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Several lattices, such as the dice or the Lieb lattice, possess Dirac cones and a flat band crossing the Dirac
point, whose effective model is the pseudospin-1 Dirac-Weyl equation. We investigate the fate of the flat band in
the presence of disorder by focusing on the density of states (DOS) and dc conductivity. While the central hub
site does not reveal the presence of the flat band, the sublattice resolved DOS on the noncentral sites exhibits a
narrow peak with height ∼1/

√
g with g the dimensionless disorder variance. Although the group velocity is zero

on the flat band, the dc conductivity diverges as ln(1/g) with decreasing disorder due to interband transitions
around the band touching point between the propagating and the flat band. Generalizations to higher pseudospin
are given.
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I. INTRODUCTION

Flat bands are at the heart of several peculiar phenomena
in condensed matter, especially in the presence of strong
correlations. Prominent examples include (nearly) flat band
ferromagnetism, integer and fractional quantum Hall effect
arising from Landau levels in finite magnetic field, and,
recently, fractional quantum Hall effect at zero magnetic
field.1–3 Engineering flat bands with topologically nontrivial
character has become a major challenge recently in connection
with topological insulators.4,5

In addition to flat bands as surface modes, these also appear
as bulk bands in systems with specific two-dimensional lattice
structures, such as the dice or T3 lattices, the Lieb lattice,
etc. The common feature in the spectrum of these lattices
is a graphene-like Dirac cone, intersected by a completely
dispersionless flat band at the Dirac point (see Fig. 1). These
can be regarded as the pseudospin-1 generalization of the Dirac
equation,6–10 and arise in the family of higher pseudospin
generalizations of the Dirac equation, proposed in Refs. 11–13.

While many of their properties are well understood,
including topology, not much is known about their transport
properties,10 which promise many excitement in light of
the fascinating transport properties of their pseudospin-1/2
counterpart in graphene. There, the universal value of the
minimal conductivity at half-filling14 attracted significant
attention over the years, whereby the decreasing number of
charge carriers as the charge neutrality point is approached
exactly compensates their increasingly long lifetime.

Charge transport in the pseudospin-1 family of Dirac-Weyl
fermions seems to be nontrivial as well. Due to the flat band,
the density of states (DOS) exhibits a sharp peak at the
neutrality point, though the group velocity on the flat band
is identically zero. Consequently, at least two scenarios seem
plausible for the behavior of the dc conductivity: it can remain
insensitive to the flat band or it can be influenced by the
large number of available states on the flat band. Intriguingly,
none of these simple pictures are completely correct: while

the dc conductivity solely from the flat band vanishes due
its zero velocity, interband transition between the flat and
adjacent propagating bands are possible at the band touching
degeneracy point, and this transition causes the divergence of
the dc conductivity in the pure system precisely due to the zero
flat band velocity. In the presence of disorder, this divergence is
cut off logarithmically by the disorder strength, as we show by
a careful numerical and analytical investigation of the problem.

Experimentally, the dice lattice can be realized from a
trilayer structure of the face-centred cubic lattice, grown in
the [111] direction.13 In particular, SrTiO3/SrIrO3/SrTiO3

trilayer heterostructures15 were found to realize the dice
lattice structure, though further ab initio studies are desirable
to decide how faithfully it can be described by Eq. (1).
Additionally, the dice or Lieb lattices can be created via
optical means in the cold atomic setting, and disorder can be
introduced in a controlled manner using speckle potentials16,17

or by using holographic mask, enabling arbitrary geometries,
to generate the desired lattice structure with disorder.18 While
the local DOS has long been measurable by, e.g., time of
flight imaging or rf spectroscopy,16 the dc conductivity is also
accessible in this setting as well.19 Although cold atoms are
neutral, the equivalent of an elecric potential can easily be
created by tilting the trapping potential or by accelerating
the lattice. In addition, the current between two macroscopic,
density imbalanced reservoirs, connected by a narrow channel
was investigated recently.19 This opens the way towards
quantum transport simulation with quantum gases.

II. DENSITY OF STATES

The dice lattice, shown in Fig. 1, consists of a sixfold coor-
dinated hub site (H ) and two threefold coordinated rim sites
(A and B) within its unit cell, with uniform hopping integrals
t . Its Brillouin zone is hexagonal, and contains low-energy
excitations close to zero energy at the two nonequivalent
corners of the Brillouin zone,6 similarly to graphene.20 These
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FIG. 1. (Color online) A small segment of the dice or T3 lattice,
consisting of two, one sublattice sharing (circles, hub site) honeycomb
lattices, is shown (left), where the lines denote uniform hoppings
t , together with its low-energy spectrum around the corners of the
hexagonal Brillouin zone, featuring a flat band at the touching point
of the Dirac cones (right).

are described by the pseudospin-1 Dirac-Weyl equation as13

H0 = vF S · p, (1)

where vF is the Fermi velocity, p = (px,py) and

Sx = 1√
2

⎛
⎜⎝

0 1 0

1 0 1

0 1 0

⎞
⎟⎠ , Sy = 1√

2

⎛
⎜⎝

0 −i 0

i 0 −i

0 i 0

⎞
⎟⎠ . (2)

The resulting band-structure consists of three bands as
E±(p) = ±vF |p| and E0(p) = 0. The density of states (DOS)
reads as

ρ(ω) = Ac

2π

|ω|
v2

F

+ δ(ω) = 2|ω|
D2

+ δ(ω) (3)

for |ω| < D per spin, valley and unit cell, Ac = 4π/k2
c being

the unit cell area. Here, kc is the momentum space cutoff
and D = vF kc is the half-bandwidth. The DOS satisfies∫ D

−D
dωρ(ω) = 3 and remains linear in energy close to half-

filling, similar to graphene, but exhibits a sharp peak due to
the flat band6 at zero energy.

The effect of weak disorder is modeled by adding a short-
range Gaussian potential as

U (r) =

⎛
⎜⎝

UA(r) 0 0

0 UH (r) 0

0 0 UB(r)

⎞
⎟⎠ , (4)

where UA(r)UA(r′) = U 2δ(r − r′) (and similarly for sublattice
H and B) with no intersublattice disorder correlation. The
overline represents disorder averaging. To determine the
structure of the self-energy, we study the effect of disorder
within the self-consistent Born approximation (SCBA) as

�(iωn) = U 2

N

∑
p

G(p,iωn), (5)

where N is the number of unit cells,

G(p,iωn) = [iωn − H0 − �(iωn)]−1, (6)

and ωn is the fermionic Matsubara frequency. The off-diagonal
elements of the Green’s function vanish after momentum
integration, and the self-energy reads as

�(iωn) =

⎛
⎜⎝

�A(iωn) 0 0

0 �H (iωn) 0

0 0 �A(iωn)

⎞
⎟⎠ . (7)

The self-energy highlights the distinct structure of sublattice
H , i.e., hopping from A to B is only possible through H . The
self-consistency equations are expressed as

�A(iωn) = g

8

(
D2

z1
− z0 ln

(
1 − D2

z0z1

))
, (8a)

�H (iωn) = −g
z1

4
ln

(
1 − D2

z0z1

)
, (8b)

where g = U 2Ac/πv2
F = 4U 2/D2 is the dimensionless dis-

order strength, and z0,1 = iωn − �H,A(iωn). Long-range dis-
order corresponds to UA(r) = UH (r) = UB(r) in Eq. (4),
which interestingly yields the same self-energy. Similarly,
randomly distributed substitutional impurities with strength
Ui and concentration ni also give the same self-energy in
the Born approximation with g ∼ niU

2
i , though with different

numerical prefactors.
In general, these equations can only be solved numerically

by, e.g., iteration, but analytical treatment is possible in certain
limiting cases. At the Dirac point, after analytical continuation
to real frequencies, we obtain

�A(0) = −i

√
gD

23/2
, �H (0) � −i

g3/2D

8
√

2
ln

(
32

g2

)
. (9)

The self-consistency equation of �H (0) in the Born limit
parallels closely the self-energy of graphene21,22 and d-wave
superconductors23 in the unitary limit. For high energies
(D � |ω| � √

g/2D), we get for real frequencies,

�1(ω) = g

(
D2

8ω
− ω

4
ln

(
D

|ω|
))

− iπ
g|ω|

8
, (10a)

�0(ω) = −g
ω

2
ln

(
D

|ω|
)

− iπ
g|ω|

4
, (10b)

and the real parts are practically negligible with respect
to ω.

The knowledge of the self-energies gives immediate access
to the sublattice resolved DOS, which reads after analytical
continuation as

ρA/H (ω) = − Im[�A/H (iωn → ω + iδ)]

πU 2
(11)

per spin and valley, respectively, δ → 0+. The DOS on sublat-
tice B is identical to A. The total DOS is then 2ρA(ω) + ρH (ω),
which is dominated by the first term at low energies, the
second one only contributes to the linear in energy region
for D � |ω| � √

g/2D.
This reproduces the linear in energy DOS at high energies

and weak disorder. Since the flat band exists on sublattice
A and B13 (i.e., its spinor component on H is zero), the
local DOS on sublattice H does not probe its presence in
the spectrum, therefore it does not contain the Dirac δ peak,
only the graphene-like linear in energy part. In the presence of
disorder, the zero-energy peak in A and B sublattices broadens
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FIG. 2. (Color online) The zero-energy DOS of the T3 lattice
is shown from KPM, the red squares/blue circles corresponding to
sublattice resolved DOS of H and the inverse DOS of A, respectively.
The solid lines are the results from the SCBA using Eqs. (8) and (11)
(with an overall normalization factor as fitting parameter), while the
dashed lines stem from the approximate expressions in Eq. (12).

with width
√

g/2D, while ρH (ω � 0) develops a flat plateau.
Their heights are

ρA(0) =
√

2

πD
√

g
, ρH (0) =

√
g

πD23/2
ln

(
32

g2

)
. (12)

In spite of the fact that the DOS on sublattice H is graphene-
like for the clean system, the effect of disorder on its low-
energy part is completely distinct from that in graphene.21,24

The SCBA ignores localization effects,21,22 and is expected
to be reliable sufficiently far away from the Dirac point,
where the clean DOS vanishes. In order to address its validity,
we have performed extensive numerical simulation on the
dice lattice, containing 2000 × 2000 sites with Gaussian
distributed potential disorder (with zero mean and U 2 variance)
using the kernel polynomial method (KPM).25 The analytical
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FIG. 3. (Color online) The sublattice resolved DOS is shown from
the KPM calculation on the T3 lattice for Gaussian disorder with
standard deviation U/t = 0.1 (blue solid), 0.25 (red dashed), and 0.5
(black dash-dotted) in left panel. The right panel visualizes the SCBA
results for

√
g = 0.1 (blue solid), 0.25 (red dashed), and 0.5 (black

dash-dotted).

predictions as well as the numerical results are shown in Figs. 2
and 3. The SCBA for Eq. (1) in the continuum limit reproduces
all the main features seen in the numerics for the dice lattice,
including a dip in the H sublattice DOS at

√
g/2D.

III. DC CONDUCTIVITY

The dc conductivity is evaluated after dressing the current-
current correlation function with impurity lines. The current
operator in the x direction is jx = evF Sx . Assuming short
range scatterers, only self-energy corrections are present,
vertex corrections vanish, similarly to the case of graphene.21,24

Long-range scatterers would yield finite vertex corrections,
though. Then, the dc conductivity is obtained from the Kubo
formula

σxx = lim
ω→0

Re
χxx(iωm → ω + iδ)

iω
, (13)

where

χxx(iωm) = − 1

A

∑
p,n

Tr[G(p,iωn)jxG(p,iωn−m)jx]. (14)

Here, ωm and ωn are the bosonic and fermionic Matsubara
frequencies, respectively and disorder averaging has already
been performed. After some algebraic manipulation, we obtain
the dc conductivity at a given chemical potential μ and at zero
temperature as

σxx = 1

πA

∑
p

Tr[G(p,μ + iδ)jxG(p,μ − iδ)jx] (15)

per spin and valley, A = NAc is the total area of the system and
σyy = σxx and the off-diagonal elements are zero. Performing
the momentum integral, and using Eq. (8), we finally get, upon
restoring original units,

σxx = 2σ0Re

[
2i

∣∣x2
1

∣∣Re(x0) + x0Im
(
x2

1

)∣∣x2
1

∣∣Im(x0x1)g
�H (μ)

]
, (16)

where x0,1 = μ − �H,A(μ), and σ0 = e2/πh is the universal
minimal conductivity per spin and valley of pseudospin-1/2
Dirac fermions26 at half-filling, also found by numerical
studies.27

For finite doping, after expanding the self energy to second
order in g using Eq. (8), and plugging the resulting expressions
into Eq. (16), we obtain the conductivity. It becomes practically
constant with a weak logarithmic doping dependence for√

g/2 � |μ|/D � 1 as

σxx = σ0
8

3g

(
1 − g

4
ln

(
D

|μ|
))

, (17)

which agrees qualitatively with that of graphene.21 Due to the
finite doping, this is dominated by intraband contributions, and
the presence of the flat band does not play a role. The weak
chemical potential dependence of the conductivity is plotted
in Fig. 4, together with the numerical computation of the Kubo
formula using KPM.28

At the charge neutrality point, Eq. (16) simplifies to

σxx

σ0
= ln

(
1 − 2D2

�H (0)�A(0)

)
= 4�H (0)

�A(0)g
� ln

(
32

g2

)
, (18)

161413-3



RAPID COMMUNICATIONS
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FIG. 4. (Color online) The scaled dc conductivity per spin and
valley for U/t = 0.1 (blue solid), 0.25 (red dashed), and 0.5 (black
dash-dotted) is shown as a function of the chemical potential from the
KPM calculation of the T3 lattice with 2000 × 2000 sites (left panel).
The right panel visualizes the same quantity calculated from SCBA
in the continuum limit for

√
g = 0.1 0.25 and 0.5 with the same color

coding.

and remains roughly unchanged for finite doping in the
|μ| <

√
g/2D range, as seen in Fig. 4. The agreement

between KPM and SCBA becomes better with increasing
system sizes: the average level spacing in the propagating
bands is ∼t/N , while the broadening of the flat band is
∼U . As long as the former is smaller than the latter, the
numerics reproduces Eq. (18). Therefore the dc conductivity
diverges with decreasing disorder strength as ln(1/g) due to
the presence of interband transitions between adjacent bands:
when bands touch (flat and propagating, see Fig. 1) at the Dirac
point, interband transitions are possible in the dc limit.

This can be understood in the constant relaxation time
approximation, when an interband transition contributes to σxx

at the Dirac point with
∫

d2k|Mn,n+1|2ρn(k)ρn+1(k), where
Mn,n+1 is the matrix element between band n and n + 1.
Here, ρn(k) = 	/(	2 + ε2

n(k))π and εn(k) = vn|k| are the
spectral function and energy dispersion of the nth band,
respectively, and 	 is the scattering rate. In the case of two
linearly dispersing bands, this yields σxx ∼ ln(|vn/vn+1|). In
the case of a flat band, vn = 0 and the integral is both infrared
and ultraviolet divergent for 	 = 0 due to its dispersionless
spectrum. While the latter is cured by a natural high energy
cutoff D, the former requires another energy scale, i.e., the
scattering rate, yielding the above logarithmic divergence
in Eq. (18), as seen in Fig. 5, confirmed also numerically
from the Kubo formula using KPM. Such transitions are, in
principle, also present for graphene at the Dirac point but
vanish due to the identical velocities in the upper and lower
Dirac cones. Note that in spite of the distinct dc conductivities
of the pseudospin-1/2 and 1 Dirac-Weyl fermions around zero
doping, the zero-frequency limit of their optical conductivites
are finite and comparable.13

For higher pseudospin generalizations of the Dirac-Weyl
equation11,13 in Eq. (1), where S = (Sx,Sy) is the matrix
representation of an arbitrary spin S (integer or half-integer),
interband transitions between two adjacent, propagating bands
give a finite contribution the dc conductivity at the Dirac point.
For a perfect pseudospin-S Dirac equation with half-integer S,
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FIG. 5. (Color online) The dc conductivity per cone is shown as a
function of the disorder variance from the KPM on the dice lattice for
2000 × 2000 (blue circles) and 600 × 600 (red squares) sizes, error
bars indicated, solid lines connecting the symbols are guides to the
eye. The SCBA yields the solid black line from the first equality in
Eq. (18), while the thin black dashed line is the approximate ln(32/g2)
expression.

the spectrum is En(p) = nvF |p| with n = −S, . . . ,S, thus all
bands are propagating. The electric current operator is jx =
evF Sx in the x direction. The universal minimal conductivity
is obtained, using Eq. (15) as

σS(μ = 0) = σ0

2

[(
S + 1

2

)(
S + 3

2

)

+
S∑

n=1/2

S(S + 1) − n(n + 1)

2n + 1
ln

(
n + 1

n

)]
,

(19)

where the first term stems from intraband processes and the
logarithmic terms come from interband transitions between
adjacent bands with velocities nvF and (n + 1)vF . As an
example, this gives σ3/2 = σ0[3 + 3

4 ln(3)] for S = 3/2 and
grows with S2 for S → ∞. For integer S, the conductivity
diverges due to the flat band as ∼S(S + 1) ln(1/g), similarly
to the S = 1 case in Eq. (18).

IV. SUMMARY

In conclusion, we have studied the disordered S = 1 Dirac-
Weyl equation analytically using the SCBA and numerically
by the KPM on the dice lattice. The contribution of the flat band
is only present in the sublattice resolved DOS for the rim sites.
The dc conductivity diverges logarithmically with decreasing
disorder due to interband transitions at the band touching
point between the flat and propagating bands from the SCBA,
showing excellent agreement with KPM. The divergence of the
dc conductivity is a general feature for integer pseudospin-S
Dirac-Weyl fermions, and is expected to hold true whenever
a propagating and a flat bands touch, i.e., also for the kagome
lattice. Their half-integer pseudospin-S counterpart with no flat
band possesses a universal minimal conductivity at half-filling,
though with a value different from that in graphene.
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