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Nonequilibrium dynamics in the antiferromagnetic Hubbard model
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We investigate by means of the time-dependent Gutzwiller variational approach the out-of-equilibrium
dynamics of an antiferromagnetic state evolved with the Hubbard model Hamiltonian after a sudden change
of the repulsion strength U . We find that magnetic order survives more than what is expected on the basis of
thermalization arguments, in agreement with recent dynamical mean field theory calculations. In addition, we
find evidence of a dynamical transition for quenches to large values of U between a coherent antiferromagnet
characterized by a finite quasiparticle residue to an incoherent one with vanishing residue, which finally turns
into a paramagnet for even larger U .
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I. INTRODUCTION

In the last years the out-of-equilibrium physics in cor-
related systems has attracted considerable interest, mainly
driven by impressive experimental progresses. On one hand,
trapped cold atoms, known to effectively realize simple model
Hamiltonians, have been successfully exploited to investigate
quench dynamics or field-driven nonequilibrium phenomena
in quasi-isolated quantum many-body systems.1 On the other
hand, time-resolved femtosecond spectroscopies have made it
possible to perturb solid-state systems and access the dynamics
of the electronic degrees of freedom before they thermalize
with the environment and even before they equilibrate with
the lattice.2 Overall, these experiments allow us to study how
strong correlation affects the out-of-equilibrium physics and
possibly identify “novel phases” that can not be reached by
conventional thermal pathways. To this end, a fundamental
issue to address is the real-time dynamics across a phase
transition in which symmetry is broken or restored. The
ultrafast melting and creation of long-range order in transition-
metal compounds has already been investigated in many
experiments.3–5 On the theoretical side, however, while an
equilibrium phase transition is a well-established concept,
there is yet no clear extension to the out-of-equilibrium case.6

The common viewpoint is that the initial excess energy �E

turns into heat, hence the system evolves into a thermal
state at a higher effective temperature T∗, which is higher
the bigger �E is. Should T∗ exceed the critical temperature
for a order-to-disorder phase transition, the system would
dynamically disorder although it was initially ordered.

Recently, the dynamics of a symmetry-breaking state has
been addressed by means of time-dependent dynamical mean
field theory (DMFT) in the single-band repulsive Hubbard
model on a Bethe lattice.7,8 Such a model, which may be
considered as the simplest idealization of strongly correlated
electrons, displays at equilibrium a Néel transition from a low-
temperature antiferromagnet (AFM) to a high-temperature
paramagnet (PM). As mentioned, upon the sudden changing
of the interaction strength Ui → Uf , one could dynamically
move around the phase diagram and eventually cross the Néel
transition. References 7 and 8 showed that both for Uf < Ui

and Uf > Ui , long-lived nonthermal ordered states exist even
though their expected T∗ is above the Néel temperature TN .
Moreover, it was found that for Uf < Ui , the melting of the

AFM order is related to the existence of a nonthermal critical
point with an associated vanishing amplitude mode. Both these
features are a consequence of pure nonequilibrium effects.

Here, we address the same model dynamics by means of the
time-dependent Gutzwiller variational approach introduced in
Ref. 9. This method, although being less accurate than DMFT,
is computationally far less expensive and has already proved
its reliability in reproducing the main results of DMFT in the
out-of-equilibrium dynamics of paramagnetic states.9–11 We
find that also in the broken-symmetry dynamics, the time-
dependent Gutzwiller tecnique correctly reproduces both the
presence of a critical point at which magnetism disappears as
well as the existence of nonthermal ordered states. Moreover,
we find evidence of an additional critical point at Uf > Ui

between two antiferromagnetic states that we interpret as the
magnetic analog of a dynamical Mott transition.

The paper is organized as follows. In Sec. II, we briefly
present how the method works in the specific case of an
antiferromagnet. In Sec. III, we move to discuss the results
of a quench from an initial magnetic state, ground state of the
Hamiltonian at repulsion Ui , evolved with the Hamiltonian at a
different value Uf , both for Uf < Ui (Sec. III A) and Uf > Ui

(Sec. III B). Finally, Sec. IV is devoted to conclusions.

II. TIME-DEPENDENT GUTZWILLER

In this section, we briefly show how the time-dependent
Gutzwiller technique introduced in Ref. 9 has to be modified
to treat the AFM dynamics within the single-band Hubbard
model at half-filling, with Hamiltonian

H = −
∑

〈R,R′〉,σ
(c†Rσ cR′σ + H.c.) + U (t)

2

∑
R

(nR − 1)2, (1)

where cRσ annihilates a spin-σ electron at site R, U (t) is the
(time-dependent) interaction strength, and nR = ∑

σ c
†
Rσ cRσ .

The hopping parameter is set equal to one and is our unit of
energy. We follow the same notations as Ref. 12, to which
the reader is referred for a more detailed derivation. The
main idea of the time-dependent Gutzwiller technique is to
approximate the evolving wave function |�(t)〉 in terms of a
variational wave function whose dynamics is set by requiring
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the stationarity of the real-time action

L(t) =
∫ t

0
dτ 〈�(τ )|i∂τ − H(τ )|�(τ )〉. (2)

In the same spirit of the ground-state Gutzwiller method,
one introduces the following ansatz for the evolving wave
function:9

|�(t)〉 =
∏

R

PR(t) |ψ(t)〉, (3)

where |ψ(t)〉 is a generic time-dependent variational Slater
determinant, and PR(t) a time-dependent variational local
operator.

Upon introducing a basis for the local Fock space

|R,{n}〉 =
∏

α=↑,↓
(c†Rα)nα , (4)

one can parametrize the Gutzwiller projector in terms of a set
of time-dependent variational parameters 	R {n}(t):

PR(t) =
∑
{n}

	R {n}(t)√
P

(0)
R {n}(t)

|R,{n}〉〈R,{n}|, (5)

where

P
(0)
R {n}(t) = 〈ψ(t)|R,{n}〉〈R,{n}|ψ(t)〉. (6)

In Ref. 12 it was shown that the stationarity of (2) amounts
to solve a set of coupled differential equations that determine
the evolution of the uncorrelated wave function |ψ(t)〉 and the
variational parameters 	R {n}(t):

i∂t |ψ(t)〉 = H∗[	̂(t)] |ψ(t)〉, (7)

i∂t 	̂R(t) = Û (t)	̂R(t) + 〈ψ(t)|∂H∗[	̂(t)]

∂	̂
†
R(t)

|ψ(t)〉. (8)

With the notation ÔR we indicate the matrix representation
of the operator OR on the Fock basis (4). If we assume the
magnetization directed along z, then we can choose 	̂R to be a
diagonal matrix with diagonal elements 	R {0}, for empty site,
	R {↑} and 	R {↓}, for singly occupied site with a spin-up or
-down electron, respectively, and finally 	R {↑↓} for a doubly
occupied site.

The Slater determinant evolves according to a “renormal-
ized” one-body Hamiltonian

H∗[	̂(t)] = −
∑

〈R,R′〉,σ
(R∗

Rσ (t)c†RσRR′σ (t)cR′σ + H.c.), (9)

which is self-consistently coupled to the evolution of the matrix
	̂R(t) through the renormalization factors

RRσ (t) = 1√
nRσ (t)[1 − nRσ (t)]

Tr[	̂†
R(t)ĉRσ 	̂Rσ (t)ĉ†Rσ ].

(10)
In the presence of Néel AFM order, we can separate the
bipartite lattice into two sublattices A and B such that Eq. (9)
becomes

H∗(t) = −
∑

〈Ra ,Rā〉,σ

(
R∗

Raσ
(t)RRa−σ (t)c†Raσ

cRāσ
+ H.c.

)
,

(11)
where if a = A then ā = B and vice versa, and we make use
of

RRaσ = RRā−σ , with a ∈ {A,B}. (12)

It is more convenient to work in Fourier space where Eq. (11)
reads as

H∗(t) =
∑
kσ

ε(k)
[
Re

(
R∗

RAσ (t)RRA−σ (t)
)
c
†
kσ ckσ

− i Im
(
R∗

RAσ (t)RRA−σ (t)
)
c
†
kσ ck+Qσ

]
(13)

with ε(k) = 1
N

∑
〈Ra ,Rā〉 e

ik·(Ra−Rā ) where N is the number of
sites, and the vector Q such that

eiQ·Ra =
{

1 if a ∈ A,

−1 if a ∈ B.
(14)

The time evolution of the uncorrelated |ψ(t)〉 can then be
recasted into that of �σ

kk′(t) := 〈ψ(t)|c†kσ ck′σ |ψ(t)〉 whose
equations of motion are

i∂t�
σ
kk = −iε(k)Im[Zσ (t)]

(
�σ

kk+Q + �σ
k+Qk

)
,

i∂t�
σ
kk+Q = −2ε(k)Re[Zσ (t)]�σ

kk+Q (15)

+ iε(k)Im[Zσ (t)]
(
�σ

kk − �σ
k+Qk+Q

)
.

To simplify notations, we introduced the quantity Zσ (t) =
R∗

RAσ (t)RRA−σ (t). By construction, it follows that

nA(B)σ (t) = 1

N

∑
k

�σ
kk(t) ± �σ

kk+Q(t). (16)

The evolution of the uncorrelated wave function is self-
consistently coupled to Eq. (8) that, because of (12), can be
evaluated for a single sublattice and reads as

i
∂	̂A

∂t
= Û	̂A(t)

+ 1

N

∑
k,σ

ε(k)

[
RA−σ

(
�σ

kk(t) − �σ
kk+Q(t)

)∂R∗
Aσ

∂	̂
†
A

+R∗
A−σ

(
�σ

kk(t) + �σ
kk+Q(t)

)∂RAσ

∂	̂
†
A

]
. (17)

In conclusion, Eqs. (15)–(17) together with Eqs. (10) and (16)
define a set of coupled nonlinear differential equations which
must be solved numerically.

In spite of the nonlinearity, the dynamics is still over-
simplified and we do not expect to reach thermalization
in the long-time limit, mainly because the evolution of the
Slater determinant still admits an infinite number of integrals
of motion. In fact, the dynamics of |ψ(t)〉 does not mix
different (k,k + Q) subspaces. Within each subspace, the set
of equations (15) can be mapped onto the dynamics of a
pseudospin- 1

2 Hamiltonian. Indeed, upon defining

�σ
kk − �σ

k+Qk+Q ≡ 〈σ1〉,
�σ

kk+Q + �σ
k+Qk ≡ 〈σ2〉,

�σ
kk+Q − �σ

k+Qk ≡ −i〈σ3〉
[where in this case k is restricted to the magnetic Brillouin
zone (MBZ)], the set of equations (15) is equivalent to solving
the dynamics of the pseudospin Hamiltonian

HS
kσ (t) = ε(k)Im[Zσ (t)]σ3 − ε(k)Re[Zσ (t)]σ1, (18)

where σ1,2,3 are Pauli matrices. Indeed, as we mentioned,
the length of the pseudospin is a conserved quantity in each
subspace.

165113-2



NONEQUILIBRIUM DYNAMICS IN THE . . . PHYSICAL REVIEW B 88, 165113 (2013)

It is generally believed that the average values of local
operators along the unitary evolution of a wave function |�〉,
generically consisting of a superposition of a macroscopic
number of eigenstates, will approach at long times the thermal
averages on a Boltzmann-Gibbs distribution at an effective
temperature T∗ for which the internal energy coincides with
the energy of the wave function |�〉, conserved during the
unitary evolution, i.e.,

Tr(e−H/T∗ H)

Tr(e−H/T∗ )
= 〈�|H |�〉.

Therefore, it is worth comparing the results of the time-
dependent Gutzwiller technique with equilibrium results at
finite temperature obtained by a similar technique. For that pur-
pose, we shall make use of an extension to finite temperature
of the Gutzwiller variational approach recently proposed.13

In brief, the thermal values are computed minimizing the
following variational estimate of the free energy:

F � min
{ρ∗,	̂}

{ ∑
〈R,R′〉,σ

Tr[ρ∗ (−RRσRR′σ c
†
Rσ cR′σ + H.c.)]

+
∑

R

Tr(	̂†
R Û 	̂R) − T Max(Svar(ρ∗,	̂†	̂),0)

}
, (19)

where ρ∗ = e−βH∗/(Tr e−βH∗ ) is the Boltzmann distribution
corresponding to the variational Hamiltonian H∗, and the
variational estimate of the entropy reads as

Svar(ρ∗,	̂†	̂) = −Tr(ρ∗ ln ρ∗) −
∑
R,{n}

|	Rn|2 ln

( |	Rn|2
P

(0)
Rn

)
.

(20)

We conclude this section remarking that all the above
treatment is strictly variational only in the limit of infi-
nite coordination number, where the exact averages on the
Gutzwiller variational wave function (or the thermal aver-
ages on the variational canonical distribution) coincide with
those we have computed.12 However, the approach remains
essentially a mean field one, hence, although improves the
time-dependent Hartree-Fock approximation simply because
of the larger number of variational parameters, it misses
dissipative processes that in reality bring the system to a
stationary state. In spite of that, the Gutzwiller approach seems
to reproduce quite satisfactorily the main results obtained by
exact DMFT calculations, whenever a comparison is possible
and even when time-dependent Hartree-Fock fails completely,
like in the case of quantum quenches within the paramagnetic
sector.9

In finite coordination lattices, the approach is not anymore
variational. Nevertheless, it is common to keep using the
same expressions also in these more physical cases, which
goes under the name of Gutzwiller approximation. Even
though to our knowledge there are so far no exact out-of-
equilibrium results to compare with in finite coordination
lattices, recent high-order perturbative calculations in one
and two dimensions14,15 bring results quite similar to those
obtained in Ref. 9 through the Gutzwiller approach. At
equilibrium, instead, the Gutzwiller approximation seems to
reproduce well exact variational Monte Carlo calculations

on the Gutzwiller wave functions,16 and, when applied in
combination with ab initio density functional theory methods,
also physical properties of real materials.17

III. INTERACTION QUENCH

In this section, we apply the time-dependent Gutzwiller
approach to study the dynamics of (1) after a sudden quench
of the interaction strength U (t) = Ui + (Uf − Ui)θ (t), where
θ (t) is the Heaviside function. Although an instantaneous
quench is distant from the real practice in experiments,
it is a well-controlled theoretical excitation protocol and
suffices well the scope of this work. We assume nearest-
neighbor hopping on an infinitely branched Bethe lattice, i.e., a
semicircular density of states D(ε) = √

4 − ε2/(2π ), in which
case the Gutzwiller approximation becomes exact. We remark
that the momentum representation we previously adopted is
not appropriate for a Bethe lattice, but can be easily extended
in this case.

In Fig. 1, we plot the finite-temperature phase diagram
for the model as found by means of the finite-temperature
extension of the Gutzwiller technique.13 We see that the low-
temperature AFM-ordered phase compares qualitatively well
with the DMFT results.8 In particular, the Gutzwiller wave
function is able, unlike straight Hartree-Fock, to describe a
finite-temperature Mott-insulating phase devoid of magnetism.

A. U f < Ui quench

We start by analyzing the dynamics for quenches at Uf <

Ui . We plot in Fig. 2 the time evolution of the AFM order
parameter m = n↑ − n↓ for an interaction quench starting
from the optimized variational ground state at Ui = 4.0. We
immediately recognize a pattern which is very similar to
that obtained within DMFT and Hartree-Fock dynamics.8

0 2 4 6 8 10
U

0

0.1

0.2

0.3

0.4

0.5

T

HF
GA

AFM

PM

FIG. 1. (Color online) Finite-temperature phase diagram for the
single-band Hubbard model as obtained by means of the finite-
temperature Gutzwiller approach. The solid black line separates the
AFM solution from the PM phase. The dotted line indicates the
metal-insulator transition (MIT) transition when only paramagnetic
states are considered. The red line is the Néel temperature within the
Hartree-Fock approximation.
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The order parameter m(t) quickly decreases in time after
the quench and starts oscillating; as Uf decreases below

the critical value of U
Uf <Ui

c ≈ 1.7, the order parameter
vanishes.

On the same figure we also plot the thermal values mth

calculated from the finite-temperature Gutzwiller approach13

at an effective temperature T∗ such that the equilibrium internal
energy is equal to the average energy on the variational wave
function, which is conserved by the unitary evolution. We note
that m(t) oscillates around a value which is more and more
distant from the thermal one and stays finite even when T∗
exceeds the Néel temperature, suggesting that the dynamics
stays trapped in a nonthermal ordered state in accordance with
DMFT result.8 From Fig. 2, two well-separated frequencies
are distinguishable in the dynamics, which we extract by a
discrete Fourier transform and plot in Fig. 5. A high frequency
ω1 sets the fast oscillation and decreases with Uf , although
staying finite. A lower frequency ω2 can instead be associated
to the presence of magnetic order and vanishes at the critical
point as ∝|Uf − U

Uf <Ui

c |; the existence of a linearly vanishing
mode was found also in Ref. 8.

This two-frequency dynamics reveals the mechanism be-
yond the disappearance of the AFM order at U

Uf <Ui

c . This
is more clearly shown in Fig. 3 where we plot the values of
the real and imaginary parts of the renormalization factors.
We observe that approaching U

Uf <Ui

c , the renormalization
factors show main oscillations with frequency ω2, on top
of which there are much narrower oscillations controlled by
ω1. In proximity of U

Uf <Ui

c , ω1 � ω2 → 0, so that, within
each (k,k + Q) subspace, the magnetic field in the pseudospin
Hamiltonian (18) can be effectively taken constant in time.
Hence, the dynamics of (18) is equivalent to that of a spin in the
presence of a k-dependent constant magnetic field. The total
staggered magnetization then vanishes due to the dephasing
that occurs summing on the entire Brillouin zone, hence the
nature of the critical point is essentially that found within the
Hartree-Fock approximation by Ref. 8.

0 20 40 60 80 100
t

0

0.2

0.4

0.6

0.8

m

FIG. 2. (Color online) Time evolution of the staggered magnetiza-
tion m for quenches Ui = 4.0 → Uf = 3.8,3.2,2.6,2.2,2.0,1.8,1.6.
The bold arrows indicate the corresponding thermal values mth, while
the black dashed lines indicate the long-time averages.
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FIG. 3. (Color online) Time evolution of Re(RA↑) (black)
and Im(RA↑) (red) for quenches Ui = 4.0 → Uf = 3.2,2.6,2.0,1.6
(clockwise order from top left).

Finally, from Fig. 6 we see that the long-time average of
|Rσ |2 increases in the limit of Uf → 0, indicating that the
AFM insulator actually melts into a PM metal.

B. U f > Ui quench

For quenches at Uf < Ui , the Gutzwiller dynamics is
not different from the one obtained through single-particle
methods such as the Hartree-Fock approximation; the mag-
netization shows an oscillatory behavior that turns eventually
into a fast decay due to dephasing. Differences instead arise
when Uf > Ui . Here, time-dependent Hartree-Fock predicts
incorrectly that the magnetic order parameter never vanishes,
whatever Uf is. This drawback is directly related to the
inadequacy of Hartree-Fock in reproducing a decaying Néel
temperature at large values of U , a feature that is instead
captured by the Gutzwiller approach (see Fig. 1). In the
assumption that the unitary evolution following the quantum
quench brings the system in some thermal configuration at
finite temperature, the higher the greater |Uf − Ui |, we can
not only rationalize why time-dependent Hartree-Fock fails,
but also anticipate, within the time-dependent Gutzwiller
tecnique, a dynamical transition from an antiferromagnetic to a
paramagnetic phase. Indeed, in the limit of very large Uf > Ui ,
when the frequency ω1 ∼ Uf gets much higher than the
excitation energies of the Slater determinant, each (k,k + Q)
pseudospin evolves under an effectively slow magnetic field,
hence the staggered magnetization averages again to zero due
to dephasing.

We find confirmation of this expectation in the time
evolution of m(t) (see Fig. 4) and the main drive frequencies
shown Fig. 5. In the limit of large Uf , a two-frequency
oscillation pattern appears again, with a high frequency ω1

that grows as ∝Uf and a lower frequency associated with a

vanishing mode which decays as ∝|Uf − U
Uf >Ui

c | with the

critical value of U
Uf >Ui

c ≈ 21.0. We note that also in this
regime the long-time average of the magnetization differs
from the corresponding thermal value. Indeed, in Fig. 4 we
see that for Uf = 12.0 the effective temperature has already
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m

FIG. 4. (Color online) Time evolution of the staggered mag-
netization m for quenches Ui = 4.0 → Uf = 12.0,14.0,16.0,

18.0,20.0,22.0. The green arrow indicates the thermal values mth

for Uf = 12.0 and shows that the effective temperature has already
crossed the Néel temperature. The black dashed lines indicate the
values of the long-time average.

crossed the Néel temperature, while the long-time average
of the magnetization stays greater than zero, indicating the
persistence of a nonequilibrium ordered state in accordance
with the results of Ref. 7.

For smaller values of Uf , instead a less clear scenario
appears. Indeed, in the range of values 5.8 � Uf � 8.4
(vertical dashed lines of Fig. 5), although the main frequencies
ω1 and ω2 can be still recognized by continuity from the
large- and small-Uf limits, the Fourier power spectrum loses
regularity and shows an increased number of broad peaks. In
this interval of Uf , the long-time average of the magnetization
increases while the renormalization factors diminish (see
Fig. 6), suggestive of the systems driven towards a Mott-
localized regime.

We note that Eqs. (15) and (17) admit a stationary solution
identified by Rσ = 0 and energy equal to zero, which describes
a trivial Mott-insulating state. We find that when the conserved
energy after the quench is vanishing, which happens at
U

dyn
c ≈ 8.2 when Ui = 4.0, Eqs. (15) and (17) flow towards the

above stationary solution (see Fig. 6), similar to what is found
in the absence of magnetism in Ref. 9. We can shed some

0 5 10 15 20
Uf

0

1

2

3

ω ω 1
ω2

Uf < Ui Uf > Ui

FIG. 5. (Color online) Behavior of the main drive frequencies ω1

and ω2 as a function of Uf . The two dashed red lines indicate the
crossover region in which the Fourier power spectrum presents broad
peaks.

0 5 10 15 20Uf

0

0,2

0,4

0,6

0,8

1

Uf > UiUf < Ui

FIG. 6. (Color online) Long-time averages of the magnetization
(black squares) and of |Rσ |2 (red circles) as a function of Uf . At
Uc

f ≈ 8.2, the renormalization factor time average decays to zero,
signaling the presence of the dynamical critical point.

light on this dynamical behavior by writing the Gutzwiller
parameters as

	0 = 	↑↓ = ρ0 eiϕ0 , (21)

	σ = ρσ eiϕσ , (22)

with ρ0(σ ) � 0 that, because of normalization, satisfy 2ρ2
0 +

ρ2
↑ + ρ2

↓ = 1 and analyzing the quantity

Re

(
	↑	↓

	2
0

)
= ρ↑ρ↓

ρ2
0

cos(2ϕ0 − ϕ↑ − ϕ↓) ≡ ρ↑ρ↓
ρ2

0

cos ϕ.

(23)

Neglecting magnetism, which is the same as starting from
Ui = 0, it was shown in Ref. 9 that the Mott-localized phase
can be identified by the dynamics of the angle ϕ, which
reproduces that of a classical pendulum. Below U

dyn
c , ϕ

undergoes small oscillations around zero, hence Eq. (23) is
positive. On the contrary, above U

dyn
c , cos ϕ starts precessing

around the whole unit circle, and, in particular, is negative
right in the regions where the double-occupancy probability
|	↑↓|2 = ρ2

0 is lower. It follows that, for Uf > U
dyn
c , the

quantity in Eq. (23) is on average negative. Exactly at U
dyn
c ,

ρ0 vanishes exponentially, so that the long-time average of
Re(	↑	↓

	2
0

) diverges and changes sign right at U
dyn
c (see Fig. 7

left panel). In the right panel of the same figure, we show that
the same singular behavior persists also when the system is
quenched from an AFM state. Even though in this case the
angle ϕ is not bounded between [0 : 2π ] below U

dyn
c , due to

the dynamics of the AFM order parameter, yet the time average
has a well-defined sign that changes crossing a singularity at
U

dyn
c .
This is suggestive of a dynamical Mott localization at

U
dyn
c ≈ 8.2, which has no equilibrium counterpart and sep-

arates two different antiferromagnetic insulators. We can not
exclude that this transition may be an artifact of the Gutzwiller
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Ui = 0.0

6 9 12Uf
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Ui = 4.0

FIG. 7. (Color online) Long-time average of O = Re( 	↑	↓
	2

0
) in

logarithmic units, i.e., sgnŌ ln(|Ō|), for different values of Uf . Both
in the PM case (left panel) and in the AFM one (right panel), the
dynamical critical point is evidenced by a sharp singularity.

technique, although we are tempted to give it a physical
meaning. In order to clarify this point, we first introduce a more
general definition of the quasiparticle residue Zkσ through

Zkσ = |〈kσ,N + 1| c†kσ |0,N〉|2, (24)

where |0,N〉 is the ground state with N electrons, assumed to
have zero momentum and spin, and |kσ,N + 1〉 the lowest-
energy state with N + 1 electrons, momentum k, and spin
σ . Zkσ defined by Eq. (24) coincides with the jump of
the momentum distribution at the Fermi surface |k| = kF

for a Landau-Fermi liquid, but remains well defined also
for an insulator, where it can be used to establish whether
well-defined quasiparticles exist above the gap. Indeed, one
can readily realize that Zkσ = 1 for a noninteracting band
insulator. Therefore, one can in principle distinguish two
different insulators: a “coherent” insulator akin to a band
insulator with 0 < Zkσ � 1, and an “incoherent” insulator,
similar to an idealized Mott insulator, with Zkσ = 0 and no
well-defined quasiparticles above the gap.

We then observe that, at zero temperature, |Rσ |2 defined by
Eq. (10) is just an estimate, within the Gutzwiller approxima-
tion, of Zkσ above. Indeed, one can readily prove that

〈kσ,N + 1| c†kσ |0,N〉 GW= 〈ψN | ckσ P c
†
kσ P |ψN 〉

= Rσ . (25)

Here, we used the fact that the Gutzwiller wave function
P |ψN 〉 [with |ψN 〉 the N -particle Slater determinant that
defines the variational wave function in Eq. (3)] is the
variational estimate of |0,N〉 and that, within corrections
O(N−1), the best variational estimate of the (N + 1)-electron
lowest-energy wave function with momentum k and spin
σ is just |kσ,N + 1〉 � P c

†
kσ |�N 〉, with the same P as

for N electrons. Equation (25) remains valid also in the
time-dependent case where the evolution of the ground state,
being a pure state, is approximated by Eq. (3).

We then arrive to the conclusion that our dynamical
transition separates two different antiferromagnetic insulators
in the above meaning, one characterized by a finite Z and
the other by a vanishing one. It is worth mentioning that at
equilibrium and zero temperature, all evidences indicate that
Z of Eq. (24) is everywhere finite in the antiferromagnetic
insulating phase of the Hubbard model at any value of U ,
as confirmed by DMFT (Ref. 18) and by quantum Monte
Carlo simulations on the t-J model.19 In other words, even
at very large U where the Mott’s physics dominates and local
moments are already well formed, the antiferromagnet has
coherent quasiparticles above the gap. We actually believe
that, as soon as long-range magnetic order sets in below
the Néel temperature, the quasiparticle residue Z becomes
finite at equilibrium. In fact, the onset of long-range order is
accompanied at large U by a hopping energy gain, through the
spin exchange t2/U , hence by a raise of lattice coherence that
we think has to be associated with an increase of Z. That is
why we think that the dynamical transition that we observe has
no equilibrium counterpart in the whole U versus temperature
phase diagram.

We conclude mentioning that the main results presented
above at fixed Ui = 4 remain qualitatively the same also at
different Ui . We indeed verified the presence of the critical

points at which the magnetization vanishes U
Uf ≶Ui

c and the
presence of the dynamical critical point Ui < U

dyn
c < U

Uf >Ui

c

for all values of Ui < 10.0.

IV. CONCLUDING REMARKS

We have shown that the time-dependent Gutzwiller tech-
nique, in spite of its simplicity, is able to reproduce the main
features of a quench dynamics from an antiferromagnetic state
found by time-dependent DMFT, such as the existence of
nonthermal magnetically ordered states that disappear above
dynamical critical points, both suddenly decreasing or increas-
ing the value of the Hubbard U . In addition, we have found
evidence of an additional dynamical transition that occurs at
large U , which we interpret as a dynamical Mott transition
separating two different antiferromagnetic nonequilibrium
states, one characterized by a finite quasiparticle residue and
the other by a vanishing one. Since the quasiparticle residue
Z in an antiferromagnet can not be extracted by any static
property (unlike in a paramagnet where, at zero temperature, Z
is the jump of the momentum distribution at the Fermi surface),
but requires calculating for instance the full out-of-equilibrium
self-energy, its dynamical behavior was not addressed by
DMFT in Refs. 7 and 8. Although we can not exclude that
the vanishing of Z that we observe could be an artifact of the
Gutzwiller technique, nevertheless this result is intriguing, as
it entails the existence in out of equilibrium of an incoherent
antiferromagnet, hence worth to be further investigated.
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11M. Sandri, M. Schiró, and M. Fabrizio, Phys. Rev. B 86, 075122

(2012).
12M. Fabrizio, in New Materials for Thermoelectric Applications:

Theory and Experiment, NATO Science for Peace and Security
Series B: Physics and Biophysics, edited by V. Zlatic and A. Hewson
(Springer, Berlin, 2013), pp. 247–272.

13M. Sandri, M. Capone, and M. Fabrizio, Phys. Rev. B 87, 205108
(2013).

14S. A. Hamerla and G. S. Uhrig, Phys. Rev. B 87, 064304 (2013).
15S. A. Hamerla and G. S. Uhrig, arXiv:1307.3438.
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