)

]

= 1
2

[(
1 − Q̂2

a

) + (
1 − Q̂2

b

)]
[Sxx(Q,E) + Syy(Q,E)]

= 1
2

(
1 + Q̂2

c

)
Ssim(Q,E). (A3)

Here, 〈. . .〉 denotes the domain average in the real crystal and
Q̂a , Q̂b, Q̂c are the components of the unit vector Q̂ along
the tetragonal crystal axes. Hence, for the case of in-plane
fluctuations, SINS and Ssim are proportional to one another and
can be compared directly after correction for the prefactor
1
2 (1 + Q̂2

c).

APPENDIX B: EFFECT OF OUT-OF-PLANE
SPIN FLUCTUATIONS

Here, we use results from the DCSG model simulations
to demonstrate that our INS measurements are relatively
insensitive to out-of-plane magnetic fluctuations. Figure 9(a)
displays the individual components Sxx(E), Syy(E), and
Szz(E) of the momentum-averaged scattering function cal-
culated from the DCSG model with ξ

‖
C = 5a. The majority of

the signal below ∼20 meV is seen to be from the in-plane
fluctuations, Sxx(E) + Syy(E), as expected for the strong
XY -like magnetic anisotropy in La1.75Sr0.25CoO4. The Szz(E)
component is largest for E > 35 meV.

In Fig. 9(b), we show the functions (1 − Q̂2
α)Sαα(Q,E),

which appear in the INS cross-section, Eq. (1). Now it can
be seen that the in-plane fluctuations dominate over the entire
bandwidth of the measured INS spectrum. This is because in
the time-of-flight method, when the incident beam is parallel
to the c axis the component of Q parallel to c at small scattering
angles increases with increasing energy, and so the orientation
factor (1 − Q̂2

c) decreases with increasing energy. Hence, for
energies above ∼ 20 meV, where Szz(E) becomes important,
the orientation factor suppresses Szz(E) relative to Sxx(E) and
Syy(E).

Finally, in Fig. 9(c), we show the calculated spec-
trum of in-plane fluctuations Sxx(E) + Syy(E) together with
the combination Sxx(E) + Syy(E) + ηSzz(E), where η =
2(1 − Q̂2

c)/(1 + Q̂2
c) determines the proportion of Szz(E),

which appears in the experimental spectrum [η is the ra-
tio of out-of-plane to in-plane orientation factors, see Eq.
(A3)]. A comparison of these two curves shows that the
Szz(E) component is at most 15% of the total measured
intensity.

The results shown in Fig. 9 confirm that the experimental
spectrum is dominated by scattering from in-plane magnetic
fluctuations.
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