
PHYSICAL REVIEW B 88, 165116 (2013)

Perfect dielectric-metamaterial reflector
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We exploit the Mie resonance in dielectric microparticles to design a single-negative metamaterial monolayer
with near-unity reflectivity and negligible absorptivity. In contrast to Bragg reflectors and photonic band gap
materials, which require multiple layers for high reflection, this metamaterial is both highly reflective and
subwavelength in thickness. We identify the underlying physics necessary to design near-perfect all-dielectric
reflectors at virtually any wavelength band of interest. Using full-wave, finite-element analysis and realistic optical
constants for the constitutive materials, we develop a 0.45-μm-thick, silicon-based metamaterial monolayer with
normal-incidence reflectivity over 99.999% and absorptivity less than 0.001% at a short-wave infrared wavelength
of 1.5 μm.
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I. INTRODUCTION

The ability to derive a composite medium with optical
properties much different from those of the constitutive mate-
rials makes metamaterials (MMs) of considerable scientific
and technological interest.1–3 Over the last decade, as the
operating frequency of MMs has progressed from GHz and
THz to infrared and visible, MMs have enabled the realization
of numerous fascinating electromagnetic properties, including
a negative refractive index,4 sub-diffraction-limited imaging,5

zero reflection by impedance matching,6 and enhanced optical
transmission,7 reflection, and absorption.8–10 Most of the
initial research at GHz and THz exploited the magnetic-dipole
resonance in the split-ring resonator to achieve negative
permeability and the electric-dipole resonance in metallic
wires to achieve negative permittivity.11 The extension of these
traditional MM design principles to infrared and visible fre-
quencies has been limited primarily by the absorption loss and
fabrication complexity associated with the metallic elements.12

All-dielectric MMs offer the possibility of achieving
properties similar to their metallic counterparts, but with
substantially less absorption loss and fabrication complexity.13

O’Brien and Pendry14 were the first to exploit Mie resonance
to obtain a bulk magnetic polarization from an array of dielec-
tric cylinders. Since then, numerous authors have predicted
and measured interesting optical properties in all-dielectric
MMs.13,15–22 Of particular interest is the measured15,20–22

and predicted16,18 reflectivity spectra from thin layers of all-
dielectric MMs, which show considerably enhanced reflection
near the Mie resonance. Although the enhanced reflection was
associated with electric and magnetic resonances, its precise
physical origin has not been studied in detail. A fundamental
physical understanding of the observed reflectance will help
to further enhance the performance and perhaps achieve a
MM layer with near-perfect reflectivity, which forms the core
objective of this article.

A compact, nonabsorbing, perfectly reflecting layer would
have numerous important applications. In bio-imaging and
nanosensing, a perfect reflector would support a standing wave
with a perfect electric-field node at the surface, which could
be used to enhance the absorption cross section for circular
dichroism in microscopic chiral molecules such as DNA.23

A perfect reflector could be used to improve the throughput
efficiency of lasers by reducing optical loss in the walls of
the cavity, and to improve the damage-threshold irradiance
of conventional optical devices such as mirrors and filters.
While high reflectivity can be obtained with Bragg reflectors
and related photonic band gap structures, these often require
many layers to achieve the desired reflectivity.24 An additional
advantage of MMs is that they do not necessarily require
periodicity if they are truly homogeneous media,25 and so
they offer the possibility of self-assembly growth or paintlike
fabrication, making them suitable for large-area applications.

In this article, we first derive the conditions on the
permittivity and permeability to achieve perfect reflection for a
semi-infinite (bulk) medium. For high-permittivity spheres in
air background, we use the Lewin effective medium theory26 to
design a bulk MM with the required effective parameters, and
show the corresponding perfect reflectance. Then we derive the
additional conditions necessary to achieve perfect reflection
for thin layers. As an illustration, we consider a monolayer
of Si microspheres in air background. Using measured optical
constants for Si, we use finite-element full-wave analysis to
design a thin reflector with near-unity reflectance at a short-
wave infrared wavelength of 1.5 μm. The high reflectivity is
correlated with the calculated permittivity and permeability
of the MM monolayer. Finally we design a demonstrable
structure of 0.45 μm Si cubes on SiO2 substrate with over
99.999% reflectivity and less than 0.001% absorptivity at
1.5 μm. The fundamental physical design principles developed
here can be used to design a subwavelength-thick, nearly
perfect reflector at arbitrary wavelengths of interest.

II. SEMI-INFINITE MEDIUM

First we derive the conditions for perfect reflection for a
semi-infinite medium and then obtain additional requirements
imposed by finite thickness. The amplitude reflection coeffi-
cient r and reflectance R for a semi-infinite medium at normal
incidence from vacuum are

r = z − 1

z + 1
(1)
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and

R = |r|2 = (z′ − 1)2 + z′′2

(z′ + 1)2 + z′′2 , (2)

where z is the complex impedance, given by
√

μ/ε, ε is
the complex permittivity, and μ is the complex permeability.
The primes (double primes) denote the real (imaginary)
components. We want to identify the conditions on ε and μ

for perfect reflection, which requires R = 1. It can be shown
that all solutions require z′ = 0 with no specific condition on
z′′. Noting that ε and μ are complex numbers, after simple
arithmetic manipulations, the solution z′ = 0 leads to the
conditions

ε′

μ′ < 0 (3a)

and

ε′′μ′ − μ′′ε′ = 0. (3b)

The first condition in Eq. (3a) requires that ε′ and μ′ have
opposite sign. This clearly means that at the wavelength
of interest we need a MM with a resonance either in ε

or μ, but not both, i.e., a single-negative MM. This is in
contrast to negative-index materials which require both ε′
and μ′ to be negative. Although the second condition in
Eq. (3b) appears more restrictive, it is satisfied when ε

and μ are purely real. When the frequency-dependent ε′
(or μ′) changes sign near a resonance, the Kramers-Kronig
relationship (KKR) imposed by causality requires that the
imaginary part reaches a local maximum. In a medium
composed of nonabsorbing constituents, the function ε′′ (or
μ′′) will take the form of a δ function, resulting in frequency
regions where the conditions in Eq. (3) are fully satisfied. We
also note that Eqs. (3a) and (3b) are satisfied mathematically
when the imaginary parts of ε and μ have opposite sign
and their ratio satisfies Eq. (3b). Although this scenario
cannot occur in a real passive homogeneous medium,27 it has
been predicted28 and measured29 in inhomogeneous periodic
metamaterials.

While Eqs. (3a) and (3b) are useful from a conceptual point
of view, for realistic materials with absorption Eq. (3b) is not
satisfied and z′ �= 0. In this case, it follows from Eq. (2) that
the reflectivity is greater than 1 − δ for any positive δ � 1 if z

is outside the circle∣∣∣∣z −
(

2

δ
− 1

)∣∣∣∣
2

>

(
2

δ
− 1

)2

− 1 (4)

in the z′ > 0 half plane. So it is clear that arbitrarily high
reflectivity can be achieved for z′ sufficiently close to zero.
After further algebraic analysis, it can be shown that the right-
hand side of Eq. (3b) is of the order of δ, indicating that the
maximum reflectivity is obtained when the left-hand side of
Eq. (3b) is minimized.

To explore this solution further, we consider a MM based
on the Mie resonance in dielectric spheres. Mie resonances
originate from the scattering of electromagnetic fields in
a high-permittivity sphere surrounded by a low-permittivity
background.30 The lowest-energy resonance is a magnetic
dipole and it occurs when the wavelength in the sphere is
comparable to the diameter. For a single isolated sphere with

real permittivity εs , real permeability μs , and diameter d,
the magnetic-dipole resonance occurs for the approximate
free-space wavelength

λres
0 = d

√
εsμs, (5)

independent of the background permittivity εb for large
dielectric contrast.30–32 Near the magnetic-dipole resonant
frequency, a composite medium of identical spheres can
acquire an effective bulk magnetic polarization, which can
result in a negative effective permeability (μ′ < 0) with ε real
and positive (ε′ > 0).31,32 Similarly, near the electric-dipole
resonant frequency, the effective ε′ can be negative when μ′ is
positive. Under these conditions, the requirements for perfect
reflection in Eq. (3) can be met.

For illustration, first we consider a semi-infinite dilute
medium of nonmagnetic (μs = 1) dielectric spheres with large
permittivity (εs = 50), arranged in a simple-cubic lattice in
air background (εb = 1). To obtain the effective ε and μ for
the composite, we use the Lewin effective-medium model,26

which is valid for large dielectric contrast and dilute loading.
Using Eq. (5), we choose a particle diameter d = 0.24 μm
to position the single-particle magnetic-dipole resonance at
a free-space wavelength of 1.7 μm. The periodicity is taken
as 0.36 μm, which corresponds to a volume-loading density
of 15%. We used effective ε and μ from the Lewin model
in Eq. (2) to calculate the reflectance from vacuum at
normal incidence for a semi-infinite medium of the MM. The
calculated μ, ε, and R are shown in Fig. 1. As shown in
Fig. 1(a), the effective μ′ has a resonance around 1.74 μm, in
good agreement with the single-particle resonance condition.
We also see that μ′ < 0 for wavelengths between 1.6 and
1.74 μm, with μ′′ nearly equal to zero in that band, except very
close to the resonance. Similarly, an electric-dipole resonance
occurs at 1.2 μm [Fig. 1(b)], but with a much narrower band
exhibiting ε′ < 0 and ε′′ ≈ 0. The shaded regions in Figs. 1(a)
and 1(b) show the bands where Eq. (3) is fully satisfied. As
shown in Fig. 1(c), the calculated reflectivity in these regions
is near unity as expected. If more absorptive constitutive
materials are used, the functional form of μ′′ and ε′′ becomes a
Lorentzian with finite width, and the bandwidth and amplitude
of the high-reflection regions are reduced.

III. THIN LAYER

For realistic MMs with finite layer thickness, additional
conditions for perfect reflection must be satisfied. The ampli-
tude reflection coefficient S11 at normal incidence for a MM
layer of thickness t and complex refractive index n in vacuum
is given by33

S11 = r[1 − exp (j2k0nt)]

1 − r2 exp (j2k0nt)
, (6)

where r is given by Eq. (1) and k0 = 2π/λ0. As before, for
perfect reflection, R (which is now |S11|2) = 1. Then the exact
solution is z = 0, which is quite restrictive because it requires
that both ε and μ are zero. If instead z �= 0 but z′ = 0, near-
perfect reflection is still possible, depending on the value of
n′′. Substituting Eq. (1) with z′ = 0 into Eq. (6), we obtain
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FIG. 1. (a) Permeability, (b) permittivity, and (c) reflectivity for a
semi-infinite medium of dielectric spheres with εs = 50, arranged in
a simple-cubic lattice, calculated using the Lewin effective-medium
model. The solid (dotted) lines show the real (imaginary) parts and
the shaded regions show the bands where the conditions for perfect
reflection in Eq. (3) are fully satisfied.

the following condition on n′′ to achieve a reflectance of R =
1 − δ:

n′′ = λ0

4πt
ln

(
4

δ

)
. (7)

FIG. 2. (a) Schematic of the monolayer of Si microspheres and
(b) calculated reflectance R, transmittance T , and absorbance A for
normal-incident light from vacuum.

For a thin layer, t is small and the required n′′ is large. Further,
since n is given by

√
εμ, we obtain

n′′ =
√

|ε||μ| sin

[
1

2
tan−1

(
ε′′μ′ + ε′μ′′

ε′μ′ − ε′′μ′′

)]
. (8a)

Hence, n′′ is maximized when the product |ε||μ| is large and

ε′μ′ = ε′′μ′′. (8b)

For illustration, we apply these guidelines to obtain
high reflectivity using a monolayer of silicon microspheres.
Although the generic optical properties of Si spheres and
Si-sphere arrays were studied previously,19,34,35 such structures
have not been designed specifically to achieve high reflectivity.
Our MM structure consists of a monolayer of Si spheres of
diameter d in vacuum (εb = 1), arranged in a square lattice
with center-to-center spacing a, as shown in Fig. 2(a). The light
propagation is along the x direction. In the current structure, the
periodicity is chosen to be comparable to the particle diameter,
so the Lewin and other analytical models are not expected to
yield accurate values for the effective ε and μ. Instead we solve
the Maxwell equations numerically using the commercial
finite-element solver HFSS (Ansys), whose accuracy has been
verified previously.25 In the calculations, we use measured
data for the frequency-dependent permittivity of Si,36 which
in the 1–2 μm band is nearly constant with a value around
εs = 12 + j10−5. From Eq. (5), the particle size d required to
position the single-particle magnetic resonance at 1.5 μm is
0.43 μm. Although this simple resonance condition is strictly
valid for a single isolated sphere, it serves as a convenient
initial guess for the full-wave analysis. Starting with this
value, we vary d and a in HFSS to achieve |S11|2 → 1 near
λ0 = 1.5 μm. The final optimized structure has a = 0.63 μm
and d = 0.5 μm, corresponding to a volume loading density
of 26%.

The HFSS calculations of reflectance R, transmittance T ,
and absorbance A for normal incidence and a single layer of
this material are shown in Fig. 2(b). Near λ0 = 1.5 μm the
reflectance reaches a maximum of 99.997% with absorptivity
less than 10−5. The predicted reflectance is larger than 99% for
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FIG. 3. (a) Permeability, (b) permittivity, and (c) imaginary
refractive index and real impedance for the monolayer of Si
microspheres in Fig. 2(a), calculated from the transmission/reflection
coefficients determined in HFSS. We note that the region where
z′ = 0 and n′′ � 0 in (c) coincides with the high-reflectivity band
in Fig. 2(b).

wavelengths between 1.3 and 1.55 μm. Using the previously
documented procedure,25,33,37 the effective parameters μ, ε,
n, and z are calculated from the transmission and reflection
coefficients for a single layer of the MM. Although z and n′′
are determined unambiguously by this procedure, there are
an infinite number of solutions for n′. The correct value for
n′ is identified as the solution with the smallest difference

from that calculated using the KKR.38 We further verified
that the calculated effective parameters at long wavelengths
are consistent with those deduced from Maxwell-Garnett
effective-medium theory.

The calculated μ and ε are shown in Figs. 3(a) and 3(b),
respectively, and Fig. 3(c) shows the effective z′ and n′′. As the
wavelength decreases from 2.2 μm, the effective μ′ [Fig. 3(a)]
increases toward the first Mie resonance, which occurs at
1.95 μm. For the chosen particle diameter of 0.5 μm, the
single-particle Mie resonance would be at λres

0 = 1.73 μm, so
the effective resonance in the monolayer is redshifted relative
to the single-particle resonance. This redshift originates from
diffraction-coupling between the resonant spheres.19 There is
a corresponding antiresonance in the effective ε [Fig. 3(b)]
due to the effects of spatial dispersion.27,28 The magnitude of
the magnetic-dipole resonance is relatively small and does not
result in a negative value for μ′. Consequently, the reflectance
in Fig. 2(b) at 1.95 μm is low. Just below 2 μm, where
the impedance of the monolayer is matched to free space
(z′ = 1), the reflectivity reaches a local minimum. A similar
result was obtained with Si-particle monolayers in the visible
band.19 As the wavelength decreases below 1.9 μm, the
effective ε′ increases until the onset of the electric-dipole
resonance at λ0 = 1.6 μm. For wavelengths between 1.6 μm
and 1.25 μm, ε′ < 0 and μ′ > 0 [Figs. 3(a) and 3(b)], thus
meeting the first requirement for perfect reflection in Eq. (3a).
We also find in the same band that the effective z′ [solid line
in Fig. 3(c)] is close to zero, implying that the additional
constraint in Eq. (3b) is satisfied. We further note that the
constraint imposed by finite thickness in Eq. (7) is also satisfied
throughout most of this band, and the maximum values of
n′′, which by Eqs. (3b) and (8b) coincide with the regions
where |μ′| = |μ′′| and |ε′| = |ε′′|, correlate precisely with
the reflection maxima, or equivalently transmission minima,
in Fig. 2(b).

To verify that the resonances in ε and μ in Fig. 3 correspond
to single-particle Mie resonances, we show in Fig. 4 the electric
and magnetic field vectors in the unit cell of the MM, for
wavelengths close to the resonances in Fig. 3. The electric
E (magnetic H) field is shown in the y = 0 (z = 0) plane
and the incident electric field is polarized along the z axis.
At a wavelength of 1.95 μm, where a small resonance in μ

is apparent in Fig. 3(a), there is a maximum in the magnetic
field vector at the center of the sphere and a corresponding
ring-shaped displacement electric field vector. These are
distinct characteristics of the magnetic-dipole mode.20,30,35

Similarly, at 1.67 μm, near the onset of the high-reflectivity
band and the resonance in ε, the electric-field vector clearly
resembles an electric dipole with a surrounding induced
circular displacement magnetic field. We further note (not
shown) that for a wavelength of 1.25 μm, where in Fig. 3(a)
there is a small additional peak in μ′, there are two maxima in
the magnetic-field vector in the sphere, indicating the presence
of the magnetic-quadrupole mode.

For the MM described above, near-perfect reflectance
is possible with only a single layer of material because
the origin of reflectivity is a single-scatterer Mie resonance
within the unit cell rather than multiple Bragg scattering
between cells. While both scattering mechanisms are present
in some photonic crystals,14,24 the band gaps of interest usually
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FIG. 4. Electric E (magnetic H) field vector in the y = 0 (z = 0)
plane of the unit cell of the MM in Fig. 2(a), for wavelengths near the
resonances in μ and ε in Fig. 3. The incident electric field is polarized
along the z axis and propagation is from left to right along the x axis.

originate from Bragg scattering, so more layers are required to
achieve reflection comparable to our MM design. For example,
we find that the reflectivity at λ0 = 1.5 μm is 100% as
predicted39 in the band gap of a photonic crystal of lossless
Si spheres (d = 0.42 μm) in the diamond-lattice structure.
However, the reflectivity from a single layer (1.2 μm thick) of
this material is only 80% at normal incidence. Similarly, very
high reflectivity can be obtained using a planar quarter-wave
stack of alternating constitutive materials. However we find
that the reflection from a 0.58-μm-thick stack (of three layers)
is only 97% at normal incidence. The thickness must be
increased at least three times to achieve the performance
predicted for our MM monolayer.

IV. NEAR-PERFECT THIN REFLECTOR:
DEMONSTRABLE DESIGN

For possible fabrication and verification, we now con-
sider a demonstrable design of Si microcubes on SiO2

substrate (ε = 2.1 + j10−5). A schematic of the structure is
shown in Fig. 5(a). Although similar structures were studied
previously,15,20,21 our MM is optimized specifically to achieve
high reflectivity. Similarly to dielectric spheres, cubes also
support Mie-like resonances. However, cubes can be readily
fabricated using lithography.15 As with previous designs,
the MM parameters are chosen to achieve |S11|2 → 1 near
λ0 = 1.5 μm with an initial value of d = 0.43 μm, given by
the Mie-resonance condition for cubes, which is equivalent
to Eq. (5) with the diameter replaced by the cube length.40

This optimization resulted in d = 0.45 μm and a = 0.67 μm.
The calculated reflectance, transmittance, and absorbance for
propagation normal to the monolayer are shown in Fig. 5(b).
Near 1.5 μm, the reflectivity reaches a maximum of 99.999%
(as evidenced by the transmission minimum) with less than

FIG. 5. (a) Schematic of the monolayer of Si microcubes, (b)
the calculated reflectance R, transmittance T , and absorbance A

for normal-incident light from vacuum, and (c) the electric E
(magnetic H) field vector in the y = 0 (z = 0) plane of the unit
cell of the MM for a wavelength of 1.6 μm. The incident electric
field is polarized along the z axis and propagation is from left to right
along the x axis.

10−5 absorptivity. The electromagnetic fields at 1.6 μm,
shown in Fig. 5(c), clearly resemble a magnetic-dipole mode,
thus confirming that the onset of the high-reflectivity band
for the cube structure is also near a single-particle Mie
resonance.

As the angle of incidence increases away from normal, the
reflectivity (not shown) gradually decreases to 90% at 20◦
and 40% at 50◦, before increasing back to total reflection at
grazing angles. We emphasize that the structure described here
is not specifically optimized for high reflectivity over broad
angles, as the conditions for perfect reflection [Eqs. (3a), (3b),
and (7)] were obtained for normal incidence. We also note that
the reflectivity off normal can be improved with additional
layers, and that work is currently in progress to fabricate this
structure and measure its wavelength- and angle-dependent
reflection and absorption properties.

V. CONCLUDING REMARKS

In several previous publications, both theory and mea-
surements, high reflectivity was observed in thin layers
of dielectric-metamaterial structures.15,16,21 In these studies,
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FIG. 6. Unit cell of metamaterial structure (a) from Ref. 22 and
(b) of a rectangular cuboid with the same thickness, and (c) the
calculated (solid) transmission measured in Ref. 22 and predicted
(dotted) transmission for the structure in (b).

although not stated explicitly, the enhanced reflection occurs
when either μ′ or ε′ is negative, z′ is near zero, and n′′ is large,
as described in this article. Recently, Namin et al.22 using
a genetic algorithm designed a detailed subwavelength-thick

MM structure of a-Si on SiO2 substrate, whose unit cell
is shown Fig. 6(a), and demonstrated high reflectance (low
transmittance) at 85 THz as shown in Fig. 6(c). Without
changing the material properties, unit-cell length (2.05 μm),
and layer thickness (of 0.47 μm), we modified the original
structure in Fig. 6(a), to a rectangular cuboid of side length
1.45 μm, as shown in Fig. 6(b). We note the similarity between
this structure and our Mie-resonance-based MM design in
Fig. 5(a). The calculated frequency-dependent transmission
for structure (b), shown in Fig. 6(c), is remarkably similar
to that of structure (a), suggesting that the origin of high-
reflectivity in the detailed structure from Ref. 22 is also a
Mie-like resonance. These results suggest that a fundamental
physics-based approach using Mie resonance in various dielec-
tric particles can be used to design subwavelength-thick, all-
dielectric metamaterials with high reflectivity and negligible
absorptivity.

In summary, we developed a procedure to exploit the
Mie resonance in dielectric microparticles to design a single-
negative metamaterial monolayer with near-unity reflectance
and negligible absorbance. We identified the conditions and
fundamental physical principles necessary to develop a nearly
perfect thin reflector at arbitrary wavelengths of interest.
Because the origin of high reflectivity is a single-particle
Mie resonance and induced negative permittivity rather than
Bragg scattering, only a single layer is required. Using
finite-element analysis and realistic materials properties, we
designed a subwavelength-thick, Si-based MM layer with
normal-incidence reflectivity over 99.999% and absorptivity
less than 0.001% at a short-wave infrared wavelength of
1.5 μm.
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