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Classifying phases of local quantum systems is a general problem that includes special cases such as free
fermions, commuting projectors, and others. An important distinction in this classification should be made
between classifying periodic and aperiodic systems. A related distinction is that between homotopy invariants
(invariants which remain constant so long as certain general properties such as locality, gap, and others hold) and
locally computable invariants (properties of the system that can not change from one region to another without
producing a gapless edge between them). We attack this problem using a technique inspired by Kirby’s “torus
trick” in topology. We use this trick to reproduce results for free fermions (in particular, using the trick to reduce
the aperiodic classification to the simpler problem of periodic classification). We also show that a similar trick
works for interacting phases which are nontrivial but lack anyons; these results include symmetry-protected
phases. A key part of this work is an attempt to classify quantum cellular automata.
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I. INTRODUCTION

The problem of classifying different phases of quantum
Hamiltonians is a major problem in condensed matter physics
and quantum information today. There are many different
forms of this problem, depending upon the specific kind of
system being classified. The general form of the problem starts
by defining some property ∗ of Hamiltonians, where property
∗ typically includes properties such as a spectral gap and
spatially local interactions on some finite-dimensional lattice,
and potentially also includes various symmetries including
group symmetries or time-reversal symmetry. We say that two
Hamiltonians H0 and H1 with property ∗ are in the same
phase if we can find a continuous path of Hamiltonians Hs ,
with 0 � s � 1, connecting H0 to H1, with all Hamiltonians
in this path having property ∗∗, where ∗∗ is some property
related to ∗, possibly with slightly relaxed locality properties
as discussed in the following.

Various results along this line have been obtained with
particular success in the case that ∗ refers to gapped, local,
noninteracting fermion Hamiltonians with various symmetry
properties. A full classification is now known1,2 in this case, in
all dimensions and all symmetry classes. More recently, there
has been much interest in studying symmetry-protected phases
of interacting systems;3,4 most of that work is restricted to the
case in which anyons are not present and in this paper in fact
the absence of anyons will play a very important role in our
techniques as defined more precisely later.

Often, we are interested in classification only up to stable
equivalence, as emphasized by Ref. 1. In this case, we define
certain systems to be trivial. These will be systems in which
the Hamiltonian Htriv is a sum of terms on different sites,
with no coupling between sites. We also need to define a
method of adding two systems together. In the noninteracting
case, the Hamiltonian is simply a matrix with basis elements
corresponding to sites, and the sum of two systems is simply
the direct sum of the two matrices, while in the interacting
case, to add together two systems with Hamiltonians H and
H ′, we take the tensor product of their Hilbert spaces, and
the Hamiltonian of the combined system is H ⊗ I + I ⊗ H ′.

Then, we say that H and H ′ are in the same phase if we can find
two trivial Hamiltonians Htriv and H ′

triv such that H ⊗ I + I ⊗
Htriv and H ′ ⊗ I + I ⊗ H ′

triv are connected by a continuous
path of Hamiltonians with the given property ∗ or ∗∗.

There are several distinctions that are important in this
classification. One is the distinction between classifying
finite or infinite systems, while another is the distinction
between periodic and aperiodic systems. A final distinction
is that between homotopy invariants and locally computable
invariants. In the next three subsections, we explain these
distinctions, using the case of the free-fermion classification
problem to exemplify them.

We will use the torus trick in an attempt to remove the
distinction between periodic and aperiodic systems, using it
to show for certain types of quantum systems that given an
aperiodic quantum system with some given property (such
as a gap, local interactions, symmetry, etc.) and given some
set of sites, there is a periodic system that agrees with the
original system on that set and has the same or similar property.
In some cases, such as free fermions, we are able to reduce
the aperiodic classification to the periodic classification and
then use results on the periodic classification (in this case,
the K theory of vector bundles) to classify aperiodic systems.
Given that the trick is useful in this one area, of course one is
motivated to look for other areas to apply it. For other types
of Hamiltonians with anyonic degrees of freedom, we find
troubles with a straightforward application of the torus trick
in Sec. V. However, we find that for a type of system called
a quantum cellular automaton7 (QCA), the torus trick can be
applied in any dimension. We will motivate these QCA by
presenting a possible formal definition of systems which are
nontrivial but have no intrinsic topological order in terms of
QCA in Sec. IV; using this definition the torus trick can be
applied to such systems without intrinsic topological order.
Finally, we present some partial results on a classification of
QCA in higher dimensions with symmetry (the case of no
symmetry in one dimension is in Ref. 7). Since our main focus
in this paper is developing the torus trick for quantum systems,
much of our results on classifying QCA and systems without
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intrinsic topological order are only partial, and fuller results
will be given elsewhere.

Some comments on notation: we consider lattice systems
with sites labeled by some index i, with each site corresponding
to a point in some space M called the ambient space. We
use diam(· · · ) to denote the diameter of a set and dist(i,j ) to
denote the distance between two sites i and j and dist(X,Y )
to denote the distance between two sets X,Y defined as
mini∈X,j∈Y [dist(i,j )]. We use ‖ · · · ‖ to denote the operator
norm. The ambient space may be finite or infinite. While
general choices of M are possible, in this paper we consider
only the cases of Rd or T d and we will use a Euclidean metric
throughout.

A. Finite versus infinite lattice systems

We take M = Rd for an infinite system, or M = T d , the
d-dimensional torus, to get a finite system. We will bound the
number of sites so that the number of sites within distance r

of any point is bounded by

O(r + 1)d , (1)

where O(· · · ) is big-O notation. For a finite system with M =
T d , we choose to parametrize the torus by d numbers xa ,
with 0 � xa < Lsys, where Lsys is the “system size”, and we
use the usual Euclidean metric with this parametrization. This
will seem very natural to physicists but may be a less natural
parametrization for others; the reason for this is that we will fix
the length scale for the distance between sites to be of order
1, and we will have the interactions decay on some length
scale R (which may be much larger than 1); then, we will be
interested in the case Lsys � R, and we will obtain bounds
that are uniform in Lsys.

For free fermions, the Hilbert space has a finite-dimensional
Hilbert space on each lattice site (we allow more than one state
per site) and the whole Hilbert space is the direct sum of these
Hilbert spaces, while for interacting systems, there is some
finite-dimensional space on each site and the whole Hilbert
space is the tensor product of these sites. For free fermions,
the Hamiltonian H is a Hermitian matrix with some locality
property on the matrix elements. We regard H as a block
matrix, with one block per site. One possibility is to require that
the block Hij coupling site i to site j be exponentially small in
the distance between sites i and j , with some length scale R

setting the decay rate; another possibility is to require that the
matrix elements are strictly zero beyond some finite range R.
We refer to this length scale R as the range of the interactions.
We require that H have a gap in its spectrum. For simplicity, let
us fix this gap near 0, requiring that the spectrum not contain
any energies smaller in absolute value than �E, for some given
�E. Finally, we bound the norm of the terms in H in some
way later. In addition to these requirements, there may be some
symmetry properties imposed on H , such as time-reversal
symmetry (either with or without spin-orbit coupling) and
so on.

In the case of an infinite system of free fermions, an
interesting classification problem is as follows: given H0 and
H1 with property ∗, we ask for a continuous path of Hamil-
tonian Hs with property ∗ for 0 � s � 1, where property ∗

is the property that R is finite (either in the case of exponential
decay or strictly finite range for the matrix elements), that �E

is positive, and that H has any desired symmetry properties.
However, if the lattice has a finite number of sites, then

the question as phrased above is uninteresting. For one thing,
we simply required that R is finite in the previous paragraph.
However, if the system has some finite size Lsys, then given
any two Hamiltonians H0 and H1, each with spectral gap �E,
there always is a path Hs connecting them which preserves a
gap of at least �E and which obeys the required symmetries
for sufficiently large R (i.e., pick R large enough compared
to Lsys). So, for a finite system, it is necessary to consider
analytic details as to the magnitude of R. Similarly, it is also
necessary to consider the magnitude of �E, rather than simply
requiring that �E be nonzero. So, for a finite system, the
relevant classification problem is as follows: given H0 and H1

with property ∗, we ask for a continuous path of Hamiltonian
Hs with property ∗∗ for 0 � s � 1, where ∗ is a given lower
bound �E on the gap and a given upper bound R on the range
of the interactions as well as any symmetry requirements and
where ∗∗ has some other lower bound �E′ on the gap and
other upper bound R′ on the range of the interactions as well
as any symmetry requirements.

Results showing the existence of such a path Hs will be
most interesting if they give �E′ and R′ that are independent
of the size of the lattice and depend only upon the original
�E and R. In this paper, we will largely focus on such results
for finite systems, both for free fermions and for interacting
systems; that is, we derive quantitative bounds (although we
do not worry about constant factors). Later, we discuss the
distinction between infinite and finite systems for QCA; in
this case, the infinite case requires some care to define.

B. Periodic versus aperiodic systems and the torus trick

Another important distinction is that between periodic and
aperiodic systems. We first explain this distinction in the case
of free fermions. We label the sites by coordinates n1, . . . ,nd .
We choose d linearly independent d-dimensional vectors va ,
for a = 1, . . . ,d, with the set of sites invariant under translation
by these vectors. Then, we say that H is periodic if Hij = Hkl

if i + va = k and j + va = l, where i + va denotes the site
obtained by translating site i by vector va .

Note that these vectors va need not be basis vectors for the
lattice. For example, if we work on a two-dimensional square
lattice with sites at integer coordinates, we might choose that
v1 = (L,0) and v2 = (0,L) for some integer L > 1. Note also
that if a system is periodic for a given choice of va , then it is
periodic for any choice nava for any integers na . Informally,
we can “increase the size of the unit cell”.

For other systems, such as Hamiltonians for interacting
quantum systems or for QCA, the notion of a periodic system
still makes sense as a Hamiltonian or QCA which commutes
with translation operators. For a finite system, the translation
operators are unitaries Ta for a = 1, . . . ,d which translate the
system on the lattice by the vector va , while for an infinite
system they are defined as algebra automorphisms (see the
definition of QCA later).

So, two distinct problems are the classification of periodic
or aperiodic systems. As explained in the following, periodic
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systems can be classified using results from K theory on the
classification of vector bundles. However, the classification of
aperiodic systems is much more difficult. One approach to this
is using controlled K theory.5 Another approach is based on
a result of Kitaev that maps an aperiodic lattice free-fermion
system to a Dirac Hamiltonian with a smoothly varying mass
term, called a texture.1

In this paper, we adopt a third approach to solving this
problem. This approach may have some advantages: it gives
more quantitative bounds than the controlled K-theory results
with which I am familiar (however, I am fairly unfamiliar with
that literature, so it is possible that similar bounds are available
there). It may also be simpler than the method of textures of
Kitaev, which relies on a theorem stated in Ref. 1 without proof.
However, the main reason we introduce this technique is that
it will also have application to certain interacting systems.

Our approach is inspired by the torus trick, a technique
invented by Kirby6 in 1968 to solve several problems in
topology. The techniques in this paper are self-contained, so
that no previous knowledge of this trick is required to read
it. The general kind of results here will roughly have the
following form: given some aperiodic Hamiltonian H with
some property ∗ and given some set Z ⊂ M , there is a periodic
Hamiltonian H ′ with property ∗∗ such that H and H ′ agree on
Z. This style of result is very similar to the original application
of the torus trick, where instead of considering Hamiltonians
or QCA, the trick was applied to homeomorphisms from Rd to
Rd [in this context, the analog of a periodic homeomorphism
is a homeomorphism f such that f (x + va) = va + f (x) for
some set of vectors va]. The property ∗∗ will often be very
similar to ∗ except for some slight weakening of the locality
properties. Ideally, if Z has diameter L, then the periodicity
of H ′ will be on a scale only slightly larger than L (that is,
the basis vectors va used to define translation should have the
property that |va| is comparable to L).

We emphasize here that Z is a subset of M rather than a
set of sites; then, H and H ′ agree on Z if they agree on the
sites in Z. The reason to specify that Z is a subset of M is that
this will be useful later for certain stronger results. In some
cases, we will be able to show, for example, that if Z is a
hypercube with each side having length L and with the center
of Z being at coordinate z, then H ′ depends smoothly on H and
z (more precisely, it will depend smoothly away from certain
discontinuities; however, we will show a stable equivalence
of H ′ at points near the discontinuity). By choosing Z to be
a subset of M , this makes it easier to talk about changing z

continuously. We often write H ′(H,Z) to emphasize that H ′
is a function of H and Z.

Having derived results of this form, we will then apply them
in combination with results on the classification of periodic
systems to the specific classification of the aperiodic system
at hand. The particular application of this will depend on the
quantum system we consider.

C. Homotopy invariants versus local invariants

An interesting final relation is that between homotopy
invariants and locally computable invariants. This distinc-
tion was highlighted in Ref. 7 for a classification of one-
dimensional QCA, but we discuss it here in generality. By

“homotopy invariant”, we mean the kind of classification
problem discussed above: Is there a continuous path Hs

connecting H0 to H1, possibly with stabilization?
“Local invariant” refers to a different but related question.

We consider two Hamiltonians H0 and H1 with property ∗ and
pick two sets Z0 and Z1 with the distance between Z0 and
Z1 being large. Then, we ask if there is some Hamiltonian H ,
with some property ∗∗ such that H agrees with H0 on Z0 and
H agrees with H1 on Z1. This is a question of whether there
is a system H that interpolates between two different systems
H0 and H1. A local invariant is some quantity that could be
obtained from H0 on Z0 or H1 on Z1 that is an obstruction to
finding such an interpolation.

The torus trick, especially the “stronger result” mentioned
in the previous section [that H ′(H,Z) could depend smoothly
upon H and z up to some stable equivalence at discon-
tinuities] will be useful in relating homotopy invariants to
local invariants as follows. If there is a Hamiltonian H that
interpolates as desired, and if such a stronger result held, then
we obtain a continuous path of periodic Hamiltonians from
H ′(H0,Z0) to H ′(H1,Z1) (again up to stable equivalence). So,
if one can interpolate between H0 on Z0 and H1 on Z1, then
H ′(H0,Z0) and H ′(H1,Z1) are homotopy equivalent. In some
cases, the converse will also be true [homotopy equivalence
of H ′(H0,Z0) and H ′(H1,Z1) will imply that we can find
an interpolating Hamiltonian]. For free-fermion systems, this
relation holds. However, this is not generally true: we will
explain a case later of an interacting system where one can
interpolate between two periodic Hamiltonians which are not
homotopy equivalent. This will be an example of a system
with anyons, and the existence of this case is one reason that
in this paper we focus on systems which lack anyons.

II. TORUS TRICK FOR FREE FERMIONS

After these generalities, we now explain the torus trick in
the case of free fermions, before later studying interacting
systems. Given an aperiodic Hamiltonian H , we construct a
periodic Hamiltonian H ′(H,Z) which agrees with H on some
set Z. Then, we apply this result to classify aperiodic systems.

In this section, we explain only the case of free-fermion
Hamiltonians with no superconductivity or time-reversal
symmetry or sublattice symmetry. This is class A in the 10-fold
way classification.8 However, it is easy to see that for any
of the other nine classes, the symmetry “goes along for the
ride”; that is, while we start with an aperiodic Hamiltonian
in class A and construct a periodic Hamiltonian in class A,
the same construction starts with an aperiodic Hamiltonian in
any given class and constructs a periodic Hamiltonian in the
same class. There are some details that the reader can verify
in this, namely, that one can preserve the symmetry while
“healing the puncture”(defined later) and also that one can
“join” (defined later) two Hamiltonians while preserving the
symmetry. In classes with sublattice symmetry, the subspace
on each site should be defined to be the direct sum of two
subspaces of the same dimension, corresponding to the two
different sublattices, rather than having different sublattices
located at different points in space, and in classes with
time-reversal or particle-hole symmetry, the corresponding
symmetry operation should be block diagonal so that, for
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example, time-reversed pairs for a spin- 1
2 system are both on

the same site rather than on different sites. This is done so that
there exists a gapped block-diagonal Hamiltonian, with blocks
corresponding to sites, which respects the symmetry. So, all
our results apply to all 10 classes.

The trick is applicable to finite or infinite systems. We
explain it with ambient space M = Rd , but to apply it to finite
spaces with ambient space M = T d with linear size Lsys, we
replace the immersion of the punctured torus in Rd below by
an immersion in a subset of T d of diameter sufficiently smaller
than Lsys.

We impose an exponential decay on the terms in Hij by
requiring that, for all sites i,∑

j,dist(i,j )�r

‖Hij‖ � J exp(−r/R) (2)

for some positive constants J,R. This bound implies a bound
on the norm ‖H‖ by J as it bounds

∑
j ‖Hij‖ � J and this

row bound on H bounds the norm of H . Recall that there may
be more than one state per site so that Hij may be a matrix
rather than a scalar. The particular form of the bound is not
too important; for example, if we set to zero all terms Hij with
dist(i,j ) > r , then this produces only an exponentially small
change in H and so for sufficiently large r it does not close
the gap.

A. Constructing a periodic Hamiltonian with the torus trick

The construction in this section proves the following:
Theorem II.1. Consider a free-fermion Hamiltonian obeying

Eq. (2) with gap �E. Then, for any hypercube Z of linear
size L, for L sufficiently large compared to RJ/�E, there
is a periodic Hamiltonian H ′(H,Z) that agrees with H on Z

with H ′ obeying Eq. (2) for some different R′ and H ′(H,Z)
having gap �E′ with R′ upper bounded by a constant times
R and �E′ lower bounded by a positive constant times �E.
These constants depend on dimension. The periodicity of the
Hamiltonian is defined by translation in the directions of the
axes of the hypercube by distance 2πL. There also exists a
Hamiltonian H ′

torus(H,Z) defined on a torus of linear size 2πL

which obeys Eq. (2), such that if we unfurl (as described below)
H ′

torus(H,Z) we obtain H ′(H,Z) and such that H ′
torus(H,Z)

also obeys similar bounds on its decay rate and gap in terms
of R and �E up to constant factors.

While we stated that translation is by distance 2πL and the
size of the torus is L, one can choose those distances to be any
value larger than L (the value chosen will determine some
of the constants in the above theorem). This is useful if the
ambient space is a torus as only certain periodicities can be fit
within the torus. The key idea in the torus trick is that one can
immerse a punctured d-dimensional torus in Rd . An example
immersion is shown in two dimensions in Fig. 1 (physicists
may recognize the figure as being very similar to a Hall bar
with source and drain joined). In general, in d dimensions the
immersion is constructed by embedding d-different copies of
T d−1 × [0,1], with certain restrictions on the intersections.

The torus trick involves the following steps: First, pull back
the Hamiltonian in Rd to a Hamiltonian on the punctured
torus. We explain this pullback below; taking L sufficiently
large compared to R is important to define the pullback. This

FIG. 1. Immersed punctured torus in two dimensions.

Hamiltonian on the punctured torus will have roughly the same
locality as the original Hamiltonian (the interaction range may
be slightly increased), but it may not have a gap. So, the next
step is to restore the gap by “healing the puncture”. A key part
of this step will be that, in some sense, the Hamiltonian will
still be gapped away from the puncture so that we can heal the
puncture just by modifying the Hamiltonian near the puncture
so that locality is not violated. Physically, this is familiar from
the quantum Hall effect, where a puncture supports gapless
edge modes but the bulk remains gapped; see lemma II.2 and
Eq. (11). This property that we can heal the puncture just by
modifying the system near the puncture determines to which
systems we can apply the torus trick: we will see in Sec. IV that
such healing is not possible for certain interacting systems with
intrinsic topological order, for example. Then, having healed
the puncture, the last step is to “unfurl” the Hamiltonian to
generate a periodic Hamiltonian H ′(H,Z).

We begin by defining the immersion. Parametrize the
punctured torus by angles θ1, . . . ,θd , all in the range 0 � θa <

2π . Let us use the Euclidean metric to measure distances in
both Rd and T d . Let f be some fixed immersion from the
punctured torus to Rd . We will pick f so that the immersion
is contained within a hypercube of linear size 2 centered at
the origin. The line in Fig. 1 is mapped back to a single point:
the puncture. Note that the map is not one to one. However,
we pick f so that the image of the punctured torus contains
a hypercube of linear size 1 centered at the origin, with all
points in that hypercube having a unique inverse. We choose
the inverse map on those points to be as follows: a point z with
coordinates x1, . . . ,xd is mapped to θ1, . . . ,θd with θa = xa .
Thus, the points in that hypercube are mapped back without
any distortion of angles. All points in this hypercube map under
f −1 to points with some nonzero distance from the puncture
(thus, this hypercube does not extend to the boundary of the
“square” in Fig. 1). Finally, we pick f so that its inverse does
not “stretch” distances too much for nearby points; more
precisely, we pick f so that for any two points, x and y in
the preimage with dist(x,y) � cinj for some constant cinj of
order unity, we have

dist(x,y) � cinj → dist[f (x),f (y)] � Cdist(x,y), (3)

where C > 0 is some constant of order unity, and dist(x,y) is
the distance using the Euclidean metric. Note that this means
that f is injective on any set in the preimage of diameter
smaller than cinj . Note also that this bound Eq. (3) can not
hold for all x,y as then f would be injective everywhere.

165114-4



CLASSIFYING QUANTUM PHASES WITH THE KIRBY . . . PHYSICAL REVIEW B 88, 165114 (2013)

We will define a family of functions fz,L by

fz,L(x) = z + Lf (x). (4)

Then, any point in the hypercube of linear size L centered at
z has a unique inverse under fz,L. Then, for a given choice of
set Z we will define the immersion by such a function fz,L,
with z and L such that Z is contained in the hypercube of
linear size L centered at z. The particularly simple form of
f −1(x) in the hypercube near the origin (θa = xa for such x)
will ensure that the periodic Hamiltonian indeed agrees with
H0 on Z. Equation (3) will play a key role in ensuring locality
of interactions in the Hamiltonian pulled back to the punctured
torus.

To simplify some of the statements following, we now
reparametrize the punctured torus so that it is parametrized
by d coordinates ranging from 0 to 2πL; having done this,
the function f −1

z,L(x) does not distort distances for points in
Z. Another advantage of this parametrization is that we still
have O[(r + 1)d ] sites within distance r of any point on the
punctured torus.

We now define Hpt , which is the pullback of Hamiltonian
H to the punctured torus. The set of sites on the punctured
torus will be the preimage of the set of sites in the image
of the immersion; that is, for every point in the image which
contains a site, all the points in the preimage of that point will
also contain a site. Note that since the immersion is not one
to one, a given site in the image might correspond to several
sites in the preimage. In an abuse of notation, if a site ĩ in the
preimage corresponds to some site i in the image, we write
f (ĩ) = i. Then, given two sites in the preimage, called ĩ and
j̃ , which correspond to sites i and j in the image, we set the
blocks of Hpt between ĩ and j̃ by

dist(ĩ,j̃ ) � cinjL → (Hpt )ĩ,j̃ = Hf (ĩ),f (j̃ ),
(5)

dist(ĩ,j̃ ) > cinjL → (Hpt )ĩ,j̃ = 0.

The pullback Hamiltonian still obeys a locality bound, similar
to Eq. (2). It is∑

j,dist(i,j )�r

‖(Hpt )ij‖ � J exp(−Cr/R). (6)

The Hamiltonian Hpt need not have a gap due to the puncture;
however, we will use the next lemma to show Eq. (11) below
which implies that Hpt still has a gap “in the bulk” away from
the puncture in that for any vector φ supported sufficiently far
from the puncture with |φ| = 1, |Hptφ| is bounded away from
zero. This lemma will also be useful later when we unfurl and
will also be useful in theorem II.3.

Lemma II.2. Consider a free-fermion Hamiltonian H on T d

obeying ∑
j,dist(i,j )�r

‖Hij‖ � J exp(−r/R) (7)

for all i. Let φ be some state such that

|(H − E)φ| = δ (8)

for some E; that is, φ is an approximate eigenvector of H .
Then, for any �, there is some sphere of radius � such that
there is a vector ψ with |ψ | = 1 and with ψ supported on the

intersection of that sphere with the support of φ such that

|(H − E)ψ | � δ + O(JR/�). (9)

Proof. Define a new Hamiltonian H ′ such that H ′
ij =

Hij for dist(i,j ) � � and H ′
ij = 0 for dist(i,j ) > �. We will

show the existence of a vector ψ such that |(H ′ − E)ψ | �
δ + O(JR/�) which will imply Eq. (9) since ‖H ′ − H‖ is
exponentially small in �/R. Note that |(H ′ − E)φ| = δ′ for δ′
bounded by δ plus a quantity exponentially small in �/R.

Let the torus have linear size L. Without loss of generality,
assume � < L. Pick a random point x and consider a sphere of
linear size � centered at that point. Let f (i) be a map from sites
i to reals given by f (i) = 1 − dist(x,i)/� for dist(x,i) � � and
f (i) = 0 otherwise. Let f̂ be the block-diagonal matrix with
f̂ii = f (i)I where I is the identity matrix in a block.

Let ψ(x) = f̂ φ. The probability that any given site is
contained in that sphere is proportional to (�/L)d , and the
average of |f (i)|2 over the sphere is of order unity, so the
expectation value of |ψ(x)| equals c(�/L)d/2 for some constant
c. We will bound the expectation value of |(H ′ − E)ψ(x)| by
c[δ′ + O(JR/�)](�/L)d/2. Thus, the ratio of the expectation
value of |(H ′ − E)ψ(x)| to that of |ψ(x)| is bounded by
δ′ + O(JR/�) so there is some choice of x such that setting
ψ = ψ(x) obeys |(H ′ − E)ψ | � δ′ + O(JR/�).

Note that (H ′ − E)ψ(x) = f̂ (H ′ − E)φ + [(H ′ −
E),f̂ ]φ. The expectation value of |f̂ (H ′ − E)φ| is
proportional to (�/L)d/2δ′. Let Pn project onto the set of sites
within distance n� of x for integer n. Then, [(H ′ − E),f̂ ]φ =
[(H ′ − E),f̂ ]P2φ + [(H ′ − E),f̂ ](1 − P2)φ. Since f̂ Pn = f̂

for n > 0 and H ′ vanishes between sites at least distance �

apart, [(H ′ − E),f̂ ](1 − P2)φ = 0. So,

|[(H ′ − E),f̂ ]φ| � |[(H ′ − E),f̂ ]P2φ|. (10)

The expectation value of |[(H ′ − E),f̂ ]P2φ| is bounded
by ‖[(H ′ − E),f̂ ]‖ · |P2φ|. The expectation value of
the norm |P2φ| is bounded by O(�/L)d/2. The norm
‖[(H ′ − E),f̂ ]‖ is bounded by O(JR/�). To see
this, Eq. (7) implies that

∑
j,mR�dist(i,j )<(m+1)r ‖Hij‖ �

J exp(−m). So,
∑

j,mR�dist(i,j )<(m+1)r ‖([(H ′ − E),f̂ ])ij‖ �
J (m + 1)R

�
exp(−m), and summing over m = 0,1,2, . . . gives

‖[(H ′ − E),f̂ ]‖ � O(JR/�). �
We now use lemma II.2 to show that for any vector φ with

|φ| = 1 and with φ supported on sites on the punctured torus
with distance at least r from the puncture, we have that

|Hptφ| � �E − JO[exp(−Cr/R)] − O(JR/cinjL). (11)

To see this, apply lemma II.2 to Hpt with E = 0 and δ =
|Hptφ|. Then, there is a vector ψ supported on a sphere of
radius � with |ψ | = 1 so that

|Hptψ | � |Hptφ| + O(JR/�). (12)

We pick � = cinjL so that the immersion is injective on that
sphere. The immersion maps ψ to a state on the original system
on Rd . To define this state, which we call f (ψ), for ĩ in
the sphere, we set f (ψ)f (ĩ) = ψĩ while all other f (ψ)j are
equal to 0, where subscripts such as ψĩ denote amplitudes
of a vector in the subspace associated with a given site.
Note that |Hf (ψ)| � �E. It is not necessarily the case that
|Hptψ | = |Hf (ψ)| because in Hpt we have removed terms
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in H that connect sites inside the image of the immersion
to those outside the image; however, we can bound the
norm of such terms by JO[exp(−Cr/R)] so |Hptψ | � �E −
JO[exp(−Cr/R)], and combined with Eq. (12) this gives
Eq. (11).

If L is at least a constant factor larger than RJ/�E, we can
pick an r of order RJ/�E to make Eq. (11) give a nontrivial
bound of at least ( 1

2 )�E (any other constant smaller than unity
multiplying �E would work as well; we pick 1

2 for simplicity).
Thus, we can modify the Hamiltonian Hpt on sites within a
distance r from the puncture to give a new Hamiltonian which
has a gap which is at least some constant times �E. For
large enough L compared to r , these sites within distance r of
the puncture are not in f −1

z,L(Z). We refer to this as “healing
the puncture.” Let the Hamiltonian that results from adding
these terms be called H ′

pt .
By doing this, we have worsened the locality properties of

the Hamiltonian near the puncture, as the terms added near the
puncture connect sites up to distance r , which may be a factor
J/�E times larger than R. To improve the locality properties,
we define another map g from T d to T d ; this map will map
all sites within distance r of the puncture to a single point
and it will be a constant map for sites in f −1

z,L(Z) and it will
obey

dist[g(x),g(y)] � C ′dist(x,y) (13)

for some constant C ′ of order unity. Then, we use the function g

to “push forward” the Hamiltonian H ′
pt (that is, we just move

where the sites are in T d according to the map g, without
changing the Hamiltonian). This gives a new Hamiltonian that
we call H ′

torus(H,Z), that fulfills the claims of theorem II.1.
The Hamiltonian H ′

torus(H,Z) is then a gapped Hamiltonian
on the torus. We can unfurl this Hamiltonian to a Hamiltonian
on the whole Rd . This is done by defining a covering
map from Rd to T d and using this map to pull back the
Hamiltonian H ′

torus(H,Z) to a Hamiltonian H ′(H,Z). This
pullback is defined similarly to our definition of the pullback
of a Hamiltonian when we constructed the immersion: given
two sites in the preimage of the covering map, called ĩ and j̃ ,
which correspond to sites i and j in the image of the covering
map, we set the matrix element of Hpt between ĩ and j̃ by

dist(ĩ,j̃ ) � L/4 → [H ′(H,Z)]ĩ,j̃ = [H ′
torus(H,Z)]f (ĩ),f (j̃ ),

dist(ĩ,j̃ ) > L/4 → [H ′(H,Z)]ĩ,j̃ = 0. (14)

The distance L/4 is chosen to be some quantity small enough
compared to L that the covering map is injective on distances
smaller than this. This is a general principle in constructing
a pullback of a Hamiltonian: the interaction terms must
become small at the length scale at which the map becomes
noninjective.

For sufficiently large L, we can show that this Hamiltonian
H ′(H,Z) has a gap using lemma II.2; there are some technical
details needed to do this as what we must do is consider
normalized states φ in the infinite system in Rd ; then, since
φ is normalized, we can restrict it to a finite region with size
small compared to L with only a small change in |Hφ|; then,
we embed this finite region in a torus and apply the lemma to
show that if there is a state φ with |Hφ| small compared to �E,

then there is a state ψ supported on a sphere of radius small
compared to L with |Hψ | small compared to �E. However,
the gap in H ′

torus implies that no such ψ exists.
Note that we can map Hamiltonian H ′

torus(H,Z) to a
Hamiltonian on a smaller torus of size L′ with L < L′ < 2πL

by an injective map that leaves distances and angles invariant in
the hypercube whose image under the immersion is Z. Using
this map, we can change the periodicity of H ′(H,Z) as was
mentioned below theorem II.1.

B. Classifying periodic and aperiodic systems

We now combine the above result with a classification of
periodic systems to classify aperiodic systems. We begin by
reviewing the case of periodic Hamiltonians. Given a periodic
Hamiltonian, we compute its band structure. Since we will
consider periodic Hamiltonians obtained by unfurling a torus,
the Brillouin zone is also a torus which we parametrize by
angles θ1, . . . ,θd . The band structure defines a Hamiltonian
H (θ1, . . . ,θd ), which depends smoothly on the angles, with
the dimension of the Hamiltonian being equal to the number
of sites in a unit cell. Conversely, given any Hamiltonian
H (θ1, . . . ,θd ) which depends smoothly upon angles, we can
construct a periodic Hamiltonian whose band structure is
precisely H (θ1, . . . ,θd ) by an inverse Fourier transform; then,
the smooth dependence of H (θ1, . . . ,θd ) upon angles implies
a rapid decay of matrix elements in space. So, we use the terms
“periodic Hamiltonian” and H (θ1, . . . ,θd ) interchangeably.

Given such a Hamiltonian, and assuming that there is a gap
in the spectrum near zero for all points in the Brillouin zone,
we can define a projector P (θ1, . . . ,θd ) onto negative energy
states which also depends smoothly on the angles. Throughout,
when we discuss any operator depending upon angles, we
will assume it is smooth (infinitely differentiable). A projector
P (θ1, . . . ,θd ) defines a vector bundle. These vector bundles
are classified by K-theory classes, which do not change under
continuous deformations of P (θ1, . . . ,θd ). For this paper, we
will use the so-called “reduced K theory”. Reduced K theory
classifies equivalence classes of projectors P (θ1, . . . ,θd ) up to
continuous deformation of the projector and up to stabilization
by direct summing the projector with a projector which is
independent of angles θ1, . . . ,θd . In the language of vector
bundles, two vector bundles E,E′ are in the same reduced
K-theory class if they become isomorphic after addition of
trivial bundles Etriv,E

′
triv; we do not require that Etriv,E

′
triv

be isomorphic. In contrast, unreduced K theory requires that
Etriv,E

′
triv be isomorphic and, in particular, have the same

dimension. The reason for using reduced K theory instead
of unreduced K theory is that it removes invariants associated
with the dimension of the vector bundle; these invariants are
simply the rank of the projector P (θ1, . . . ,θd ). The use of
reduced K theory is appropriate for our problem because we
have defined two Hamiltonians H,H ′ to be equivalent if we can
find a continuous path from one to the other after stabilizing by
adding trivial Hamiltonians, but we have allowed the addition
of different trivial Hamiltonians Htriv 
= H ′

triv.
We now briefly review the fact that that given two gapped

periodic Hamiltonians H0(θ1, . . . ,θd ) and H1(θ1, . . . ,θd ), we
can stabilize (add additional sites to the unit cells of H0 and
H1 with no matrix elements connecting those sites to other
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sites) and then connect the Hamiltonians by a continuous path
of gapped periodic Hamiltonians Hs(θ1, . . . ,θd ) if and only if
the K-theory class is the same. For the “only if” direction
of this, note that given a family of periodic Hamiltonians
which depend continuously on a parameter s, we can define
a continuous family of projectors Ps(θ1, . . . ,θd ) and the K-
theory class does not change under continuous deformation.
For the “if” direction of this, suppose that P0(θ1, . . . ,θd ) and
P1(θ1, . . . ,θd ) are in the same K-theory class, so by stabilizing
(direct sum with a projector that does not depend upon θ )
we can connect them by a continuous path of projectors
which also depend smoothly upon angles. This stabilization
(by direct sum with a projector that does not depend upon
θ ) can be obtained precisely by adding additional sites to
H0 and H1 with no matrix elements connecting those sites
to others. So, we add those sites. After adding these sites,
we “spectrally flatten,” that is, we find a continuous path of
Hamiltonians from H0(θ1, . . . ,θd ) to J (1 − 2P0(θ1, . . . ,θd )).
Then, follow a continuous path from J [1 − 2P0(θ1, . . . ,θd )] to
J [1 − 2P1(θ1, . . . ,θd )] and finally use the spectral flattening
of H1(θ1, . . . ,θd ) to construct a continuous path from J [1 −
2P1(θ1, . . . ,θd )] to H1(θ1, . . . ,θd ). This gives a continuous
path from H0 to H1. The spectral flattening can be con-
structed as follows: let H0 have a spectral gap �E near
energy 0. Define a family of functions ft (x) which depends
continuously on t and smoothly on x, with f0(x) = x and
f1(x) = J for x � −�E and f1(x) = 0 for x � �E. Then, let
H0,t (θ1, . . . ,θd ) = ft [H0(θ1, . . . ,θd )]. Note that the periodic
Hamiltonians might have an interaction range larger than a
single unit cell. In contrast, the torus trick above constructs
a periodic Hamiltonian with a unit-cell size larger than the
interaction range R.

Certain tricks will be reused several times in what follows so
we mention them briefly here and explain in more detail below.
Recall that we refer to block-diagonal gapped Hamiltonians
as trivial. We will also call any Hamiltonian trivial if it can
be deformed to such a Hamiltonian. One trick is that for any
gapped Hamiltonian H , the direct sum H ⊕ −H is trivial.
A second fact is that while we have considered paths where
we deform Hamiltonians, we could instead keep the terms
in the Hamiltonian fixed and deform where the sites are in
the ambient space. We could have allowed this deformation
of where the sites are as part of the definition of a path of
Hamiltonians, but this is not necessary if we consider stable
equivalence as if H and H ′ are two Hamiltonians that differ
only in a slight displacement of the sites, then H ⊕ H ′ ⊕
−H ′ is trivial, and H ⊕ −H ′ can be deformed to a diagonal
Hamiltonian in a similar way to how H ⊕ −H can in Eq. (15),
so H can be deformed into H ′ up to stable equivalence.

We now claim the following:
Theorem II.3. Consider any two free-fermion Hamiltonians

H0,H1 whose interactions decay following Eq. (2) with given
J,R and which both have gap at least �E, and consider
any two disjoint hypercubes Z0,Z1 with linear size L with
L sufficiently large compared to RJ/�E.

(1) If H ′
torus(H0,Z0) is in the same K-theory class as

H ′
torus(H1,Z1), there exists a Hamiltonian H which obeys

Eq. (2) with the same J and which has range that is upper
bounded by a constant times R and which has a gap which is
at least lower bounded by a positive constant times �E such

that Hamiltonian H agrees with H0 on Z0 and also agrees with
H1 on Z1. We say that such a Hamiltonian H “interpolates
between H0 on Z0 and H1 on Z1”.

(2) If H ′
torus(H0,Z0) is not in the same K-theory class as

H ′
torus(H1,Z1), then there is no Hamiltonian H which obeys

Eq. (2) with the given R,J,�E which interpolates between
H0 on Z0 and H1 on Z1.

Before giving the proof, we make two remarks. First, if a
Hamiltonian has a gap �E, then it has a gap at least �E′
for any �E′ < �E, and similarly if it obeys Eq. (2) for any
given R,J , it also obeys that equation for any larger R′,J ′.
This is useful in applying the second claim 2; suppose we
have two Hamiltonians H0,H1 with given R,J,�E and we
wish to show that there is no Hamiltonian with, for example,
a range 10R and a gap �E/10 that agrees with H0 on one
hypercube and H1 on another hypercube. To do this, we regard
our initial Hamiltonians as obeying Eq. (2) with range 10R

and gap �E/10 and then apply statement 2. We find then
that we need to have L be sufficiently large compared to
100RJ/�E. The second remark is that when we consider
K-theory classes for bundles over a torus, there are often
“lower-dimensional invariants”. For example, bundles over T 3

without symmetry are classified by Z ⊕ Z ⊕ Z, but all three
of these invariants are in a sense “lower dimensional”, and are
obtained by considering the dependence upon only two of the
angles at a time. The map from H to H ′

torus(H,Z) only produces
Hamiltonians with trivial values of these lower-dimensional
invariants even if H itself is periodic and has nontrivial values
of these invariants. This resolves an apparent paradox: claim
2 implies that we can not find a gapped Hamiltonian that
interpolates spatially between two H ′ with different values of
these invariants, but we know that in fact we can interpolate
between two periodic Hamiltonians with different values of
these invariants. That is, the resolution of the apparent paradox
is that H ′

torus “forgets” some of the invariants of a periodic
Hamiltonian H .

Proof. We begin with the first claim. First, we construct
a Hamiltonian h that agrees with H0 on Z0 and so that on
some other hypercube X1 it agrees with H1 on Z1, where
X1 and Z1 may be related by a translation and rotation. We
will in turn describe the construction of that Hamiltonian in
two steps: first we will construct a Hamiltonian that does
the desired interpolation but does not satisfy useful bounds
on its range and gap, and then we will correct the problem
by constructing another Hamiltonian that does have useful
bounds on range and gap. To do the first step, consider the
torus that H ′

torus(H0,Z0) is defined on, and unfurl this torus
to Rd , giving a tiling of Rd with hypercubes. Then, define
a Hamiltonian that interpolates between H ′

torus(H0,Z0) for
hypercubes near the hypercube containing Z0 to H ′

torus(H1,Z1)
for hypercubes far away. We use the existence of a path of
periodic gapped Hamiltonians that connects H ′(H0,Z0) to
H ′(H1,Z1) to define this interpolation. If the interpolation is
done sufficiently slowly over space, then lemma II.2 allows
us to show a lower bound on the gap: if there is a state ψ

such that this interpolating Hamiltonian acting on that state is
small, then by lemma II.2 there is a state on a region of size of
order RJ/�E such that the interpolating Hamiltonian acting
on that state is small, and then we can apply the gap of the
interpolating Hamiltonians.
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This interpolating Hamiltonian construction has one prob-
lem as we mentioned: the interpolating periodic Hamiltonians
may have a range that is much larger than R. To solve
this problem, first we zero all terms in the interpolating
Hamiltonian connecting sites i,j with large dist(i,j ); if we
only do this for sufficiently large distance, then this does not
close the gap. We pick a quantity R1 of order L so that the
entire hypercube Z is contained in a sphere of radius R1 center
at a point z0 ∈ Z0. Choose the interpolating Hamiltonian to
agree with H ′(H0,Z0) up to some distance R2 � R1 from Z0

and to agree with H ′(H1,Z1) beyond some distance 2R2 from
Z0. Define a piecewise linear function f (x) by f (x) = x for
0 � x � R1 or x � 4R2. For R1 � x � 2R2, f (x) = R1 and
for 2R2 � x � 4R2, f (x) is a linear function interpolating
between f (2R2) = R1 and f (4R2) = 4R2. Define a map of
Rd to itself by mapping a point z in at distance r from z0 to
the point along the line from z to z0 which is at distance
f (r) from z0. This map is the identity both near Z0 and
also sufficiently far from Z0. Then, use this map to push
forward the Hamiltonian that we have constructed. For sites i,j

with 2R1 � dist(i,z0),dist(j,z0) � R2, the distance dist(i,j ) is
mapped to zero if i,j are both along the same line from z0,
while if i,j are not along the same line then the distance is
reduced by a factor of at least O(R1/R2). So, by choosing
R2/R1 large, this gives a Hamiltonian h with bounded range
as we have compressed all the interpolating Hamiltonians to
the sphere at distance R1 from z0. (In fact, this argument might
lead to the J in the Hamiltonian h being a constant factor larger
than the original J depending on the norm of the interpolating
Hamiltonians; however, we can then multiply h by a scalar less
than one to restore the original value of J with only a constant
factor reduction in the gap.) Having constructed the desired
h, we can apply a further map to move some hypercube X1

at distance larger than R2 from z0 to the desired position Z1,
giving the desired interpolating Hamiltonian H .

Now, we show the second claim. Suppose such an inter-
polating Hamiltonian does exist. Then, consider a path of
hypercubes Zs that starts at Z0 and ends at Z1 by continu-
ously sliding and translating the hypercube. Such a path of
hypercubes defines a path of periodic Hamiltonian H ′(H,Zs).
This path of Hamiltonians may have discontinuities. We will
show that, for sufficiently large L compared to RJ/�E, the
K-theory class does not change across these discontinuities,
which implies that H ′(H,Z0) and H ′(H,Z1) are in the same
K-theory class. One source of discontinuities comes from
Eq. (5): we set certain matrix elements to zero when the
distance between two sites on the torus becomes sufficiently
large. However, since the matrix elements are exponentially
small, if we replace the discontinuous jump in matrix elements
by a continuous path, the gap does not close along this path so
the K-theory class does not change.

A more important source of discontinuities comes from
changes in how we heal the puncture. These change the
Hamiltonian in a region of size of order R around the puncture
but not elsewhere. Importantly, this change happens on a set of
size small compared to the size of the torus. We now show that
this does not change the K-theory class. We need the following
result: consider any Hamiltonian H . Define a new system by
doubling the Hilbert space dimension on each site. Then, the
Hamiltonian H ⊕ −H on this new system can be continuously

deformed to a diagonal Hamiltonian while keeping the gap
open and keeping the interaction range bounded. The path can
be given explicitly as(

(1 − s)H sI

sI −(1 − s)H

)
. (15)

The off-diagonal elements of this block matrix are proportional
to the identity so now the Hamiltonian is block diagonal. By
diagonalizing H we see that for every eigenvalue E of H , the
Hamiltonian in the path above has eigenvalues given by the
eigenvalues of the two-by-two Hamiltonian(

(1 − s)E s

s −(1 − s)E

)
, (16)

and so the gap remains open. For classes with sublattice
symmetry, we maintain the symmetry in the above path by
declaring the sublattices to be interchanged in the system
−H compared to that in +H . At the end of this path, the
Hamiltonian is block diagonal.

A similar path can be used to deform H ⊕ −H ′ to a
diagonal Hamiltonian if H and H ′ are two Hamiltonians
that differ only in that the sites of H ′ are slightly displaced
from those of H . However, then at the end of the path, the
Hamiltonian is block diagonal with each block corresponding
to a pair of sites. Such a Hamiltonian can then be easily
deformed to a block-diagonal Hamiltonian with each block
corresponding to a single site. In symmetry classes other than
class A, we need to use the requirement, made at the start
of the section, that symmetry operations for time-reversal
and particle-hole symmetry are block diagonal and that for
sublattice symmetry the subspace on each site is the direct
sum of two subspaces of the same dimension, corresponding
to the two different sublattices.

Now, consider two Hamiltonians H0 and H1 that agree
everywhere except within distance R of the puncture. Consider
the Hamiltonian H0 ⊕ H1 ⊕ −H1. Using the above path, H1 ⊕
−H1 is equivalent to a trivial Hamiltonian, so H0 ⊕ H1 ⊕
−H1 is stably equivalent to H0. Now, we construct a path of
Hamiltonians Hs that agrees with H0 ⊕ −H1 near the puncture
and agrees with(

(1 − s)H0 sI

sI −(1 − s)H1

)
(17)

far from the puncture. One explicit way to do this is to define
a function ri that is 0 for sites near the puncture, 1 for sites
far from the puncture, and interpolates between. Promote this
function to an operator r̂ which is a block-diagonal matrix with
(r̂)ii = riI . Then, consider the path of Hamiltonians

Js =
(√

1 − sr̂H0
√

1 − sr̂ sr̂

sr̂ −√
1 − sr̂H1

√
1 − sr̂

)
.

(18)

Again, using lemma II.2 we can show that this path of
Hamiltonians has a gap. J1 has nonvanishing off-diagonal
matrix elements only near the puncture (i.e., only on a
contractible set) so we can deform it to a block-diagonal
Hamiltonian so it has trivial K-theory class. So, H0 ⊕ −H1

has trivial K-theory class and since H0 is stably equivalent
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to H0 ⊕ H1 ⊕ −H1, it implies that H0 and H1 have the same
K-theory class. �

We will use the procedure in Eq. (18) again later, so we
give it a name: we say that we “join H0 and −H1 far from the
puncture”.

Using this result on the existence of interpolating Hamilto-
nians we can also show the following:

Theorem II.4. Let H0 and H1 be Hamiltonians with ambient
space M = T d obeying Eq. (2) with decay constant R and
with gap �E, such that H ′(H0,Z) and H ′(H1,Z) are in
the same K-theory class for some hypercube Z with linear
size L sufficiently large compared to RJ/�E. Let S be any
contractible set. Then, up to stable equivalence, there exists a
continuous path of Hamiltonians from H0 to some Hamiltonian
which agrees with H1 on S, with the Hamiltonians in this path
having range bounded by a constant times R and gap lower
bounded by a positive constant times �E.

Note that we only show that we can find a path to a
Hamiltonian which agrees, up to stable equivalence, with
H1 on a contractible set. In fact, even if the conditions of
the theorem hold, there may be an obstruction due to lower-
dimensional invariants to finding a path from H0 to H1 itself.

Proof. We will show that if H ′(H0,Z) is in the trivial K-
theory class, then we can deform H0 to a Hamiltonian which is
block diagonal on S. This will imply the theorem, as follows:
let H0,H1 be such that the conditions of the theorem hold.
Then, H0 ⊕ −H1 can be deformed to a Hamiltonian which
is block diagonal on S (we use the fact that −H1 has the
opposite K-theory class to H1). So, H0 ⊕ −H1 ⊕ H1 can be
deformed to a Hamiltonian which agrees with H1 on S up to
stable equivalence; however, since −H1 ⊕ H1 can be deformed
to a block-diagonal Hamiltonian, H0 ⊕ H1 ⊕ −H1 is stably
equivalent to H0, and so H0 can be deformed to a Hamiltonian
which agrees with H1 on S up to stable equivalence.

Figure 2 shows the steps of the path that we construct.
We illustrate the path in the case d = 2, while calculations
in other dimensions are done similarly. The torus is drawn
by identifying boundaries of a square and we will illustrate
the path for the case that S is chosen to include all points
except those on the boundary of the square. Figure 2(a) shows
the initial system in black. Then, we find a path to make
the Hamiltonian diagonal on a square of linear size of order
L; this square is on shown in white in Fig. 2(b). To make
the Hamiltonian diagonal on a square, we do the following
steps: (i) construct a Hamiltonian O which agrees with H0

on the given square and becomes block diagonal sufficiently
far from the square, with appropriate bounds on the range and
gap of O. We can construct such an O using a construction
similar to that of theorem II.3: since H ′(H0,Z) is in the trivial

(a) (b) (c)

FIG. 2. (a) Initial system; (b) creating hole in system;
(c) stretching to a lower-dimensional system.

K-theory class, we can find a Hamiltonian that interpolates
from H ′(H0,Z) to a block-diagonal Hamiltonian which also
is in the trivial K-theory class. (ii) Consider H0 ⊕ O ⊕ −O.
This is stably equivalent to H0. Also, up to stable equivalence
we can remove those sites far from the square where O and
−O are block diagonal. (iii) Having removed the sites, move
the remaining sites in O, contracting them to a single point,
and move that point to somewhere in the black region. Up
to stable equivalence we can now remove that point, leaving
Hamiltonian H0 ⊕ −O. (iv) The next step is to join H0 and
−O near the square. This step is similar to Eq. (18) except we
now define the function ri to be 1 for sites in the square and
0 for sites far from the square and interpolating between, and
we consider the path of Hamiltonians(√

1 − sr̂H0
√

1 − sr̂ sJ r̂

sJ r̂ −√
1 − sr̂ − O

√
1 − sr̂

)
. (19)

This path keeps the gap open and leaves the Hamiltonian block
diagonal in the square at the end, and so then we can remove
the sites in the square.

Given the configuration in Fig. 2(b), we would like to
“stretch” the system, moving the sites so that they are as
in Fig. 2(c). However, moving them like this violates the
assumption on decay with range R. So, first we modify before
stretching. Consider first a one-dimensional system. Up to
stable equivalence, we can deform H to H ⊕ (−H ⊕ H ) ⊕
(−H ⊕ H ) ⊕ . . . , adding n copies of −H ⊕ H for some given
n. Then, we follow a procedure of joining copies of H to copies
of −H as shown in Fig. 3. Each horizontal line denotes a copy
of H or −H (we have shown the case n = 2). The vertical
lines denote places where we join one copy to another. The
horizontal length of each joined region is chosen to be large
compared to RJ/�E so that the join keeps the gap open and
the length between joined regions is also large compared to
RJ/�E. We drop all terms in the Hamiltonian that couple
sites on the left side of a join to sites on the right side of a join
(for sufficiently large joins, this does not close the gap). In the
middle of the join, the two copies of the Hamiltonian which
are joined become diagonal and so sites in the middle of the
join can be removed. After removing the sites in the middle
of the join, we have sketched part of the remaining system
using a thickened line with an arrow (to avoid cluttering the
figure, we have sketched only part of the remaining system;
the thickened line with an arrow should continue all the way
around the figure). Next, we move the sites in the remaining

H

−H

H

H

−H

FIG. 3. Joining H ⊕ −H ⊕ H ⊕ −H ⊕ H . Vertical lines denote
join. Arrow sketches part of remaining system after removing sites
inside join.
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system; the length of the arrow is roughly nLsys, and so we
can map the remaining system onto a torus of size Lsys by
a map that reduces distance by a factor O(1/n) so that the
interaction range becomes O(n/R). We have described this
procedure in one dimension, but it works equally well in any
dimension; we simply perform the procedure for each of the
d different axes of the torus in turn, treating the system as if
it were a one-dimensional system by ignoring the other d − 1
dimensions.

After doing this, if we choose n ∼ Lsys/R, we can stretch
the system as in Fig. 2(c). �

III. QUANTUM CELLULAR AUTOMATA
AND LOCAL UNITARIES

Having discussed free systems, we next turn to interacting
systems and QCA.7 These QCA will play an important role in
this paper, both for their own sake and for their application
to interacting systems, so we take some time to review
them here. We will mention a distinction between QCA and
quantum circuits highlighted in Ref. 7, and we will draw
an analogous distinction between what we will call locally
generated unitaries (LGU) and locality-preserving unitaries
(LPU). This distinction between the later two possibilities
seems not to have been highlighted before.

A. Quantum circuits and quantum cellular automata

Consider a quantum system on a lattice in d dimensions.
On each site, there is a finite-dimensional Hilbert space. If the
lattice is finite, then defining a quantum circuit is simple: it is
a unitary UQC such that UQC can be written as the composition
of several unitaries Ui :

UQC = UrUr−1 . . . U1, (20)

where r is some integer labeling the number of “rounds” of
the quantum circuit, and where each Ui is a unitary with the
property that Ui is a product of unitaries Ui,X supported on
disjoint sets X with some bound Ri on the diameter of each set
X. Each such Ui,X is referred to as a “gate”. We let Si denote
the set of sets X such that there is a gate Ui,X in the ith round.
We refer to Ri as the “range” of the ith round and let

∑r
i=1 Ri

be the range of the quantum circuit.
A QCA is defined to be a unitary transformation U such that

for any set of sites A and any operator OA supported on some
set A, then UOAU † is supported on the sites of sites within
distance R of A, for some given R. We refer to R as the range
of the QCA. Note that every quantum circuit with range R is a
QCA with range R. For an operator OA supported on a set A,
the operator UiOAU

†
i is supported on the set A ∪X∈Si ,X∩A 
=∅ X.

Hence, given a bound on r and on the diameter of the sets X, it
follows that for any operator OA supported on some set A, the
operator UQCOAUQC is supported within a bounded distance
of A; one can think of this as a “light cone”, with the support
of the operator increasing from one round to the next.

If the lattice is infinite, then a more complicated definition
is necessary. First, on every finite set one defines an algebra
of operators supported on that set. Next, one defines a closure
of this algebra on an increasing family of sets; this closure
is called the quasilocal algebra. Then, one defines a QCA as

an automorphism αQCA of this quasilocal algebra, such that
that for any set of sites A and any operator OA supported on
some set A, αQC A(OA) is supported on the set of sites within
distance R of A.

Note the bound on the range of UQCA or αQCA implies
the same bound R on the range of the inverse U

†
QCA or

α−1(QCA). To see this, consider an operator Oi supported
on a site i. We wish to show that α−1(Oi) is supported on
sites within distance R of i; however, this is equivalent to
showing that [α−1(Oi),O] = 0 for all operators O supported
more than distance R from site i. However, [α−1(Oi),O] =
α−1([Oi,α(O)]), and using the bound on the range of R we
have that [Oi,α(O)] = 0.

Note that for a unitary U on a finite system, the map
O → UOU † is an automorphism of the algebra of operators;
conversely, such an algebra automorphism on a finite system
is always of the form O → UOU † and the automorphism
determines U up to a scalar. So, we will sometimes choose to
refer to a QCA for a finite system as an automorphism αQCA

rather than as a unitary UQCA if we do not care about the phase.
One defines a quantum circuit for an infinite system

as an automorphism αQCA which is the composition of r

automorphisms αi of the quasilocal algebra, such that for all
i there is a set Si of disjoint sets with bounded diameter such
that αi is an automorphism of the algebra of observables on
X for all X in Si and such that αi is the identity map on
the algebra of observables supported on sites not in any X

for X ∈ Si . Alternately, a useful definition for infinite systems
is to consider families of QCAs, defined on increasing size
systems, whose actions on operators supported on any fixed
set converge to some limit, with uniform bounds on the range
of the QCAs.

While every quantum circuit is a QCA, the converse is not
true. In Ref. 7, it was shown that for infinite one-dimensional
systems, QCA without any symmetry properties are classified
by an index which is a positive rational, as we review in
Sec. VIII A. A similar result holds for finite systems: one can
define a family of QCAs on finite systems of increasing size,
so that the QCA has fixed range R but so that the smallest
range of a quantum circuit realizing the given QCA diverges
system size.

B. Locally generated unitaries

The definitions of quantum circuits and QCA are useful,
but in many cases we would like to soften the definition
somewhat, replacing the strict locality with a softer notion. We
refer to the resulting concepts as locally generated unitaries
(LGU) and locality-preserving unitaries (LPU). For a finite
system, we define a LGU to be the unitary generated by
evolution for a fixed time under a time-dependent Hamiltonian
whose interactions decay sufficiently rapidly (sufficiently fast
polynomials will suffice for a finite-dimensional system, but
the most interesting case will be a superpolynomial decay).
More formally, we let

Ut = S exp

[
i

∫ t

0
Hsds

]
, (21)

where Hs is a Hermitian matrix that depends upon a parameter
s, and where S denotes that the exponential is an s-ordered
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exponential. For any fixed t , Ut is a LGU. We will impose a
requirement that the interactions of Hs decay rapidly with
space. Various possibilities have been considered and fall
under the general term of “Lieb-Robinson bounds”,9–13 and
we just list one possibility in the next paragraph. The key
result is the bound Eq. (26) below.

Let

Hs =
∑

i

∑
R�0

Hi,R(s), (22)

where each Hi,R(s) is supported on the set of sites within
distance R of site i. We require the interactions to decay rapidly
by ∑

R′�R

‖Hi,R′ (s)‖ � K(R) (23)

for some function K . We require that K obey the following
property, which we call “reproducing”:∑

m

K[dist(i,m)]K[dist(m,j )] � λK[dist(i,j )] (24)

for some constant λ, where the sum is over sites of the lattice.
For a square lattice in d dimensions and the Euclidean metric,
the power law K(l) ∼ l−α is reproducing for sufficiently large
α. An exponential decay is not reproducing, but an exponential
multiplying a sufficiently fast power law is. Therefore, if
Eq. (23) holds for an exponentially decaying K for some given
decay rate, it holds for a slightly slower exponential decay rate
multiplied by a fast decaying power law. For reproducing K ,
there is the bound that for any operator OA supported on set
A and any OB supported on set B,

‖UtOAU
†
t ,B]‖ � 2‖OA‖‖OB‖

∑
i∈A

K[dist(i,B)]

× [exp(2λt) − 1]. (25)

If K is exponentially decaying, this enables us to de-
fine a “Lieb-Robinson velocity” vLR such that for |t | �
dist(A,B)/vLR the commutator is exponentially small. On the
other hand, if K decays slower than exponential [for example,
as exp(−tα) for some 0 < α < 1], the bound is still effective
for any fixed t but there is no upper bound to the propagation
speed.

Let bR(A) denote the set of sites within distance R of a set
A. Given the bound (25), it follows that for any operator OA

supported on a set A, and for any R, there is an operator ObR(A)

supported on bR(A) such that∥∥UtOAU
†
t − ObR (A)

∥∥ � 2C‖OA‖
∑
i∈A

K[dist(i,bR(A)]

� 2C‖OA‖
∑
i∈A

K[R + dist(i,A)]

(26)

for some constant C = exp(2λt) − 1, where A denotes the
complement of A. The expression in the second line,∑

i∈A K[R + dist(i,A)], can be expressed as N0K(R + 1) +
N1K(R + 2) + N2K(R + 3) + · · · , where N0 is number of
points on the boundary of A, N1 is the number of points in A

which are distance 1 away from the boundary, and so on.

The theory of classifying different phases is closely related
to that of LGUs. Given a differentiable path of Hamiltonian
Hs with a gap and local interactions, then the technique of
quasiadiabatic continuation10,14–17 allows us to define a LGU
which maps the ground state of H0 to that of H1. A fundamental
role in this is played by the following elementary identity: if
Uψ0 = ψ1, where ψ0 and ψ1 are the ground states of H0 and
H1, respectively, then

〈ψ1|O|ψ1〉 = 〈ψ0|(U †OU )|ψ0〉. (27)

If O is a local operator, then (U †OU ) can be approximated
by an operator supported near the support of O (that is, we
use the fact that every LGU is a LPU). If ψ0 is some simpler
state, such as a product state or the ground state of an exactly
solvable Hamiltonian, then it may be easier to evaluate the
expectation value of (U †OU ) in ψ0. This approach is used in
Ref. 18, for example, to study the generation of correlations
and topological order.

Some formal steps need to be taken for an infinite system to
define the limits; one must use the locality of the definition for
a finite system to show the existence of certain limits. Since
our definition is simply the evolution under a time-dependent
Hamiltonian obeying a Lieb-Robinson bound, the results in
Ref. 19 allow one to work directly in the thermodynamic limit
using the C∗-algebraic definition of the quasilocal algebra.
Alternately, one can work throughout with finite systems and
use the fact that the Lieb-Robinson bounds are uniform in the
system size.

C. Locality-preserving unitaries

We define a LPU as follows. The definition is motivated
by the analogy: a LPU has the same relation to a LGU as a
QCA does to a quantum circuit. That is, just as in a QCA we
kept one property of the quantum circuit (that it increased the
diameter of the support of operators by a bounded amount)
and removed the others; for a LGU we will keep the property
(26) and remove the others. Thus, for a finite system, a LPU
with control function K will be defined to be a unitary U such
that for any set A and for any operator OA supported on A,
and for any R, there is an operator ObR(A) supported on bR(A)
such that∥∥UOAU † − ObR (A)

∥∥ � ‖OA‖
∑
i∈A

K[R + dist(i,A)] (28)

for some “control function” K(R) such that limR→∞ K(R) =
0 and also such that there is some other operator O ′

bR(A)
such

that∥∥U †OAU − ObR (A)

∥∥ � ‖OA‖
∑
i∈A

K[R + dist(i,A)]. (29)

In this case, we absorb the constant 2C that appeared in
Eq. (26) into the definition of K(R). An analogous definition
can also be made for infinite systems in terms of auto-
morphisms, where we replace UOAU † by an automorphism
αLPU(OA), or by considering families of such unitaries U on
finite systems of increasing size.

We can consider various choices of the control function
K(R). For example, we can consider the LPU such that
K(R) = 0 for sufficiently large R. The set of all such LPU
is equivalent to the set of QCA and this set forms a group;
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for example, the composition of a QCA with range R1 with
another QCA with range R2 is a QCA with range R1 + R2. For
d-dimensional lattice systems, the set of LPU such that K(R)
decays exponentially also forms a group under composition,
as does the set such that K(R) decays superpolynomially. To
see this, consider first the exponential decay case. Consider the
composition of two automorphisms α2[α1(OA)]. Consider a
given set A, given OA, and given R. Approximate α1(OA) by an
operator ObR/2(A) supported on the set of sites within distance
R/2 of A, up to error ‖OA‖∑

i∈A K[R/2 + dist(i,A)]. Then,
approximate α2(ObR/2(A)) by an operator supported on the
set of sites within distance R of A. Since this set is within
distance R/2 of the set bR/2(A), the error is bounded by

∥∥ObR/2 (A)
∥∥ ∑

i∈bR/2(A)

K{R/2 + dist[i,bR/2(A)]}. (30)

We estimate
∑

i∈bR/2(A) K{R/2 + dist[i,bR/2(A)]}. The sum
over i in bR/2(A) can be broken into two sums: a sum over
i ∈ A and a sum over i 
∈ A. The first sum is bounded by∑

i∈A K[R + dist(i,A)]. As for the second sum, let N0 be
the number of sites on the boundary of A. Let M0 denote the
number of sites on the boundary of bR/2(A), let M1 denote
the number of sites in bR/2 which are a distance 1 from
the boundary, and so on. Then, M0 � N0O(R/2 + 1)d and
Mk � N0O(R/2 + 1 − k)d , for 0 � k � R/2. So,∑

i∈bR/2(A)

K{R/2 + dist[i,bR/2(A)]}

�
∑
i∈A

K[R/2 + dist(i,A)]

+N0

R/2∑
k=0

O(R/2 + 1 − k)dK(R/2 + k). (31)

For K(R) either bounded by an exponentially decaying
function of R or by a superpolynomially decaying function
of R, the sum of Eqs. (30) and (31) is bounded by an
exponentially or superpolynomially decaying function. This
shows the claimed group property.

IV. TOPOLOGICAL ORDER AND INTRINSIC
TOPOLOGICAL ORDER

As mentioned in the Introduction, we often consider two
gapped, local quantum Hamiltonians H0,H1 to be equivalent
if there is a continuous path of gapped, local Hamiltonians
connecting them. As discussed above, this implies that, by
quasiadiabatic continuation, we can map the ground state of
one into the other using a LGU. Conversely, if there is a LGU
Ut that maps the ground state of H0 into H1, then there is
a continuous path of gapped local Hamiltonians connecting
them: consider the path UsH0U

†
s for 0 � s � t ; then, linearly

interpolate between UtH0U
†
t and H1. So, one often defines

that a state is “trivial” if it can be mapped to a product state by
a LGU.

So, we propose the following definition:
Definition IV.1. A state is “nontrivial and has intrinsic

topological order” if it can not be mapped to a product state by

a LPU while a state is “nontrivial without intrinsic topological
order” if it can be mapped to a product state by a LPU but not
a LGU.

Similarly, note the following:
Definition IV.2. A Hamiltonian H which is a sum of

commuting terms is “nontrivial and has intrinsic topological
order” if it can not be mapped to a Hamiltonian Htriv which
is a sum of commuting terms with disjoint support by a LPU
while a Hamiltonian is “nontrivial without intrinsic topological
order” if it can be mapped to such a Hamiltonian by a LPU but
not a LGU.

We allow the Hamiltonian Htriv to be a sum of terms
with disjoint support. So, that allows not just Hamiltonians
which are a sum of terms supported on different sites but
also Hamiltonians which have dimer ground states such
as a Hamiltonian for a spin- 1

2 system that is a sum of
projectors on spins 2x,2x + 1, projecting onto the triplet
states. These definitions suffice for infinite systems, while for
finite systems we need to consider families of Hamiltonians
on systems of increasing size and impose uniform bounds
on the LPU or LGU to obtain an appropriate definition.
These definitions can naturally be generalized to the case of
symmetries, as we can impose the same symmetry on the LPU
or LGU.

Interestingly, the proofs that the toric code is nontrivial in
that no LGU maps its ground state to a product state (see
Ref. 18 for the code on a torus and Ref. 20 for other topologies
where the proof does not use the ground-state degeneracy) only
use one property of a LGU: that a LGU is a LPU, although
that terminology was not used there. Hence, those proofs
immediately extend to proofs that the toric code has intrinsic
topological order according to this definition. Conversely, later
when we discuss the application of QCAs to classifying phases
with symmetry, we will see some phases which are nontrivial
without intrinsic topological order. So, our definition may be
a way to propose a precise definition which accords with the
informal usage in the literature.

To illustrate one important difference between phases
with and without intrinsic topological order, consider the
Hamiltonian for a spin- 1

2 system which is H = ∑
i S

z
i . This

is a gapped Hamiltonian, whose ground state has all spins
pointing down. We can create a single excitation by acting
on the ground state with a local operator, namely, Sx

i or S
y

i .
Suppose we define a new Hamiltonian by conjugating this
Hamiltonian by some LPU ULPU. The resulting Hamiltonian
will still be local, and one can still create a single excitation
with a local operator, namely, the operator that is obtained by
conjugating Sx

i . Conversely, in the case of the toric code on an
infinite system, while the Hamiltonian is local, there is no local
operator that creates a single excitation: one needs a string
going off to infinity. The reader may wonder whether there
exists a LPU ULPU that is not also a LGU, and also whether
the existence of such a LPU would imply that ULPUHL

†
LPU is

nontrivial; these issues are discussed later.
While we present examples showing that this definition

works reasonably for symmetry-protected phases, it seems
that the definition is not appropriate for integer quantum Hall
phases. We would like to say that those are phases without
intrinsic topological order, but it seems that they can not be
transformed to an Htriv by a LPU.

165114-12



CLASSIFYING QUANTUM PHASES WITH THE KIRBY . . . PHYSICAL REVIEW B 88, 165114 (2013)

(a) (b)

FIG. 4. (a) Immersed punctured torus. Vertical dashed line shows
boundary between two copies of toric code (on right) and vacuum (on
left). (b) Pullback to punctured torus. Dashed circle is inverse image
of dashed line, thin solid circle is puncture.

V. COMPLICATIONS WITH INTRINSIC
TOPOLOGICAL ORDER

A key step in the calculation in the previous section was
that we could add a term to the Hamiltonian supported near
the puncture to “heal” the puncture and restore the property
that the Hamiltonian has a spectral gap. In the rest of the
paper, we generalize the torus trick beyond the case of free
fermions. However, if we overgeneralize, then we find that
healing the puncture in this way will not always be possible.
This is related to a difference between homotopy invariants
and locally computable invariants in this case.

Consider the system shown in Fig. 4(a). This is a two-
dimensional system. On the right-half of the system, we have
two copies of the toric code.21 On the left half of the system,
we have a trivial system. The vertical dashed line indicates the
separation between the two halves of the system. The solid
line denotes an immersed punctured torus. Such a system can
be defined by a local Hamiltonian without having gapless edge
modes at the vertical line. To see this, consider a uniform
system with one copy of the toric everywhere. Then “fold”
the system over at the vertical line: place (x,y) coordinates
on the system, taking the vertical line at x = 0, and relabel
the coordinates of the site so that sites with x > 0 are left
unchanged but those with x < 0 are mapped by x → −x. Such
a procedure is not specific to the toric code; we could do this for
any gapped Hamiltonian. However, if the original Hamiltonian
is not invariant under spatial reflection, then the result is not
two copies of the same system on the right-hand side, but
rather two different systems related by spatial reflection. So,
this example shows that locally computable invariants can
not distinguish between two copies of the toric code and
the vacuum. However, two copies of the toric code are not
homotopy equivalent to the vacuum, as can be seen by for
example the argument in Ref. 18 for a finite system on a torus
or the argument of Ref. 20 more generally.

In Fig. 4(b), we show the Hamiltonian on the punctured
torus. Identifying opposite sides of the square gives a torus.
The dashed line is the inverse image of the vertical line in
Fig. 4(a), while the thin solid circle is the puncture. Suppose
we add terms to the Hamiltonian supported near the puncture
to “heal” the puncture. We will still be left with vacuum inside
the solid line and two copies of the toric code outside the solid

line. The resulting Hamiltonian does not have a gap. One may
say that even though we healed the puncture at the solid line,
there still is a hole inside the dashed line that we have not yet
healed.

In this particular case, we can create a gap in the Hamilto-
nian by adding terms supported near the dashed line. This leads
to only a slight further violation of locality (we can use the
same trick as before to shrink the solid line to a point, slightly
stretching the distance between other points). So, in this
case we can gap the Hamiltonian while maintaining locality.
Similarly, if we had positioned the immersed punctured torus
in Fig. 4(a) slightly further to the right, there would be no
problem. However, if we instead slide the immersed torus
further to the left, eventually there will be a problem: the solid
line will become sufficiently large that it can not be shrunk to
a point without severely violating locality and we will instead
have to discontinuously jump to a different method of gapping
the system out. Further, unlike in the free-fermion case where
the discontinuous change in how we heal the puncture was
confined to a small region and did not change the K-theory
class, here the change does change the homotopy class.

We leave it as an open problem whether for every Hamilto-
nian which is a sum of commuting local projectors obeying the
conditions called TQO-1 and TQO-2 in Ref. 18 and for every
finite region Z there exists a periodic Hamiltonian which is a
sum of commuting local projectors and which obeys TQO-1
and TQO-2 and which agrees with the original Hamiltonian
on Z.

VI. TORUS TRICK FOR QUANTUM
CELLULAR AUTOMATA

We now describe the application of the torus trick to QCA.
We consider an aperiodic QCA α with some given range
R. This QCA could be finite or infinite. We use the same
immersions fz,L as before. We define the same set of sites as
before on the punctured torus, by taking the preimage of the
set of sites in the image of the immersion. Each site in the
preimage will have a Hilbert space with the same dimension
as the Hilbert space on the corresponding site in the image.

Later, we will consider QCA obeying certain symmetry
constraints. As in the case of free fermions, the torus trick
can be applied to a QCA with symmetry and the result is a
periodic QCA with symmetry. That is, again the symmetry
“goes along for the ride”. Let X be the set of sites in the
preimage such that the corresponding site in the image is more
than distance R away from the image of the puncture. To pull
back α, we will define a map αpt that is a homomorphism from
the algebra of operators supported on sites in X to the algebra
of all operators on the punctured torus. Note that αpt need not
be an automorphism; constructing an automorphism will be
the next step to “heal the puncture”. We take L sufficiently
large that

cinjCL > 2R, (32)

where C is the constant appearing in Eq. (3). Consider any
site ĩ ∈ X and any operator Oĩ supported on that site. The
immersion is injective within a distance cinjL of ĩ, and so
by Eq. (32) it is injective within a distance greater than 2R

of the image of ĩ. So, we define αpt (Oĩ) in the natural way

165114-13



M. B. HASTINGS PHYSICAL REVIEW B 88, 165114 (2013)

by pulling back α[Ofz,L
(ĩ)]. To state it explicitly, define an

isomorphism βĩ from the algebra of operators on the Hilbert
space on sites within distance cinjL of ĩ to the algebra of
operators on the image of those sites in the natural way: the
immersion is one to one so we map an operator supported on
a site to the corresponding operator on the image of that site.
Then, we define αpt (Oĩ) = β−1

ĩ
◦ α ◦ βĩ(Oĩ).

For ĩ ∈ X, one can verify that αpt defines a homomorphism
of the algebra Aĩ of operators on ĩ to the algebra of all
operators. We define αpt (O) for any operator O which is a
product of operators Oĩ for ĩ ∈ X by

αpt

(
Oĩ1

Oĩ2
. . .

) = αpt

(
Oĩ1

)
αpt

(
Oĩ2

)
. . . (33)

and we extend this to all operators supported on X by linearity.
To show that this is well defined independently of the order
of sites, and to show that αpt is a homomorphism, we need
to verify that for ĩ 
= j̃ we have that [αpt (Oĩ),αpt (Oj̃ )] = 0.
For dist(ĩ,j̃ ) > 2R/C, this follows immediately because the
supports of αpt (Oĩ) and αpt (Oj̃ ) are disjoint. For dist(ĩ,j̃ ) �
2R/C, by assumption we have that the immersion is injective
on a set that contains the supports αpt (Oĩ) and αpt (Oj̃ ) so the
commutator can be computed by pushing forward Oĩ and Oj̃

to Oi and Oj , then applying α and taking the commutator,
and pulling back; however, since [α(Oi),α(Oj )] = 0, the
commutator is zero.

Having defined the homomorphism αpt , we extend this
homomorphism to an automorphism α′

torus(α,Z) of the algebra
of operators in any arbitrary way. This extension heals the
puncture. To see that such an automorphism exists, note that
αpt is a homomorphism of an algebra AX of operators on X

which has no central elements. So, αpt (AX) is isomorphic
to a matrix algebra, so it defines some tensor product
decomposition of the algebra of operators. Note that for
operators O in X, we have that α′

torus(O) has support on the
set of sites within distance R/C of the support of O. Since
the set of sites not in X has a diameter bounded by a constant
factor times R, we see that α′

torus(α,Z) has a range that is only
a constant factor larger than R.

For Lsys sufficiently large compared to R, we can then
“unfurl” α′

torus(α,Z) to a periodic system α′(α,Z) on Rd ,
defining this unfurling in the natural way: for every site i

in Rd , we define α′(α,Z) acting on Oi by pushing forward to
the torus, applying α′

torus, and pulling back, using the fact that
the covering map from the plane to the torus is one to one
on sets of diameter small enough compared to Lsys to define
the pullback. Conversely, given a periodic QCA, we can furl
it back to a QCA on the torus assuming that the range R is
sufficiently small; R < Lsys/4 suffices and in general we will
assume R < Lsys/4 for any QCA on a torus.

A natural question is whether a similar trick can be
developed for LPU with exponentially decaying or superpoly-
nomially decaying control function. This may be a subtle issue,
as is understanding whether such a LPU can be approximated
by a QCA with finite range R. The torus trick lets us prove the
following theorem analogous to statement 2 in theorem II.3.
In order to prove a result analogous to statement 1, it may
be necessary to have a better understanding of LPU with with
exponentially decaying or superpolynomially decaying control
function in order to smoothly vary the LPU over space in a way

analogous to how the free-fermion Hamiltonian was varied
over space. First, note the following:

Definition VI.1. Consider two QCAs α0 and α1 defined
on a torus with R < Lsys/4. We say that they are stably
homotopy equivalent if we can find tensor in additional degrees
of freedom to both α0 and α1 so that α0 ⊗ I can be deformed
to α1 ⊗ I by a continuous path of QCA with range smaller
than Lsys/4.

Note that as in the case of free fermions, even if we do
not include moving the location of sites in the ambient space
as part of the definition, we can obtain this by tensoring in
additional degrees of freedom.

Definition VI.2. We say that a QCA α agrees with a QCA
α0 on Z0 if the action of α on any operator supported on Z0 is
the same as that of α0 on that operator. We say that a QCA α

interpolates between α0 on Z0 and α1 on Z1 if it agrees with
α0 on Z0 and agrees with α1 on Z1.

Theorem VI.3. Consider any two QCAs H0,H1 with range
bounded by R, and consider any two hypercubes Z0,Z1

with linear size L with L sufficiently large compared to
R. If α′

torus(α0,Z0) is not stably homotopy equivalent to
α′

torus(α1,Z0), then there is no QCA α with given range R

which interpolates between α0 on Z0 and α1 on Z1.
Proof. Suppose such an interpolating QCA does exist.

Then, consider a path of hypercubes Zs that starts at Z0

and ends at Z1 by continuously sliding and translating the
hypercube. Such a path of hypercubes defines a path of
α′

torus(H,Zs). This path may have discontinuities. However,
for sufficiently large L compared to R, the QCA is stably
equivalent across these discontinuities, as these discontinuities
all happen near the puncture; that is, the action of the QCA on
observables sufficiently far from the puncture is smooth across
the discontinuities. So, across a discontinuity, we stabilize by
adding additional sites near the puncture so that the dimensions
of the QCAs match. Then, we can pick any choice of action
of the QCA on the observables near the puncture without
violating the bound on the range, and so the problem near
the puncture is that of classifying zero-dimensional unitaries,
and since the dimensions of the unitaries match there are no
obstructions to finding a path between any two unitaries. �

VII. TORUS TRICK FOR SYSTEMS WITHOUT
INTRINSIC TOPOLOGICAL ORDER

We are primarily interested in QCA in their role for clas-
sifying systems without intrinsic topological order following
definition IV.2. However, the classification of Hamiltonians
without intrinsic topological order is not the same as that of
QCA. Given some Hamiltonian Htriv, we can define a group
Gsym of LPUs which preserve that Hamiltonian. Then, the
classification of Hamiltonians which can be mapped to Htriv

by a LPU is the classification of GLPU/Gsym, where GLPU is
the group of LPU.

However, a torus trick can be directly developed for Hamil-
tonians without intrinsic topological order. If the Hamiltonian
is obtained by acting on Htriv with a QCA (rather than just
a LPU), then the terms have bounded range and we can pull
back the Hamiltonian to the torus in the natural way. Unlike the
case with intrinsic topological order, it is possible to add terms
near the puncture to heal the puncture and obtain a gapped
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periodic system, as follows from the ability to heal the puncture
for QCAs. This allows us to prove a result analogous to
theorem VI.3 for such systems without intrinsic topological
order. This will be discussed elsewhere, as will be the
classification of periodic systems without intrinsic topological
order.

VIII. CLASSIFICATION OF QUANTUM
CELLULAR AUTOMATA

We now present various results on the classification of
QCA. The first subsection reviews previous results of Ref. 7
on one-dimensional QCA. The results there are applicable to
either the periodic or aperiodic case, so there is no need for the
torus trick. Next, we consider the case of one dimension with-
out symmetry; again the torus trick is not required. The sub-
sequent subsections consider classification of periodic QCA
in higher dimensions; only partial results are presented here.
Note that in the case of free fermions, it is clear that periodic
systems have several advantages over aperiodic systems as we
can work in a momentum basis. However, for QCAs or other
interacting systems, it is much less clear that the classification
of periodic systems will be easier than that of aperiodic.
Thus, our application of the torus trick to QCAs, reducing the
problem to the periodic case, may still leave us with a problem
which is not much simplified compared to the original.

A. In one dimension

We review briefly Ref. 7. The result will be that QCAs are
classified by a positive rational, which fully classifies both the
homotopy invariants and the local invariants. Before giving the
result, we give some intuitive idea by an example. Consider
a system with a p-dimensional Hilbert space on each site.
Consider the QCA αL which “shifts” any operator one site to
the left, mapping any operator Oi supported on site i to an
operator supported on site i − 1 under some automorphism
of the algebra of p-by-p matrices. Consider another system
with a q-dimensional Hilbert space on each site, and a QCA
αR which shifts operators in this system one site to the right.
Then, αR ⊗ αL will have index p/q.

Also, before reviewing the result, we make some com-
ments regarding the application of this invariant to higher-
dimensional QCAs constructed by the torus trick as defined
here, remarking that the torus trick “forgets” this invariant
for d > 1. Consider a QCA on a d-dimensional torus, for
d > 1. We can choose to regard this as a QCA on a one-
dimensional torus by ignoring the locality properties in d − 1
of the coordinates and then we can define a one-dimensional
invariant. Such a QCA certainly exists and certainly the one-
dimensional invariant represents an invariant of such QCAs.
However, a QCA with a nontrivial value of this invariant can
not arise via the torus trick from a system with d > 1, because
each T d−1 × [0,1] in the immersion gives a decomposition
of Rd into three regions: the interior, T d−1 × [0,1], and the
exterior. Having a nontrivial value of the one-dimensional
invariant would imply a nontrivial value of the invariant for a
three-site system with the three sites consisting of these three
regions, and this is impossible because two of the regions are
finite dimensional.

A key concept in defining the index is the idea called
a “support algebra” in that paper and originally called an
“interaction algebra” in Ref. 22. Consider two sets of sites Z1

and Z2 withA1 andA2 being the algebras of operators on those
two sites, respectively. Let A be a subalgebra of A1 ⊗ A2.
Consider an orthonormal basis of operators ei for A2. Then,
every operator in A can be decomposed as

∑
i ai ⊗ ei with

ai ∈ A1. The “interaction algebra of A on Z1” (equivalently,
the “interaction algebra of A on A1”) is defined to be the
subalgebra of operators on A1 generated by all the ai arising
from such a decomposition.

Consider a QCA α. By coarse graining if needed, we can
assume that the QCA has range R = 1. Let sites be labeled
by integers i with corresponding algebras Ai of operators on
site i. For integer x, define R2x to be the interaction algebra
of α(A2x ⊗ A2x+1) on A2x−1 ⊗ A2x and let R2x+1 to be the
interaction algebra of α(A2x ⊗ A2x+1) on A2x+1 ⊗ A2x+2. A
crucial fact that one can check is that the algebras Ri commute
with each other. This follows trivially for Ri ,Rj for |i − j | >

1. For i = 2x + 1 and j = 2x + 2, this follows from the fact
that α(A2x ⊗ A2x+1) commutes with α(A2x+2 ⊗ A2x+3) and
from the fact that α(A2x ⊗ A2x+1) is supported on sites 2x −
1, 2x, 2x + 1, 2x + 2 and α(A2x+2 ⊗ A2x+3) is supported on
sites 2x + 1, 2x + 2, 2x + 3, 2x + 4 and the intersection of
these supports is sites 2x + 1, 2x + 2.

Let d(i) be the dimension of the Hilbert space on site i. It
is shown in Ref. 7 that the Ri have no central elements and
hence are isomorphic to matrix algebras of some dimension
r(i). Further, it is shown that

d(2x)d(2x + 1) = r(2x)r(2x + 1) (34)

and

r(2x + 1)r(2x + 2) = d(2x + 1)d(2x + 2). (35)

Hence,

r(2x)

d(2x)
= r(2x + 1)

d(2x + 1)
= r(2x + 2)

d(2x + 2)
. (36)

This ratio is a positive rational number, which is the index of
α. The above equation shows that it is a local invariant as it is
the same for all x.

This index is a generalization of the concept of “flow”23

to more general unitaries. The concept of flow is a way
of classifying unitaries acting on free-fermion systems and
here we consider more general locality-preserving unitaries.
Physically, one can interpret the index p/q as representing
a flow of particles of dimension p in one direction and of
particles of dimension q in the opposite direction.

B. Invariants in one dimension with symmetry

Suppose the unitary UQCA commutes with some global
symmetry. This could be a discrete symmetry group G,
meaning that for each site i there is a homomorphism from
group elements g ∈ G to unitaries gi supported on site i,
such that for any g, the product

∏
i gi commutes with UQCA.

In the case of a continuous symmetry, we can consider a
homomorphism from the Lie algebra to operators qi supported
on site i such that

∑
i qi commutes with UQCA. The following
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result for systems with symmetry will be useful in several
problems, so we state it as a lemma here.

Lemma VIII.1. Consider a QCA α on an infinite one-
dimensional system. Assume that the range R = 1. Define
Ai and Ri as before. For given g ∈ G, let αg be the QCA
that conjugates the algebra on each site by gi for unitaries
gi supported on site i. Assume that α ◦ αg = αg ◦ α. Then,
for any x, g2x−1g2x conjugates the algebra R2x to itself and
also conjugates R2x−1 to itself. Further, we can decompose for
any x

g2xg2x−1 = gr
2xg

r
2x−1 (37)

for some unitaries gr
i ∈ Ri .

Proof. Recall that R2x is the interaction algebra of α(A2x ⊗
A2x+1) on A2x−1 ⊗ A2x and R2x+1 is the interaction algebra
of α(A2x ⊗ A2x+1) on A2x+1 ⊗ A2x+2. Consider an operator
O in A2x ⊗ A2x+1. Note that αg ◦ α(O) = α ◦ αg(O). Since
αg(O) is in A2x ⊗ A2x+1, it follows that α ◦ αg(O) can be
decomposed as a sum of products of operators of operators in
A2x−1 ⊗ A2x with operators in A2x+1 ⊗ A2x+2. So, αg ◦ α(O)
can be decomposed in the same way, so g2x−1g2x conjugates
the algebra R2x to itself as claimed. The claim that g2x−1g2x

conjugates R2x−1 to itself is proven similarly. Then, since
g2x−1g2x conjugates R2x to itself and conjugates R2x−1 to itself,
and R2x−1 ⊗ R2x = A2x−1 ⊗ A2x , Eq. (37) follows. �

Given this lemma, the map from G to gr
i gives some

projective representation of the the group G. This represen-
tation is projective because we can absorb a phase factor into
gr

x and the opposite phase factor into gr
2x−1 so that the phase of

gr
i can be chosen arbitrarily. This representation need not be

irreducible. Let us consider some specific examples. Consider
a system of spin- 1

2 particles, and consider a QCA α that shifts
by distance R to the right. If R = 0, then one finds that the gr

i

are a spin- 1
2 representation. If R = 1, then R2x is trivial and so

the representation gr
2x is a trivial (spin-0) representation, while

the representation gr
2x−1 is a sum of a spin-0 and a spin-1

representation. In general for odd R, after coarse graining so
that we can apply the above lemma, we find that the gr

2x give
an integer spin representation, while it is not an integer spin
representation for even R.

How can this representation change under deformation
of the QCA? Let us allow the range to increase under this
deformation (currently, we are not working on a torus but
rather on a line). Take some given QCA α0 with range R0 and
follow some path of QCA αs , with range Rs , with Rs � R for
all s. Then, we can block the system into blocks of size R

and apply the above result. Then, the representation does not
change along the path.

However, under this coarse graining or, equivalently, under
tensoring in additional degrees of freedom, the representation
may change. That is, if for a given QCA α, the map from
g to unitaries gr

2x defines a given projective representation
r , and if the identity QCA I has a representation r ′, then
this representation r remains constant along the path, but if
we tensor in additional degrees of freedom representation R,
then now α ⊗ I has representation r ⊗ R, while I ⊗ I has
representation r ′ ⊗ R. So, to decide if two QCA are different,
we must determine if r ⊗ R is distinct from r ′ ⊗ R for all
R. Of course, if the dimension of r differs from that of r ′,

this describes a different QCA and the ratio of the dimensions
dim(r)/dim(r ′) is the index of Ref. 7. If the dimensions agree,
for a finite group, then if r is an ordinary representation
r ⊗ R ∼= r ′ ⊗ R for R being the regular representation24 (note
that the identity QCA has an ordinary representation by
definition). One can show that a one-dimensional QCA with
finite symmetry group is trivial if and only if they have the
index (as in Ref. 7) equals 1 and if the representation r is
an ordinary representation (more precisely, if the projective
representation determined by the unitaries gr

i can be lifted to
an ordinary representation).

In the case of a compact, connected Lie group,24 for any
choice of a finite dimensional R we have that r ⊗ R ∼= r ′ ⊗ R

only if r ∼= r ′. Now, a QCA is trivial if and only if the index
equals 1 and the representation given by the map from G to
unitaries gr

2x is isomorphic to the representation given by the
map from G to unitaries g2x .

C. QCAs and symmetry-protected phases

Let us consider a Hamiltonian Htriv for a spin- 1
2 system

which is a sum of projectors on spins 2x,2x + 1 projecting
onto the triplet states. Act on this with a QCA that shifts by
an odd number of sites. This defines a new Hamiltonian. The
original Hamiltonian is invariant under a group Gsym of LPUs
which preserve that Hamiltonian. This group contains only
QCAs with even shift. So, the QCAs with odd shift produce
nontrivial phases. For finite groups, we obtain a classification
by the projective representations (i.e., the second cohomology)
as emphasized by many other authors.3

D. In two dimensions with discrete symmetry

We now consider the case of classifying QCA in two
dimensions with symmetry. We emphasize that this may be
only a partial classification. There may exist, for example,
nontrivial QCA even without any symmetry requirement. Our
argument closely parallels that of Ref. 4. We will emphasize
a few differences from their argument. We only sketch the
argument. First, if we start with a finite aperiodic system,
use the torus trick to consider infinite periodic QCA in two
dimensions. Put x and y coordinates on the plane, and define
the unit cell so that it is parallel to these axes. Pick a group
element g and integer X and define a QCA gX to conjugate all
observables by the action of group element g on all sites with
x coordinate −∞ < x � X. Consider the QCA α−1 ◦ g0 ◦ α.
For sites sufficiently far to the right of the vertical line x = 0,
this QCA acts as the identity, while for sites sufficiently far
to the left of the line, this QCA conjugates all observables by
the action of group element g (i.e., for sites sufficiently far to
the left, the action of this QCA is the same as that of g0). So,
g−1

−R ◦ α−1 ◦ g0 ◦ α acts only near the vertical line (i.e., it is a
one-dimensional QCA). Call this QCA βg . Note that the βg

form a representation of the group: βg ◦ βh = βgh.
A similar one-dimensional QCA is constructed in Ref. 4,

but we use a slightly different construction that does not require
referring to low energy or boundary degrees of freedom but
is directly constructed from the QCA. Then, as in Ref. 4,
we exactly write such a one-dimensional QCA as a matrix
product operator25 (MPO) with a bounded bond dimension k;
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note that every QCA can be written as an MPO with bounded
bond dimension where the bound on the bond dimension
follows from the bound on the range R. We now review
this argument. Consider the product βg ◦ βh. The product of
the corresponding matrix product operators has, when written
naively, a bond dimension k2. However, because it is equal to
βgh up to a phase it is possible to reduce the bond dimension
to k by lef -multiplying the matrices by some matrix Vg,h and
right multiplying by some V

†
g,h, where Vg,h is an isometry from

a k-dimensional space to the k2-dimensional space; note that
V

†
g,hVg,h is a projection. Then, this left and right multiplication

by Vg,h gives the matrices of βgh up to a phase. We put the
subscripts g,h on V to denote that each choice of g,h gives
some corresponding matrix g. There is a phase ambiguity in
this isometry; generically, it is possible to pick a canonical
form26 for the matrix product operator in which this is the
only freedom, although nongenerically the symmetry may be
enhanced. Now, consider the product of three matrix product
operators βf ,βg,βh. We have that Vfg,h(Vf,g ⊗ I ) is equal to
Vf,gh(I ⊗ Vg,h) up to a phase exp[iφ(f,g,h)]. This phase is
an element of the third cohomology H 3[G,U (1)]; note that if
we redefine the Vf,g by multiplying by a phase exp(iθf,g), this
changes the phase exp[iφ(f,g,h)] by a coboundary. One can
also consider different ways to combine the product of four
matrix product operators to verify that the phase is a cocycle.
The QCA α = identity gives a trivial element of cohomology.

One possible advantage of this approach can be seen in the
case of a finite system with periodic boundary conditions. For
the CZX model of Ref. 4, the most natural way to write the
MPO is using the minimal bond dimension, which is 2 for
the only nontrivial operator in that example. However, for a
finite system, one can also write the same MPO using a bond
dimension of 4 and using open boundary conditions for the
MPO (i.e., we describe the same MPO for the same periodic
system, but the bonds are on a one-dimensional system with
open boundary conditions). In this case, the cohomology
calculation would give the incorrect answer for that system,
giving a trivial answer. Thus, there is some ambiguity in that
different ways of writing the operator as an MPO give the
same result. Going to an infinite periodic system by unfurling
the torus as possible here gives us one way to resolve this
ambiguity.

E. In arbitrary dimension with continuous U(1) symmetry

We can define another invariant in the case that there is a
continuous global U (1) symmetry. We define this invariant for
a QCA on a d-dimensional torus, as can be constructed using
the torus trick. Suppose that for every site i there is an operator
qi which has integer eigenvalues such that

Q =
∑

i

qi

commutes with the unitary UQCA.
Then, we show later that we can “twist” the QCA by

boundary angles θ1, . . . ,θd , defining a continuous family of
QCAs: UQCA(θ1, . . . ,θd ). Such a continuous family of QCAs
is a continuous map from the d-dimensional torus to the
unitaries. The torus of angles θ1, . . . ,θd is sometimes called
the “flux torus”. Continuous maps from the torus to the

unitaries have been classified. For d = 1, they are classified
by integers Z. For d = 2, they are classified by Z ⊕ Z;
however, these two integer invariants in d = 2 are, in a
sense, lower-dimensional invariants. They can be computed by
considering the dependence upon just one of the two angles.
For d = 3, we have three lower-dimensional integer invariants
corresponding to the three different angles, and an additional
integer invariant which can not be obtained from any lower
invariant. In general, recall that the classification of maps
from the sphere to the unitaries is given by πd (U ) = Z for
d odd and πd (U ) = 0 for d even, while the classification of
maps from the torus to the unitaries in d dimensions will have
some lower-dimensional invariants which can be obtained by
considering the dependence on only a subset of the angles for
all d � 1 and also will have an integer invariant which can not
be obtained from any lower-dimensional invariant for d odd.

We now define the twist. Consider a QCA UQCA on a torus
parametrized by coordinates x1, . . . ,xd with 0 � xi < Lsys.
Unfurl the QCA to a QCA α on the infinite plane, periodic
under translation by Lsys in any of the d directions. Let each
site i correspond to a point xi in this plane, with coordinates
�xi . Then, define β(θ1, . . . ,θd ) to be the QCA which conjugates

by the unitary exp(i
∑

i
qi

�θ ·�xi

Lsys
). Define

α(θ1, . . . ,θd ) = β ◦ α ◦ β−1. (38)

Because Q commutes with UQCA, one can show that
α(θ1, . . . ,θd ) is still periodic. Hence, one can “furl” this QCA.
That is, there is a QCA on the torus whose unfurling is
α(θ1, . . . ,θd ). This defines a unitary UQCA(θ1, . . . ,θd ) up to
a phase ambiguity. In dimension d > 1, we fix the phase
ambiguity in an arbitrary way, for example, by keeping the
determinant constant as a function of θi . This gives candidate
invariants of QCAs on the torus with a continuous symmetry.
We have not constructed QCA with nontrivial values of these
invariants; it may be that we need to consider instead LPU
with some exponentially decaying control function to find
such, which will require some extension of the furling and
unfurling.

In d = 1, the phase of the unitary U (θ ) is essential to
defining the invariant. We could work to unambiguously
define the phase but we already have defined an invariant of
one-dimensional QCAs with symmetry above, so we do not
do this.

IX. DISCUSSION

We have used the torus trick to classify quantum phases. The
general use is to reduce the problem of classifying aperiodic
systems to that of classifying periodic systems. It is not
possible to use this trick for all systems. First, we need to be
able to define a pullback. We can pull back Hamiltonians but
we can not necessarily pull back wave functions. However,
even if we pull back a Hamiltonian, if there is intrinsic
topological order then it may not be possible to heal the
puncture.

Here is one possible further use (we hope there will be
more): Given gapped two translationally invariant Hamiltoni-
ans obeying conditions TQO-1,TQO-2 in Ref. 15, connected
by a gapped path of local Hamiltonians Hs , is there a

165114-17



M. B. HASTINGS PHYSICAL REVIEW B 88, 165114 (2013)

gapped path of translationally invariant locally Hamiltonians
connecting them? We can show that this is true (under one
technical assumption) by using quasiadiabatic continuation to
define a path of LGU mapping the ground state of the first
Hamiltonian to the second. Suppose this path of LGU in fact
is a path of quantum circuits (this is the technical assumption).
Then, we can apply the torus trick to construct a path of
translationally invariant LGUs, αs , connecting the ground state
of the first Hamiltonian to the second (the condition TQO-2
is used here in “healing the puncture”). Then, consider a path
αs(H0) from s = 0 to 1 followed by linear interpolation from
α1(H0) to H1. This will be explained in more detail elsewhere.

We have given a very brief discussion of the classification
of QCA with and without symmetry. This is a matter for

future work. Also, in future work we will consider further
the problem of classifying periodic systems without intrinsic
topological order. A very interesting open question is whether
there are nontrivial invariants for QCA without symmetry in
d > 1. This will also be discussed elsewhere. Another question
to be discussed elsewhere is three-dimensional cases with
symmetry; see Ref. 27 for previous work on this case.
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