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Engineering Weyl nodes in Dirac semimetals by a magnetic field
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We study the phase diagram of a Dirac semimetal in a magnetic field at a nonzero charge density. It is shown
that there exists a critical value of the chemical potential at which a first-order phase transition takes place.
At subcritical values of the chemical potential the ground state is a gapped state with a dynamically generated
Dirac mass and a broken chiral symmetry. The supercritical phase is the normal (gapless) phase with a nontrivial
chiral structure: it is a Weyl semimetal with a pair of Weyl nodes for each of the original Dirac points. The
nodes are separated by a dynamically induced chiral shift. The direction of the chiral shift coincides with that
of the magnetic field and its magnitude is determined by the quasiparticle charge density, the strength of the
magnetic field, and the strength of the interaction. The rearrangement of the Fermi surface accompanying this
phase transition is described.
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I. INTRODUCTION

During past decades, a remarkable overlap of such seem-
ingly different areas in physics as condensed matter and rela-
tivistic physics took place (for a recent review, see Ref. 1). It
was especially clearly manifested in studying graphene.2 Such
well known phenomena as the Klein paradox, the dynamics
of a supercritical charge, and the dynamical generation of a
Dirac mass in a magnetic field (magnetic catalysis), revealed
in relativistic field theory, were first observed in studies of
graphene (see Refs. 3–5). In the present paper, we will consider
manifestations in condensed matter of another relativistic
phenomenon: the rearrangement of the Fermi surface in
three dimensional relativistic matter in a magnetic field. The
original motivation for studying this phenomenon was its
possible realization in magnetars and pulsars, and in heavy
ion collisions.6,7 But as we discuss below, it could also be
relevant for such new materials as Dirac and Weyl semimetals.

Dirac and Weyl semimetals possess low-energy quasiparti-
cles near the Fermi surface, which are described by the Dirac
and Weyl equation, respectively.1 As was established long
ago, an example of a semimetal whose low-energy effective
theory includes three-dimensional Dirac fermions is yielded
by bismuth (for reviews, see Refs. 8 and 9). On the other
hand, examples of the realization of the Weyl semimetals
have been considered only recently.10–12 Weyl semimetals,
which are three-dimensional analogs of graphene, present a
new class of materials with nontrivial topological properties.13

Since their electronic states in the vicinity of Weyl nodes have
a definite chirality, this leads to quite unique transport and
electromagnetic properties of these materials.

The most interesting signatures of Dirac and Weyl semimet-
als discussed in the literature11,14–19 are connected with differ-
ent nondissipative transport phenomena intimately related to
the axial anomaly.20 Many of them were previously suggested
in studies of heavy ion collisions (for a review, see Ref. 21).

In this paper, we will consider a different signature of Dirac
semimetals: a dynamical rearrangement of their Fermi surfaces
in a magnetic field. As we show below, this rearrangement is

quite spectacular: a Dirac semimetal is transformed into a Weyl
one. The resulting Weyl semimetal has a pair of Weyl nodes
for each of the original Dirac points. Each pair of the nodes is
separated by a dynamically induced (axial) vector 2b, whose
direction coincides with the direction of the magnetic field.
The magnitude of the vector b is determined by the quasipar-
ticle charge density, the strength of the magnetic field, and the
strength of the interaction. This phenomenon of the dynamical
transformation of Dirac into Weyl semimetals is a condensed
matter analog of the previously studied dynamical generation
of the chiral shift parameter in magnetized relativistic matter
in Refs. 6 and 7.

This paper is organized as follows. In Sec. II we introduce
the model and set up the notations. The gap equation for the
fermion propagator in the model is derived in Sec. III. We
show that, at a nonzero charge density, a pair of Weyl nodes
necessarily arises in the normal phase of a Dirac metal as soon
as a magnetic field is turned on. In Sec. IV a perturbative
solution of the gap equation describing the normal phase
of the model is analyzed. A nonperturbative solution with a
dynamical gap that spontaneously breaks the chiral symmetry
is analyzed in Sec. V. A phase transition between the normal
phase and the phase with chiral symmetry breaking is revealed
and described. In Sec. VI we compare the dynamics in Dirac
semimetals and graphene. A deep connection of the normal
phase of a Dirac metal in a magnetic field with the quantum
Hall state with the filling factor ν = 2 in graphene is pointed
out. The discussion of the results and conclusions is given in
Sec. VII. For convenience, throughout this paper, we set h̄ = 1.

II. MODEL

As stated in the Introduction, the main goal of this paper is
to show that a dynamical transformation of Dirac semimetals
into Weyl ones can be achieved by applying an external
magnetic field to the former. It is convenient, however, to
start our discussion from writing down the general form of the
low-energy Hamiltonian for a Weyl semimetal,

H (W) = H
(W)
0 + Hint, (1)
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where

H
(W)
0 =

∫
d3r

[
vF ψ†(r)

(
σ · (−i∇ − b) 0

0 −σ · (−i∇ + b)

)

×ψ(r) − μ0ψ
†(r)ψ(r)

]
(2)

is the Hamiltonian of the free theory, which describes two
Weyl nodes of opposite (as required by the Nielsen-Ninomiya
theorem22) chirality separated by vector 2b in momentum
space. In the rest of this paper, following the terminology
of Refs. 6 and 7, we will call b the chiral shift parameter.
There are two reasons for choosing this terminology. First, as
Eq. (2) implies, vector b shifts the positions of Weyl nodes
from the origin in the momentum space and, secondly, the
shift has opposite signs for fermions of different chiralities.
The other notations are as follows: vF is the Fermi velocity,
μ0 is the chemical potential, and σ = (σx,σy,σz) are Pauli
matrices associated with the conduction-valence band degrees
of freedom in a generic low-energy model.23 Based on the
similarity of the latter to the spin matrices in the relativistic
Dirac equation, we will call them pseudospin matrices.

The interaction part of the Hamiltonian describes the
Coulomb interaction, i.e.,

Hint = 1

2

∫
d3r d3r ′ψ†(r)ψ(r)U (r − r′)ψ†(r′)ψ(r′). (3)

In order to present our results in the most transparent way,
in this study we will utilize a simpler model with a contact
four-fermion interaction,

U (r) = e2

κ|r| → gδ3(r), (4)

where κ is a dielectric constant and g is a dimensionful
coupling constant. As we argue in Sec. VII, such a model
interaction should at least be sufficient for a qualitative
description of the effect of the dynamical generation of the
chiral shift parameter by a magnetic field in Dirac semimetals.

Before proceeding further with the analysis, we find it very
convenient to introduce the four-dimensional Dirac matrices
in the chiral representation:

γ 0 =
(

0 −I

−I 0

)
, γ =

(
0 σ

−σ 0

)
, (5)

where I is the two-dimensional unit matrix, and rewrite our
model Hamiltonian in a relativistic form,

H (W) =
∫

d3r ψ̄(r)[−ivF (γ · ∇) − (b · γ )γ 5 − μ0γ
0]

×ψ(r) + g

2

∫
d3r ρ(r)ρ(r), (6)

where, by definition, ψ̄ ≡ ψ†γ 0 is the Dirac conjugate spinor
field, ρ(r) ≡ ψ̄(r)γ 0ψ(r) is the charge density operator, and
the matrix γ 5 is

γ 5 ≡ iγ 0γ 1γ 2γ 3 =
(

I 0
0 −I

)
, (7)

where, as is clear from the first term in the free Hamiltonian (2),
the eigenvalues of γ 5 correspond to the node degrees of
freedom.

The low-energy Hamiltonian of a Dirac semimetal corre-
sponds to a special case in Eq. (6) when b = 0, i.e.,

H (D) = H (W)|b=0. (8)

Unlike Weyl semimetals, Dirac semimetals are invariant
under time reversal symmetry. Note that, for the clarity of
presentation, in this paper we consider only the chiral limit
when the bare Dirac mass term m0ψ̄(r)ψ(r) is absent.

In the presence of an external magnetic field, one should
replace ∇ → ∇ + ieA/c, where A is the vector potential
and c is the speed of light. Thus the Hamiltonian of the
Dirac semimetal model in an external magnetic field has the
following form:

H (D)
mag =

∫
d3r ψ̄(r){−ivF [γ · (∇ + ieA/c)] − μ0γ

0}ψ(r)

+ g

2

∫
d3r ρ(r)ρ(r). (9)

Note that both this Hamiltonian and the Weyl semimetal
Hamiltonian (6) are invariant under the chiral U (1)+ × U (1)−
symmetry, where + and − correspond to the node states with
+1 and −1 eigenvalues of the γ5 matrix, respectively. The
currents connected with the U (1)+ and U (1)− symmetries are
anomalous. However, because these symmetries are Abelian,
one can introduce conserved charges for them.24

III. GAP EQUATION

In this section, we will derive the gap equation for the
fermion propagator in the Dirac semimetal model (9) and show
that, at a nonzero charge density, a nonzero b necessarily arises
in the normal phase as soon as a magnetic field is turned on.

In model (9), we easily find the following free fermion
propagator:

iS−1(u,u′) = [(i∂t + μ0)γ 0 − vF (π · γ )]δ4(u − u′), (10)

where u = (t,r) and π ≡ −i∇ + eA/c is the canonical mo-
mentum. In the rest of the paper, we will choose the vector
potential in the Landau gauge, A = (0,xB,0), where B is
a strength of the external magnetic field pointing in the z

direction.
An ansatz for the full fermion propagator can be written in

the following form (we will see that this ansatz is consistent
with the Schwinger-Dyson equation for the fermion propagator
in the mean-field approximation):

iG−1(u,u′) = [(i∂t + μ)γ 0 − vF (π · γ ) + γ 0(μ̃ · γ )γ 5

+ vF (b · γ )γ 5 − m]δ4(u − u′). (11)

This propagator contains dynamical parameters μ̃, b, and m

that are absent at tree level in Eq. (10). Here m plays the
role of the dynamical Dirac mass and b is the chiral shift.6,7

By taking into account the Dirac structure of the μ̃ term,
we see that it is related to the anomalous magnetic moment
μan (associated with the pseudospin) as follows: μ̃ ≡ μanB. It
should be also emphasized that the dynamical parameter μ in
the full propagator may differ from its tree-level counterpart
μ0 [see Eq. (13) below].

In order to determine the values of these dynamical param-
eters, we will use the Schwinger-Dyson (gap) equation for the
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fermion propagator in the mean-field approximation, i.e.,

iG−1(u,u′) = iS−1(u,u′) − g{γ 0G(u,u)γ 0

− γ 0tr[γ 0G(u,u)]}δ4(u − u′). (12)

The first term in the curly brackets describes the exchange
(Fock) interaction and the last term presents the direct
(Hartree) interaction.

Separating different Dirac structures in the gap equation,
we arrive at the following set of equations:

μ − μ0 = −3

4
g〈j 0〉, (13)

b = g

4vF

〈j5〉, (14)

m = −g

4
〈ψ̄ψ〉, (15)

μ̃ = g

4
〈�〉. (16)

The fermion charge density, the axial current density, the chiral
condensate, and the anomalous magnetic moment condensate
on the right-hand side of the above equations are determined
through the full fermion propagator as follows:

〈j 0〉 ≡ − tr[γ 0G(u,u)], (17)

〈j5〉 ≡ − tr[γ γ 5G(u,u)], (18)

〈ψ̄ψ〉 ≡ − tr[G(u,u)], (19)

〈�〉 ≡ − tr[γ 0γ γ 5G(u,u)]. (20)

Note that the right-hand sides in Eqs. (19) and (20) differ from
those in Eqs. (17) and (18) by the inclusion of an additional
γ 0 matrix inside the trace. Since, according to Eq. (5), the γ 0

matrix mixes quasiparticle states from different Weyl nodes,
we conclude that while 〈j 0〉 and 〈j5〉 describe the charge
density and the axial current density, the chiral condensate
〈ψ̄ψ〉 and the anomalous magnetic moment condensate 〈�〉
describe internode coherent effects.

As is known,25–27 in the presence of a fermion charge
density and a magnetic field, the axial current 〈j5〉 is generated
even in the free theory. Therefore, according to Eq. (14), the
chiral shift b is induced already in the lowest order of the per-
turbation theory. As a result, a Dirac semimetal is necessarily
transformed into a Weyl one, as soon as an external magnetic
field is applied to the system (see also a discussion in Sec. IV).

In order to derive the propagator G(u,u′) in the Landau-
level representation, we invert G−1(u,u′) in Eq. (11) by
using the approach described in Appendix A of Ref. 7. For
our purposes here, the expression for the propagator in the
coincidence limit u′ → u is sufficient [cf. Eq. (A26) in Ref. 7]:

G(u,u) = i

2πl2

∞∑
n=0

∫
dω dk3

(2π )2

K−
n P− + K+

n P+θ (n − 1)

Un

,

(21)

where P± ≡ 1
2 (1 ± is⊥γ 1γ 2) are the pseudospin projectors,

l = √
c/|eB| is the magnetic length, and s⊥ = sgn(eB). Also,

by definition, θ (n − 1) = 1 for n � 1 and θ (n − 1) = 0 for

n < 1. The functions K±
n and Un with n � 0 are given by

K±
n = [(ω + μ ∓ s⊥vF b)γ 0 ± s⊥μ̃ + m− vF k3γ 3]

{
(ω + μ)2

+ μ̃2 − m2 − (vF b)2 − (vF k3)2 − 2nv2
F |eB|/c

∓ 2s⊥[μ̃(ω + μ) + vF bm]γ 0

± 2s⊥(μ̃ + vF bγ 0)vF k3γ 3
}

(22)

and

Un = [
(ω + μ)2 + μ̃2 − m2 − (vF b)2 − (vF k3)2

− 2nv2
F |eB|/c]2 − 4{[μ̃ (ω + μ) + vF bm]2

+ (vF k3)2[(vF b)2 − μ̃2]}, (23)

where we took into account that the only nonvanishing
components of the axial vectors b and μ̃ are the longitudinal
projections b and μ̃ on the direction of the magnetic field.
Note that the zeros of the function Un determine the dispersion
relations of quasiparticles.

IV. PERTURBATIVE SOLUTION

In order to obtain the leading order perturbative solution
to the gap equations, we can use the free propagator on the
right-hand side of Eqs. (17) through (20), i.e.,

S(u,u) = i

2πl2

∞∑
n=0

∫
dω dk3

(2π )2

× [(ω + μ0)γ 0 − vF k3γ 3][P− + P+θ (n − 1)]

(ω + μ0)2 − (vF k3)2 − 2nv2
F |eB|/c .

(24)

Note that unlike the high Landau levels with n � 1, where
both spin projectors P+ and P− contribute, the lowest Landau
level (LLL) with n = 0 contains only one projector P−. The
reason for this is well known. The Atiyah-Singer theorem
connects the number of the zero energy modes (which are
completely pseudospin polarized) of the two-dimensional
part of the Dirac operator to the total flux of the magnetic
field through the corresponding plane. This theorem states
that LLL is topologically protected (for a discussion of the
Atiyah-Singer theorem in the context of condensed matter
physics, see Ref. 28).

By making use of Eq. (24), we straightforwardly calculate
the zeroth order result for the charge density,

〈j 0〉0 = μ0

2vF (πl)2
+ sgn(μ0)

vF (πl)2

∞∑
n=1

√
μ2

0 − 2nv2
F |eB|/c

× θ
(
μ2

0 − 2nv2
F |eB|/c), (25)

and the axial current density

〈j5〉0 = − eBμ0

2π2vF c
. (26)

As to the chiral condensate and the anomalous magnetic mo-
ment condensate, they vanish, i.e., 〈ψ̄ψ〉0 = 0 and 〈�〉0 = 0.
This is not surprising because both of them break the
chiral U (1)+ × U (1)− symmetry of the Dirac semimetal
Hamiltonian (9). Then, taking into account Eqs. (15) and (16),
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we conclude that both the Dirac mass m and the parameter μ̃

are zero in the perturbation theory.
After taking into account the gap equations (13) and (14),

the results in Eqs. (25) and (26) imply that there is a
perturbative renormalization of the chemical potential and a
dynamical generation of the chiral shift. Of special interest
is the result for the axial current density given by Eq. (26).
This is generated already in the free theory and known in the
literature as the topological contribution.26,29 Its topological
origin is related to the following fact: in the free theory, only
the LLL contributes to both the axial current and the axial
anomaly. By combining Eqs. (14) and (26), we find

b = − geBμ0

8π2v2
F c

. (27)

This is our principal result, which reflects the simple fact that
at μ0 �= 0 (i.e., nonzero charge density), the absence of the
chiral shift is not protected by any additional symmetries in
the normal phase of a Dirac metal in a magnetic field. Indeed,
in the presence of a homogeneous magnetic field pointing in
the z direction, the rotational SO(3) symmetry in the model is
explicitly broken down to the SO(2) symmetry of rotations
around the z axis. The dynamically generated chiral shift
parameter b also points in the same direction and does not
break the leftover SO(2) symmetry. The same is true for the
discrete symmetries: while the parity P is preserved, all other
discrete symmetries, charge conjugation C, time reversal T ,
CP , CT , PT , and CPT are broken. Last but not least, the
chiral shift does not break the chiral U (1)+ × U (1)− symmetry
considered in Sec. II. This implies that the dynamical chiral
shift is necessarily generated in the normal phase of a Dirac
semimetal in a magnetic field, and the latter is transformed
into a Weyl semimetal.

In the phase with a dynamically generated chiral shift b, the
quasiparticle dispersion relations, i.e., ωn,σ = −μ + En,σ , are
determined by the following Landau-level energies (recall that
we assume that the magnetic field points in the z direction):

E0,σ = vF (s⊥b + σk3), n = 0, (28)

En,σ = ±vF

√
(s⊥b + σk3)2 + 2n|eB|/c, n � 1, (29)

where σ = ± corresponds to different Weyl nodes. The
corresponding dispersion relations are shown graphically in
Fig. 1. Note a qualitatively different character (compared to
higher Landau levels) of the dispersion relations in the LLL
given by the straight lines whose signs of slope correlate
with the Weyl nodes. Of course, this correlation is due to
the complete polarization of quasiparticle pseudospins in the
LLL. As seen from Fig. 1, the effect of the chiral shift is
not only to shift the relative position of the Weyl nodes in
momentum space, but also to induce a chiral asymmetry of the
Fermi surface.6,7

V. NONPERTURBATIVE SOLUTION: PHASE TRANSITION

The magnetic catalysis phenomenon, which takes place
for planar as well as three-dimensional relativistic charged
fermions because of the dimensional reduction,30,31 implies
that at vanishing μ0, the ground state in the model at hand is
characterized by a nonzero Dirac mass m that spontaneously
breaks the chiral symmetry. (For the corresponding studies in
graphene, see Ref. 32.)

Such a vacuum state can withstand a finite stress due
to a nonzero chemical potential. However, as we discuss
below, when μ0 exceeds a certain critical value μcr, the chiral
symmetry restoration and a new ground state are expected.
The new state is characterized by a nonvanishing chiral shift
parameter b and a nonzero axial current in the direction of the
magnetic field. Since no symmetry of the theory is broken,
this state is the normal phase of the magnetized matter that
happens to have a rather rich chiral structure. This phase was
considered in the previous section.

Let us describe this transition in more detail. The value of
the dynamical Dirac mass m in the vacuum state can be easily
calculated following the same approach as in Ref. 31. At weak
coupling, in particular, we can use the following expression
for the chiral condensate:

〈ψ̄ψ〉 � − m

4π2vF

(

2 + 1

l2
ln

v2
F

πm2l2

)
, (30)

obtained in the limit of a small mass (which is consistent with
the weak coupling approximation), using the gauge invariant

Μ

4 2 0 2 4

3

2

1

0

1

2

3

k3

E n
,

Μ

4 2 0 2 4

3

2

1

0

1

2

3

k3

E n
,

FIG. 1. (Color online) Dispersion relations of the quasiparticles from different Weyl nodes and their Fermi surfaces. The two dispersion
relations are the mirror images of each other.

165105-4



ENGINEERING WEYL NODES IN DIRAC SEMIMETALS BY . . . PHYSICAL REVIEW B 88, 165105 (2013)

proper-time regularization. Here the ultraviolet momentum
cutoff 
 can be related, for example, to the value of lattice
spacing a as follows: 
 � π/a. Finally, by taking into account
gap equation (15), we arrive at the solution for the dynamical
mass,

m � vF√
πl

exp

(
−8π2vF l2

g
+ (
l)2

2

)
. (31)

This zero-temperature, nonperturbative solution exists for
μ0 < m.

The free energies of the two types of states, i.e., the
nonperturbative state with a dynamically generated Dirac
mass (and no chiral shift) and the perturbative state with a
nonzero chiral shift (and no Dirac mass) become equal at
about μ0 � m/

√
2. This is analogous to the Clogston relation

in superconductivity.33

At the critical value μcr � m/
√

2, a first order phase
transition takes place. Indeed, both these solutions coexist at
μ0 < m, and while for μ0 < μcr the nonperturbative (gapped)
phase with a chiral condensate is more stable, the normal
(gapless) phase becomes more stable at μ0 > μcr. Note that
at μ0 < m the chemical potential is irrelevant in the gapped
phase: the charge density is absent there. On the other hand, at
any nonzero chemical potential, there is a nonzero charge den-
sity in the normal (gapless) phase. Therefore, at μcr � m/

√
2,

there is a phase transition with a jump in the charge den-
sity, which is a clear manifestation of a first order phase
transition.

VI. DIRAC SEMIMETALS VS GRAPHENE
IN A MAGNETIC FIELD

It is instructive to compare the states in the magnetized
Dirac semimetals and graphene. First of all, we would like to
point out that the chiral shift is a three-dimensional analog
of the Haldane mass,34,35 which plays an important role
in the dynamics of the quantum Hall effect in graphene.
Indeed, in the formalism of the four-component Dirac fields
in graphene, the Haldane mass condensate is described by the
same vacuum expectation value as that of the axial current in
three dimensions:36

〈ψ̄γ 3γ 5ψ〉 = − tr[γ 3γ 5G(u,u)] (32)

for a magnetic field pointing in the z direction, which is
orthogonal to the graphene plane; cf. Eq. (18). Moreover,
similar to the solution with the chiral shift, the solution
with the Haldane mass (with the same sign for both spin-up
and spin-down quasiparticles) describes the normal phase: it
is a singlet with respect to the SU (4) symmetry, which is
a graphene analog of the chiral group in Dirac and Weyl
semimetals.

Also, in graphene, there is a phase transition similar to
that described in the previous section. It happens when the
LLL is completely filled.36 In other words, the quantum
Hall state with the filling factor ν = 2 in graphene is
associated with the normal phase containing the Haldane
mass.

As is well known, the Haldane mass leads to the Chern-
Simons term in an external electromagnetic field.34,35 This

feature reflects a topological nature of the state with the filling
factor ν = 2 in a graphene. As was recently shown in Ref. 37,
the chiral shift term

ψ̄(b · γ )γ 5ψ (33)

leads to an induced Chern-Simons term of the form
1
2bμεμνρσFρσAν in Weyl semimetals [here bμ is a four-
dimensional vector (0,b)]. Therefore, it should also be gen-
erated in Dirac semimetals in a magnetic field. Note, however,
the following principle difference between them: while in Weyl
semimetals the chiral shift b is present in the free Hamiltonian,
it is dynamically generated in the normal phase of Dirac
semimetals in a magnetic field [see Eq. (27)]. Like in graphene,
the generation of the Chern-Simons term implies a topological
nature of the normal state in this material.38

VII. DISCUSSION

In the present paper, we considered manifestations of
a relativistic phenomenon, the rearrangement of the Fermi
surface in three-dimensional matter in a magnetic field, in
a Dirac semimetal. It was shown that its normal phase at
a nonzero charge density and in a magnetic field has a
nontrivial chiral structure: it is a Weyl semimetal with a
pair of Weyl nodes for each of the original Dirac points.
The nodes are separated by a dynamically induced chiral
shift that is directed along the magnetic field. The phase
transition between the normal phase and the phase with
chiral symmetry breaking is revealed, and the rearrangement
of the Fermi surface accompanying this phase transition is
described.39

Although we studied a simple model with a contact four-
fermion interaction, we believe that the present qualitative
results apply equally well to more realistic models. The studies
in the relativistic Nambu-Jona-Lasinio (NJL) model (with
a contact interaction) on the one hand6,7 and in QED on
the other40 strongly support the validity of this statement.
Namely, the dynamical generation of the chiral shift in a
magnetic field and at a nonzero fermion density is a universal
phenomenon.

In the present study we analyzed the simplest model: it
is isotropic (in the absence of the magnetic field), has no gap
(i.e., no bare Dirac mass), and no Zeeman term for spin. In real
materials, such as bismuth,8,9 the presence of an anisotropy,
a gap, and the Zeeman term for spin should be taken into
account. This task, as well as the generalization of the study
to the case of nonzero temperature, is outside the scope of
the present paper and will be considered elsewhere. Here
we just want to mention that the effects of a bare Dirac
mass term and temperature were studied in the NJL model
in Ref. 7. It was shown there that the chirality remains a
good approximate quantum number even for massive fermions
in the vicinity of the Fermi surface, provided the mass is
sufficiently small, i.e., m 
 μ. As for the temperature effects,7

an interesting feature of the chiral shift is that it is insensitive to
the temperature when T 
 μ, and increases with temperature
T � μ.

A natural extension of this work would be the study of the
phase diagram of a Weyl semimetal in a magnetic field and
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a nonzero charge density. Because of a built-in chiral shift
in the Hamiltonian of such a material, one may expect that
its phase with chiral symmetry breaking, realized at zero (or
low) density, should be inhomogeneous, possibly, a Larkin-
Ovchinnikov-Fulde-Ferrel (LOFF) –like one (cf. Refs. 41–43).
We expect that a first order phase transition between the normal
phase and the phase with chiral symmetry breaking will take
place in that case too.

Note added in proof. Recently, an experimental observation
of the transition from a Dirac semimetal to a Weyl semimetal
in a magnetic field was reported.44
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