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Causality and passivity properties of effective parameters of electromagnetic multilayered structures
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Effective properties of periodic structures are investigated at all frequencies. It is shown that a simple dielectric
multilayer with arbitrary low contrast can display artificial magnetoelectric coupling and magnetism. Effective
parameters, as functions of the complex frequency, possess all the analytic properties required by the causality
principle. The theoretical expression of the effective index and surface impedance are numerically tested; the
former is shown to reduce to the mean refractive index at infinite frequency, just like the refractive index in the
x-ray regime. We stress that periodic multilayers, with frequency-independent (noncausal) dielectric constants,
make effective media with artificial causality.
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I. INTRODUCTION

There is currently a renewed interest in photonic crystals
and metamaterials,1,2 i.e., periodic structures exhibiting new
phenomena such as anomalous dispersion3–5 and negative
refraction,6–8 and optical activity.9 The former composites
are known to possess ranges of frequencies (band gaps) for
which waves are disallowed to propagate within the structure
for wavelengths on the order of the period,1 while the latter
composites exhibit a magnetic response associated with local
RLC circuit type10 or Mie11 resonances, at low frequencies.
However, it seems that there is no effective medium description
which encapsulates all the physics of periodic structures from
low frequencies to stop band frequencies and beyond. Thus,
the extension of classical homogenization theory12 to higher
orders of approximation13,14 and high frequencies15,16 appears
to be of pressing importance for physicists working in the
field of photonic crystals and metamaterials. A challenge is to
understand extraordinary properties such as artificial optical
activity.9 To achieve this goal, effective parameters ought to
make sense for sufficiently high frequencies including the
resonances of the structure. Applied mathematicians from the
wave community also show a keen interest in this topic,16–21

since periodic structures with small inductive and capacitive
elements structured at subwavelength length scales can often
be regarded as almost homogeneous.

In this paper, we propose a notion of all frequency ho-
mogenization (AFH) based on effective parameters satisfying
causality principle and passivity.22,23 This necessitates one
to go beyond the graphical retrieval method24 and Fresnel
inversion25 which, for each fixed frequency and wave vector,
directly translates reflectivity, transmission into effective
permittivity, permeability, and chirality. At low frequencies,
we use a frequency power expansion to derive analytic
expressions of effective homogeneous parameters such as
the permittivity εeff, the permeability μeff corresponding to
artificial magnetism, and a bianisotropy coefficient ξeff, the
hallmark of magnetoelectric coupling. At higher frequencies,
we turn to another set of effective parameters: The propagation
index neff and the surface impedance ζeff. It is shown that these
parameters are analytic functions in the upper half-plane of
complex frequencies z and that they have a well-defined limit
at infinite frequencies. According to passivity, the imaginary
part of zneff(z) and real part of ζeff(z) are both positive. As the

central result of this paper, it follows that both effective index
and impedance satisfy causality and passivity requirements.
This leads us to conclude that a periodic multilayered stack can
be replaced by a frequency- and spatially dispersive26 homoge-
neous effective medium for the entire spectrum of frequencies
and wave vectors. The tool of choice for our one-dimensional
model is the transfer matrix method, as it allows for analytical
formulas. However, arguments are provided to stress that ideas
contained therein might be extended to frequency dispersive
and three-dimensional periodic structures.

II. ANALYTIC PROPERTIES OF THE TRANSFER MATRIX

We start with a periodic multilayer with a unit cell made of
two homogeneous layers L1 and L2 of thicknesses h1 and h2

[see Fig. 1 (h = h1 + h2 is the thickness of the unit cell)].
The frequency ω and the wave vector k = (k1,k2) are the
conserved quantities of the system which is homogeneous with
respect to time and space variables (x1,x2) [an orthogonal set
of coordinates (x1,x2,x3) is considered such that the layers
are stacked in the x3 direction; see Fig. 1]. At the oscillating
frequency ω, the electric and magnetic fields E and H are
related to the electric and magnetic inductions D and B
through the time-harmonic Maxwell’s equations,

−iωD(x) = ∇ × H(x), iωB(x) = ∇ × E(x), (1)

and the phenomenological constitutive relations for nonmag-
netic isotropic dielectric media:

D(x) = εm E(x), B(x) = μ0 H(x), x ∈ Lm, (2)

where μ0 is the vacuum permeability, and εm is the permittivity
in the homogeneous layer Lm, m = 1,2. Note that, at this
stage, the frequency dependence of the permittivity is omitted.
However, as will be discussed later on, all the results of this
paper remain valid when frequency dispersion is considered.
In order to take advantage of invariance under translations in
(x1,x2), the Fourier decomposition from (x1,x2) to k = (k1,k2),
defined for a vector field U(x) by

Û(k1,k2,x3) = 1

2π

∫
R2

U(x1,x2,x3) exp[−ik1x1]

× exp[−ik2x2] dx1dx2, (3)

is introduced. This decomposition is applied to Eqs. (1) and
(2), and next the components Ê3 and Ĥ3 are eliminated to
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FIG. 1. (Color online) Example of a periodic multilayered stack
of identical unit cells made of two dielectric homogeneous layers.
The system is invariant under translations in the space directions x1

and x2 and the corresponding electric permittivity ε(x3) is a periodic
function of variable x3.

derive a first order differential equation:

∂F

∂x3
(ω,k,x3) = −iMm(ω,k) F (ω,k,x3), (4)

where F is a column vector containing the tangential
components of the Fourier-transformed electromagnetic field
(Ê,Ĥ), and Mm(ω,k) is a matrix independent of x3 in each
homogeneous layer Lm. Also, a coordinate rotation of the
(x1,x2) plane is introduced in order to obtain two independent
systems for s and p polarizations. For all vector x, the
couple of coordinates (x1,x2) is replaced by (x‖,x⊥), where
x‖ denotes the component along the wave vector k = (k1,k2)
and x⊥ the component along (−k2,k1). Then, omitting the
(ω,k) dependence, one has for s polarization

F =
[

Ê⊥
ωĤ‖

]
, Mm =

[
0 μ0

ω2εm − k2/μ0 0

]
, (5)

and for p polarization

F =
[

Ĥ⊥
ωÊ‖

]
, Mm =

[
0 −εm

k2/εm − ω2μ0 0

]
. (6)

Since the matrices Mm are x3 independent, the solution of
(4) in each layer Lm is simply

F (x3 + hm) = exp[−iMmhm]F (x3). (7)

The exponential above is well defined as a power series of the
matrix Mm:

exp[−iMmhm] = I +
∞∑

p=1

(−iMmhm)p

p!
, (8)

where I is the identity matrix. This power series defines
the transfer matrix in the medium m over the distance hm.
Since this power series has infinite radius of convergence, the
transfer matrix is analytic with respect to the three independent
variables ω, k1, and k2 describing the whole complex plane
(more precisely, the transfer matrix is an entire function27 of
the three variables ω, k1, and k2). From now on, we focus
on the complex frequency denoted by z = ω + iη, where ω

remains the real frequency and η is the imaginary part. The
transfer matrix associated with the unit cell,

T (z,k) = exp[−iM2(z,k)h2] exp[−iM1(z,k)h1], (9)

is also an analytic function over the whole complex plane
of variables z, k1, and k2. We stress that, for an arbitrary
one-dimensional permittivity profile bounded by a constant

C [i.e., |ε(x3)| � C for all x3], a Dyson expansion27 can be
used to prove that the analyticity property of the transfer matrix
remains valid.

The analyticity property opens the possibility to define
effective parameters which are valid throughout the whole
frequency spectrum. Indeed, suppose that effective parameters
can be extracted from the transfer matrix in a finite range
of frequencies, for instance, in the classical homogenization
regime ω = 0. If the analytic property of the transfer matrix can
be allocated to effective parameters, then a unique continuation
of the latter can be defined in the whole frequency spectrum:
such analytic continuation may be the foundation for a notion
of AFH. Moreover, it has to be noted that the analyticity
property may be used to show that effective parameters satisfy
the causality principle and that they have a physical meaning.

III. HIGH-ORDER HOMOGENIZATION

The infinite radius of convergence of the power series
expansion of T (z,k) suggests introducing a notion of high-
order homogenization (HOH), which extends the standard
homogenization (corresponding to the limit z → 0) by ex-
panding the effective permittivity and permeability as the
power series of z. To carry out the asymptotic analysis, we
use the Baker-Campbell-Hausdorff formula (BCH formula,
an extension of the S. Lie theorem; see Ref. 28):

exp[A] exp[B] = exp[X],

X = A + B + [[A,B]] + [[A − B,[[A,B]]]]/3 + · · · ,
(10)

where A + B is defined as the zeroth-order approximation
(standard homogenization), the commutator of A and B:
[[A,B]] = (AB − BA)/2 is the first-order correction, [[A −
B,[[A,B]]]]/3 is the second-order correction, and so forth.
The BCH formula (10) shows that the transfer matrix (9) can
be written as that of a frequency- and spatially dispersive
homogeneous medium characterized by −iMeff(z,k)h ≡ X,
i.e.,

exp[−iMeff(z,k)h] = Teff(z,k). (11)

The resulting matrix Meff(z,k) is found to correspond to the
constitutive equations of a homogeneous medium:

D̂(k,x3) = εeff(z,k) Ê(k,x3) + iKeff(z,k)J Ĥ(k,x3),
(12)

B̂(k,x3) = μeff(z,k) Ĥ(k,x3) + iJKeff(z,k)Ê(k,x3).

Here, matrix J represents the 90◦ rotation around the x3

axis and, in the coordinate system (x‖,x⊥,x3), the effective
permittivity and permeability are

εeff = diag(ε‖,ε⊥,ε3), μeff = diag(μ‖,μ⊥,μ3), (13)

while the bianisotropic parameter measuring the magnetoelec-
tric coupling effect9,29 is given by

Keff = diag(K‖,K⊥,0). (14)

Although the system is isotropic in the plane (x1,x2), the
spatial dispersion induced by the k dependence introduces
a difference between the coefficients ε‖ and ε⊥, μ‖ and μ⊥,
and K‖ and K⊥.30 At k = 0, equalities ε‖(z,0) = ε⊥(z,0), and
so forth, are retrieved.
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After some elementary algebra, collecting terms up to the
second-order correction in (10) with A = −iM2h2 and B =
−iM1h1, we obtain the following homogenized coefficients
for k = 0:

ε‖(ẑ) = ε1f1 + ε2f2 + ẑ2f1f2(ε1 − ε2)(ε1f1 − ε2f2)/(6ε0),

μ‖(ẑ) = μ0 − ẑ2f1f2μ0(ε1 − ε2)(f1 − f2)/(6ε0), (15)

K‖(ẑ) = ẑ(ε1 − ε2)f1f2/(2
√

ε0/μ0),

with ẑ = zh
√

ε0μ0 the normalized complex frequency and
fm = hm/h. Note that, in the static limit ẑ → 0, μ‖(ẑ) and
K‖(ẑ) tend to μ0 and 0, respectively. It is also stressed that mag-
netoelectric coupling comes from the odd order approximation
in (10), while artificial magnetism and high-order corrections
to permittivity emerge from even order approximation. These
results are fully consistent with descriptions in terms of spatial
dispersion30,31 wherein, expanding the permittivity in power
series of the wave vector, first order yields optical activity
and second-order magnetic response. The equivalence of these
two descriptions (frequency and wave vector power series) is
confirmed by considering a unit cell with a center of symmetry,
for example, a stack of three homogeneous layers (permittivity
εm and thickness hm, m = 1,2,3) with ε3 = ε1 and h3 = h1.
Extending (10) to the case exp[A] exp[B] exp[A] = exp[X]
(see Ref. 32), it is found that Keff = 0, and thus it is retrieved
that both magnetoelectric coupling and optical activity vanish
in a medium with a center of symmetry.30

Expansion in power series of frequency provides a new
explanation for artificial magnetism and optical activity.
Analytic expressions (15) of effective parameters can be used
to analyze artificial properties (expressions for higher orders
in normal and conical incidence are provided in Ref. 32).
In particular, we obtain from (15) that artificial magnetism,
previously proposed with high contrast,11,18,19 can be obtained
with arbitrarily low contrast; and magnetoelectric coupling,
previously achieved in 	 composites,9 can be present in simple
one-dimensional multilayers.

Nevertheless, this frequency expansion of effective param-
eters cannot be used for frequencies higher than the frequency
ω1 at the first band-gap edge.32 To show this limitation, we
consider for the sake of simplicity a three-layer unit cell
with a center of symmetry and purely real dielectric constants
ε1 = ε3 and ε2: Effective parameters εeff and μeff derived from
(10) and (11) are then purely real for real frequencies, and
Keff = 0. Under normal incidence, k = 0, the Bloch wave
number reduces to

kB(ω) = ω
√

εeff(ω)μeff(ω), (16)

where the right-hand side of (16) is the wave number of the
homogeneous effective medium. Since εeff and μeff derived
from the power expansion take purely real values, the Bloch
wave number must be either purely real or purely imaginary.
If the definition of εeff and μeff is valid in the neighborhood
of the first band-gap edge ω1, then the Bloch wave vector is
purely real for ω � ω1 in the first band and purely imaginary
for ω � ω1 in the first gap. Also, if the definition of εeff and
μeff is valid, then these parameters, as well as kB(ω), are
continuous functions of ω. Thus, under these conditions, the
Bloch wave number must vanish at the first band-gap edge
ω1: This is clearly in contradistinction with the requirement

FIG. 2. (a) Representation of the dispersion law in the periodic
multilayer: ω1 is the frequency at the first band-gap edge. (b) Domains
of analyticity (striped areas) of effective parameters εeff, μeff, Keff, neff,
and ζeff: The dashed circle defines the disk within which the power
expansion converges.

kB(ω1) = π/h (see Fig. 2). Thus we can conclude at this stage
that the frequency power expansion of the effective εeff and
μeff cannot be valid in both sides of the first band-gap edge
ω1. Now, we assume that the power expansion is valid only for
frequencies in the first band, i.e., ω � ω1. At the first band-gap
edge, kB(ω1) = π/h and thus

εeff(ω1)μeff(ω1) = π2

h2ω2
1

. (17)

Since the product εeff(ω)μeff(ω) cannot be positive within the
band gap, either εeff(ω1) or μeff(ω1) must vanish to allow for
sign shifting at ω1, say μeff(ω1) = 0. Consequently, it is found
that the other parameter is bound to take an infinite value at
ω1:

εeff(ω) ∼
ω1

π2

h2ω2
1μeff(ω)

−→
ω→ω1

∞. (18)

These arguments show that the power series expansion of X =
−iMeffh in (10) diverges at ω1. Indeed, from the expression of
Meff, formally equivalent to (11),

Meff(z,k) = (i/h) log[T (z,k)], (19)

it appears that the function log is not analytic when its argument
“vanishes,” which introduces a branch point at ω1 (see Fig. 2):
This branch point implies that the radius of convergence of the
power expansion of effective parameters is certainly bounded
by ω1 (Fig. 2).

Hence we obtain that the HOH is only valid for complex
frequencies inside a disk with radius ω1. However, it is possible
to choose the branch cut of the complex logarithm from the
branch point ω1 in the lower half complex plane (Fig. 2). This
choice makes it possible to use analytic continuation to define
effective parameters in the upper half plane of the complex
frequency z.
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IV. ALL FREQUENCY HOMOGENIZATION

An analytic continuation of the matrix Meff(z,k) =
(i/h) log[T (z,k)] can be defined outside the disk with radius
ω1 in the upper half plane of complex frequencies z by
choosing the branch cuts of the complex logarithm from the
branch points in the lower half plane (see Fig. 2). From
this analytic continuation of Meff(z,k), effective parameters
εeff(z,k), μeff(z,k), and Keff(z,k) can be defined for complex
frequencies z in the upper half plane (i.e., z = ω + iη with η >

0). These effective parameters are, by construction, analytic in
the upper half plane of complex frequencies as required by the
causality principle.30,33 Nevertheless, it appears that the pair of
effective parameters εeff(z,k) and μeff(z,k) is not appropriate to
describe the effective homogeneous medium of a multilayered
stack because they cannot satisfy simultaneously the passivity
requirement, as shown hereafter.

Passivity requires that electromagnetic energy must be
a decreasing function of time. From the calculation of
electromagnetic energy, it shows22 that the permittivity and
permeability have positive imaginary part22,30 or, more pre-
cisely, that ω Im[ε(ω)] � 0 and ω Im[μ(ω)] � 0. Taking into
account the causality principle and generalized Kramers and
Kronig relations,22 this passivity property can be extended to
complex frequencies with positive imaginary parts:

Im[zε(z)] � Im(z)ε0, Im[zμ(z)] � Im(z)μ0. (20)

Now, let us assume that the permittivity and permeability are
purely real in a frequency range of the real axis. Then, for
z = ω + iη with 1 � η > 0, we have

zε(z) ≈ ωε(ω) + iη
dz ε

dz
(ω), (21)

and thus (20) implies that the derivative of ωε(ω) is positive.
Thus ε(ω) and μ(ω) must be increasing functions in a
frequency range without absorption.

However, for the effective parameters εeff(ω) and μeff(ω),
the analysis realized in the previous section reveals that one
of them has to be a decreasing function. Indeed, in the limit
ω → 0, standard homogenization (12) provides μeff(0) = μ0

and εeff(0) = f1ε1 + f2ε2 � ε0 (for a stack of transparent
dielectrics in normal incidence); and, at the first band-gap edge,
we have either εeff(ω1) = 0 or μeff(ω1) = 0. Hence we con-
clude that the effective parameters εeff(ω) and μeff(ω) cannot
both be increasing functions, and they cannot simultaneously
satisfy the passivity requirement. Similar remarks have already
been reported in the literature. In particular, it has been found
that the effective permeability has a negative imaginary part
in periodic multilayered stacks34 and metamaterials.35 Also,
it has been proposed that the Kramers-Kronig relations be
modified36 in order to allow for a negative imaginary part for
the permeability.37

Thus, an alternative set of effective parameters is con-
sidered: the effective index, impedance, and magnetoelectric
coupling coefficient. We start with a unit cell with a center
of symmetry to keep things simple (see the Appendix for
the general case with magnetoelectric coupling). The general
expression of the transfer matrix is34

T (z,k) =
[

a(z,k) b(z,k)
d(z,k) a(z,k)

]
, a2 − bd = 1. (22)

TABLE I. Passivity properties in a standard homogeneous
medium of permittivity ε(z), permeability μ(z), propagating index
n(z), and surface impedance ζ (z) for complex frequency z with a
positive imaginary part.

Re Im Arg

z = ω + iη >0 ∈ ]0,π [
zε(z) >0 ∈ ]0,π [
zμ(z) >0 ∈ ]0,π [
z2n2(z) = zμ(z)zε(z) ∈ ]0,2π [
zn(z) = z

√
μ(z)ε(z) >0 ∈ ]0,π [

ζ 2(z) = zμ(z)/[zε(z)] ∈ ]−π,π [
ζ (z) = √

μ(z)/ε(z) >0 ∈ ]−π/2,π/2[

This matrix is compared with Teff(z,k), the transfer matrix
corresponding to the constitutive equations (12) with Keff = 0:
Omitting the (z,k) dependence, we have

Teff =
[

cos[zneffh] −i(ζeff/z) sin[zneffh]
−i(z/ζeff) sin[zneffh] cos[zneffh]

]
,

(23)

where for s polarization, z2n2
eff = z2ε⊥μ‖ − k2μ‖/μ3 and

ζeff = μ‖/neff (similar formulas for p polarization can be
derived). By inspection of (22) and (23), the propagation index
neff along the x3 axis is defined by

cos[zneff(z,k)h] = a(z,k), (24)

and surface impedance by

ζeff(z,k) = z

√
b(z,k)

d(z,k)
. (25)

Here, notice that zneff(z,k) is just the Bloch wave number kB

given by (16).
As the central result of this paper, we show that the

effective index neff(z,k) and surface impedance ζeff(z,k) have
all the properties required by causality principle and passivity.
According to Table I and Kramers and Kronig relations, it
is necessary to prove the following statements on the sign
properties, analytic properties, and asymptotic behavior. In
the upper half plane of z, i.e., for Im(z) > 0:

(i) imaginary part of zneff(z,k) and real part of ζeff(z,k) are
positive;

(ii) neff(z,k) and ζeff(z,k) are analytic functions of z; and
(iii) neff(z,k) and ζeff(z,k) have limits n∞ and ζ∞ when

|z| −→ ∞, wherein n∞ = 〈√εμ0 〉 corresponds to the mean
index.

To prove these claims, we first use the theorem stating
that no Bloch mode exists for z in the upper half plane.38 As
a consequence, the function zneff(z,k) cannot be purely real
and its imaginary part Im(zneff) cannot vanish. This proves
assertion (i) for neff. Next, it is stressed that the coefficient
a(z,k) is z analytic in all the complex plane of z, and that (24)
can be written

exp[izneff(z,k)h] = a(z,k) + i
√

1 − a2(z,k). (26)

Since Im(zneff) cannot vanish if Im(z) > 0, we have
cos[zneff(z,k)h] = a(z,k) �= ±1, and thus the square root in
(26) is z analytic in the upper half plane. The function on
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the left-hand side of (26) is then analytic and, in addition,
cannot vanish. The complex logarithm can be applied to (26)
without alteration of the analyticity property: This proves
(ii) for neff. Next, combining the two equations a2 − bd = 1
and a �= ±1 for Im(z) > 0, it is found that neither of the
two analytic functions b(z,k) and d(z,k) vanishes, thus the
ratio b(z,k)/d(z,k) �= 0 is analytic. The square root in (26)
preserves the analyticity property, which proves assertion (ii)
for ζeff. The proof of (i) for ζeff is based on the local density of
states.39 The Green’s function of the multilayer is calculated40

with a point source located in the plane x3 = 0: The value
of the electric field in the same plane is found to be iπζeff.
Since the imaginary part of the Green’s function is positive (it
corresponds to the local density of states), it follows that ζeff

has a positive real part Re(ζeff) � 0. Finally, (iii) is established
by writing the complex frequency z = |z| exp[iφ] and then
taking the limit of the modulus |z| → ∞. In each layer Lm, let
nm and ζm be defined by n2

m = εmμ0 − k2/z2 and ζm = μ0/nm

(s polarization). Then, the expression of elementary transfer
matrix (8) becomes

Tm = exp[−iMmhm]

=
[

cos[znmhm] −i(ζm/z) sin[znmhm]
−i(z/ζm) sin[znmhm] cos[znmhm]

]
.

(27)

Using that the imaginary part of znm is strictly positive, the
following estimate is obtained in the limit |z| → ∞:

Tm ∼
|z|→∞

1

2
exp[−iznmhm]

[
1 ζm/z

z/ζm 1

]
. (28)

And for the transfer matrix T of a symmetric stack

T = Tp · · · T1 ∼
|z|→∞

α

2
exp[−iz〈n〉h]

[
1 β/z

z/β 1

]
, (29)

where α and β are complex numbers depending on the different
nm and ζm, and 〈n〉 is

〈n〉 = n1f1 + n2f2 + · · · + npfp. (30)

The expression (29) is compared to the estimate of the effective
transfer matrix derived from (23):

Teff ∼
|z|→∞

1

2
exp[−izneffh]

[
1 ζeff/z

z/ζeff 1

]
. (31)

Hence the effective index and impedance have the limits

neff ∼
|z|→∞

〈n〉 + i
ln(α)

zh
−→

|z|→∞
n∞ = 〈n〉 (32)

and

ζeff −→
|z|→∞

ζ∞ = β. (33)

To conclude the proof, notice that, if the wave vector k is fixed
and independent of the frequency z, then the numbers nm tend
to the optical indices

√
εmμ0 and the limit n∞ corresponds to

the mean index:

n∞ = √
ε1μ0f1 + √

ε2μ0f2 + · · · + √
εpμ0fp = 〈√εμ0〉.

(34)

For more details on these limits, see the discussion
Sec. V C.

FIG. 3. (Color online) Real (left axis) and imaginary (right
axis) parts of effective refractive index neff(z) for z = ω + 0.001 ×
i, deduced from (24); Kramers-Kronig formula (35) unveils
Re(neff) in plus markers; ε1/ε0 = ε3/ε0 = 2, ε2/ε0 = 12, f1 = f3 =
0.4, f2 = 0.2,

√〈ε/ε0 〉 = √
f1ε1/ε0 + f2ε2/ε0 + f3ε3/ε0 = 2, and

〈√ε/ε0 〉 = √
ε1/ε0f1 + √

ε2/ε0f2 + √
ε3/ε0f3 ≈ 1.82. The vertical

dotted lines highlight the location of the first stop band.

The main result tells us that artificial frequency dispersion,
i.e., z dependence (of effective parameters) generated by
periodic spatial modulation, has the same properties as the
natural frequency dispersion in usual media. Part (i) ensures
passivity, while parts (ii) and (iii) imply that the effective
parameters fulfill causality principle.30 Indeed, from (ii)
and (iii), the Cauchy integral formula can be applied to
the function g(z,k) = neff(z,k) − n∞ to obtain Kramers and
Kronig relations and their generalization:22

neff(z,k) = n∞ − 1

π

∫
R

d
ν Im[neff(ν,k) − n∞]

z2 − ν2
. (35)

Here, we used the fact that the real and imaginary parts of
neff(ν,k) are, respectively, even and odd functions with respect
to the real variable ν (see Sec. V D).

An illustrative example in Fig. 3 confirms that this general-
ization of the Kramers-Kronig relations is satisfied by neff(z,k),
since the solid curve and plus markers of Re(neff) fit each other.
Also, Fig. 3 confirms that, at the infinite frequency limit, the
effective index tends to the mean refractive index 〈√ε 〉.

For the effective surface impedance, a relation similar to
the Kramers-Kronig formula is obtained applying the Cauchy
formula to the function g(z,k) = ζeff(z,k) − ζ∞:

ζeff(z,k) = ζ∞ − 1

iπ

∫
R

dν
Re [ζeff(ν,k) − ζ∞]

z − ν
. (36)

Figure 4 shows that the real and imaginary parts of ζeff(z,k)
can be retrieved from the above formula, which confirms the
causality property of the effective impedance. Also, it reveals
that the support of the real part of ζeff(z,k) is reduced to the
propagation bands, while the support of the imaginary part is
reduced to the band gaps. Note the differences in (36) with the
effective index (35) resulting from the presence of the real part
(instead of the imaginary part) under the integral since it is the
positive quantity. In particular, the difference of parity of the
real and imaginary parts does not yield to an expression with
resonances in 1/(z2 − ν2) like in the Drude-Lorentz model.
However, multiplying both the denominator and numerator
in the integral in (36) by z + ν, it is obtained that a standard
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FIG. 4. (Color online) Real and imaginary parts (respectively,
solid and dashed curves) of effective surface impedance ζeff(z)
for z = ω + 0.001 × i, deduced from (25); while Cauchy integral
formula (36) unveils Re [F (z)] in plus markers; here ε1 = ε3 =
(2 + 0.1 × i)ε0, ε2 = (12 + 0.1 × i)ε0, f1 = f3 = 0.4, and f2 = 0.2.
The vertical dotted lines highlight the location of the first stop band.

Kramers-Kronig relation holds for the ratio {ζeff(z,k) − ζ∞}/z:

ζeff(z,k) − ζ∞
z

= − 1

iπ

∫
R

dν
ν Re [{ζeff(ν,k) − ζ∞}/ν]

z2 − ν2
.

(37)

The real and imaginary parts of this ratio are shown in Fig. 5.
The structure of the real and imaginary parts of this quantity is
similar to that of the effective index, except that the imaginary
part of {ζeff(z,k) − ζ∞}/z can be positive and negative. Indeed,
within the band gaps, the real part of function {ζeff(ω,k) −
ζ∞}/ω takes the values of −ζ∞/ω and thus behaves like −1/ω,
as evidenced in Fig. 5. As for the effective index, in the pth
band gap, the real part of ωneff(ω)h is equal to the constant
pπ , and thus

Re[neff(ω)] = pπ

ωh
, (38)

which behaves like 1/ω (see Fig. 3).

FIG. 5. (Color online) Quantity {ζeff(z) − ζ∞}/z as a function
of the frequency z = ω + 0.001 × i. The parameters defining the
multilayer are given in the caption of Fig. 3. The vertical dotted lines
highlight the location of the first stop band.

V. DISCUSSION

A. Frequency dispersion of the materials

The main result remains valid when (natural) frequency
dispersion is considered in the dielectric permittivity [e.g.,
dielectric constants εm(z)]. Indeed, permittivity is analytic in
the upper half plane of z and theorems on the existence of
Bloch modes and the imaginary part of the Green’s function
can be applied to the most general cases.22,38 A difference is
that the analytic properties of transfer matrix become the same
as those of the dielectric permittivity. Hence, with frequency
dispersion, the transfer matrix is analytic in the upper half
plane of z, and the radius of the convergence disk of effective
parameters in Fig. 2 might be reduced by the frequency
resonances of the materials. Also, when natural frequency
dispersion is considered, all the dielectric constants εm(z) tend
to the vacuum permittivity ε0 when |z| → ∞. In that case,
getting the limits n∞ and ζ∞ is straightforward, for they take
the values of index and impedance in vacuum, i.e.,

√
ε0μ0 and√

μ0/ε0, respectively.

B. Homogenization at infinite frequency

It has been shown that the effective index and impedance
have a limit when the modulus |z| of the complex frequency
tends to infinity. This property is sufficient to close the
integration path in the Cauchy integral formula by a semicircle
with infinite radius, and to obtain Kramers-Kronig relations
like (35) and (36). The same result can be obtained for purely
real frequency ω tending to infinity. In this case, it is necessary
to add an arbitrarily small absorption to all dielectric constants
εm(z). After passing to the limit ω → ∞, the arbitrarily small
absorption can be canceled (low absorption limit). Figure 6
shows an example in which the effective impedance tends to
ζ∞ = ζ1 = √

μ0/ε1 when ω → ∞ in the complex frequency
z = ω + 0.001 × i: A small absorption has been introduced in
the permittivities of the dielectrics to enforce the convergence
of the effective surface impedance.

The limits n∞ and ζ∞, given by (34) and (33), have been
obtained for a fixed wave vector k which is independent of
the frequency z. The limits can also be identified for a fixed
angle of incidence θ (θ = 0 at normal incidence). Let u be the
vector defined by k = zu: It is related to the angle of incidence

FIG. 6. (Color online) Effective impedance ζeff(z) for z = ω +
0.001 × i at large frequency ω. The parameters defining the multi-
layer are given in the caption of Fig. 4.
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by u2 = ε0μ0 sin2 θ . Then all the calculations of the limits n∞
and ζ∞ (see Sec. IV) remain valid for n2

m = εmμ0 − u2 and
ζm = μ0/nm. In particular, the limit of the effective index is

n∞ =
√

ε1μ0 − u2 f1 + · · · +
√

εpμ0 − u2 fp. (39)

Specifically, for small angles θ � 1, the square roots√
εmμ0 − u2 can be approached by

√
εmμ0 − u2/(2

√
εmμ0)

and the multilayered stack becomes an anisotropic homoge-
neous medium with the dispersion law

k2
B

〈√εμ0 〉2
+ k2

〈√εμ0 〉/〈1/
√

εμ0 〉 = z2, (40)

where kB = zneff(z) is the Bloch wave number, 〈√εμ0 〉 is the
mean index (34), and

〈1/
√

εμ0 〉 = f1√
ε1μ0

+ f2√
ε2μ0

+ · · · + fp√
εpμ0

. (41)

Here, it is found that the homogenization of periodic layered
media proposed by Rytov41 can be extended to infinite
frequency. In particular, the dispersion law (40) shows that,
for a binary grating in grazing angle (i.e., θ � 1 with the
present notations), the components of the anisotropic effective
index are related to the mean refractive index 〈√εμ0 〉, as in
usual media for very high frequencies of neutrons.42

Finally, from the expression (38), we note that for high
frequency the pth band gap is centered around the frequency

ωp = pπ

n∞h
. (42)

This estimate of the frequency center ωp of the pth band
gap had already been discovered43 in the particular case of
a periodic multilayer made of two alternative layers with
identical optical thickness.

C. Extension of results to two dimensions and three dimensions

The possibility to extend our results to frequency dispersive
three-dimensional periodic structures is discussed. Using the
auxiliary field formalism,22,38 Maxwell’s equations can be
written as the unitary time evolution equation [∂F/∂t](t) =
−iKF (t), where K is selfadjoint and time independent (see
also the frame of extension of dissipative operators44). Conse-
quently the resolvent [z − K]−1 is analytic if Im(z) > 0, which
prevents the existence of Bloch modes in the upper half-plane
of z. Moreover the imaginary part of the Green’s function is
always positive for Im(z) > 0 since the operator

− 1

2i

[
1

z − K
− 1

z − K

]
= Im(z)

1

z − K
1

z − K
� 0 (43)

is positive. Assuming that appropriate effective parameters
can be defined (see general notions of impedance in Refs. 45–
47), these two properties on Bloch modes and the imaginary
part of the Green’s function can be used to prove causality
principle and passivity. It is, however, stressed that such a
generalization remains a challenging task: In particular, special
attention should be paid to situations where single-mode Bloch
approximation does not apply,47 and to analytic continuations
of Bloch wave number and impedance for complex z.

D. Artificial causality

The results presented in Sec. IV are established from a
system with frequency-independent dielectric constants. Thus
the different materials in the multilayer are not subject to
the causality principle. Yet it has been shown that effective
parameters neff(z,k) and ζeff(z,k) possess all the properties
required by causality principle. Thus, the artificial dispersion
resulting from the mixing of different media has similar
properties to natural dispersion generated at the atomic scale.
In particular, let us assume that the dielectric constants εm

become their complex conjugated εm when the complex
frequency z passes across the imaginary axis (i.e., z → −z).
Then it is found that the real and imaginary parts of the
functions neff(ω,k) and ζeff(ω,k) are, respectively, even and
odd functions with respect to the real variable ω. Hence the
effective parameters neff(z) and ζeff(z) can be derived from
real functions χn(t) and χζ (t) which vanish for negative times.
As pointed out in Sec. V A, all these results remain valid
when natural dispersion is taken into account. In this case both
natural and artificial dispersions are superimposed (see Ref. 43
for a representation of such superimposition).

As a final remark, it is stressed that our investigations
on artificial dispersion have shown that the effective index
neff(z) and impedance ζeff(z) are better suited than the effective
permittivity εeff(z) and permeability μeff(z) to describe the
effective medium of multilayered stacks at higher frequencies.
A similar conclusion is drawn in Ref. 30, §87, where it
is indicated: “As the frequency increases, the spatial non-
uniformity of the field renders impossible a macroscopic
description of it in terms of the permittivity ε; however, a
boundary condition” expressed with the impedance “still holds
at such frequencies.”

VI. CONCLUSION

In summary, we have shown it is possible to replace a pe-
riodic multilayered stack at all frequencies by a homogeneous
effective medium. At low frequencies, analytic expressions
of effective permittivity, permeability, and magnetoelectric
coupling have been derived. At higher frequencies, we find it
is more appropriate to consider instead effective propagation
index and surface impedance. Artificial frequency dispersion is
then shown to possess the same properties as natural dispersion
in terms of passivity and causality: Remarkably it follows
that a periodic arrangement of frequency-independent (and
thus noncausal) dielectric materials makes artificial causality.
These results, based on general properties of existence of
Bloch modes and the sign of the imaginary part of the
Green’s function, open new avenues toward AFH for frequency
dispersive and three-dimensional periodic structures. The AHF
theory which we proposed can also be applied to phononic21,48

and platonic49 crystals, as well as other wave or diffusion
equations.

APPENDIX: ALL FREQUENCY HOMOGENIZATION WITH
MAGNETOELECTRIC COUPLING

The main result of this paper is extended to the general
case: A multilayered stack with nonsymmetric unit cells,
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where artificial magnetoelectric coupling ensues. The general
expression of the transfer matrix is34

T (z,k) =
[

a(z,k) b(z,k)

c(z,k) d(z,k)

]
, ad − bc = 1. (A1)

This matrix is compared to Teff(z,k), the transfer matrix
corresponding to the constitutive equations (12): Its expression
is

Teff(z,k) =
[

aeff(z,k) beff(z,k)

ceff(z,k) deff(z,k)

]
, (A2)

where, omitting the (z,k) dependence,

aeff = cos[zneffh] − Keff

neff
sin[zneffh],

beff = −i
ζeff

z
sin[zneffh],

ceff = −i
z

ζeff

n2
eff + K2

eff

n2
eff

sin[zneffh],

deff = cos[zneffh] + Keff

neff
sin[zneffh]. (A3)

First the effective index is defined by

cos[zneff(z,k)h] = a(z,k) + d(z,k)

2
, (A4)

and then the effective impedance and magnetoelectric coupling
are defined via neff(z,k) by

ζeff(z,k) = iz

sin[zneff(z,k)h]
b(z,k),

Keff(z,k) = neff(z,k)

sin[zneff(z,k)h]

d(z,k) − a(z,k)

2
. (A5)

The arguments to show the properties of the effective index
neff(z,k) are exactly the same as in Sec. IV. Next note that, for
Im(z) > 0, the imaginary part of zneff(z,k) is strictly positive.
Therefore the function sin[zneff(z,k)h] cannot vanish, which

FIG. 7. (Color online) Effective magnetoelectric coupling Keff(z)
for z = ω + 0.001 × i. The curve depicted by red crosses indicates
the value of Re[Keff(z)] deduced by the Kramers and Kronig relation.
The parameters defining the multilayer are given in the caption of
Fig. 3.

implies that the parameters ζeff(z,k) and Keff(z,k) are analytic
functions in the upper half-plane of complex frequencies.

In the limit of infinite frequency, the transfer matrix T of a
stack takes the form

T ∼
|z|→∞

1

2
exp[−iz〈n〉h]

[
α β/z

z/γ δ

]
, (A6)

where α, β, γ , and δ are complex numbers depending on the
different nm and ζm. Hence the effective parameters have the
limits

neff −→
|z|→∞

n∞ = 〈n〉,
ζeff −→

|z|→∞
ζ∞ = β, (A7)

Keff −→
|z|→∞

K∞ = i〈n〉 α − δ

α + δ
.

Again, the Cauchy integral formula can be applied to the
function K(z,k) = Keff − K∞, and the general Kramers-
Kronig relations are evidenced in Fig. 7.
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