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Noise-protected gate for six-electron double-dot qubit

Sebastian Mehl1,2,* and David P. DiVincenzo1,2,3

1Peter Grünberg Institute: Theoretical Nanoelectronics, Forschungszentrum Jülich, D-52425 Jülich, Germany
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Singlet-triplet spin qubits in six-electron double quantum dots, in moderate magnetic fields, can show superior
immunity to charge noise. This immunity results from the symmetry of orbitals in the second energy shell of
circular quantum dots: singlet and triplet states in this shell have identical charge distributions. Our phase-gate
simulations, which include 1/f charge noise from fluctuating traps, show that this symmetry is most effectively
exploited if the gate operation switches rapidly between sweet spots deep in the (3,3) and (4,2) charge stability
regions; fidelities very close to 1 are predicted if subnanosecond switching can be performed.
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The spin degree of freedom of the few-electron quantum
dot (QD) is an excellent building block for a qubit. While
a single electron spin may serve directly as a qubit,1 the
difficulty of single-qubit operations makes it desirable to
encode a qubit in a multielectron state. Considerable success
has been achieved with a two-electron encoding,2 in which
the singlet and spinless triplet levels of the double quantum
dot (DQD) define a logical qubit.3 Electric pulses, applied
on the microsecond scale, permit all necessary one-4,5 and
two-qubit6,7 operations when supplemented by magnetic field
gradients.8–10

This paper addresses the crucial exchange gate, which has
provided a route to impressive progress in the singlet-triplet
qubit.4,5 In this gate a DQD is moved away from the “neutral”
electron distribution, i.e., having one electron on each QD
[referred to as (1,1)] to one having a slight bias towards
double occupancy of one QD [e.g., the left QD: (2,0)]. Only
the singlet configuration permits electron transfer from (1,1)
to (2,0), while transfer from the triplet state is blocked (Pauli
spin blockade). Exchange gates allow fast qubit manipulations
since they couple strongly to the charge instead of the spin
degree of freedom. But new noise mechanism consequently
emerge: Low-frequency switching of charge traps become a
major problem.11–13

Here we show that, paradoxically, the exchange gate will
be much less susceptible to change noise if the DQD is pulsed
fully from the (1,1) to the (2,0) regime. Pulsing far into the
(2,0) region also lifts the spin blockade for the triplet state, as
an excited orbital state becomes energetically accessible.14,15

The singlet-triplet splitting is highly protected from charge
noise deep in the (2,0) region. We show that the fidelity of
exchange gates will be excellent under two conditions: (1) the
pulse rise and fall times should be subnanosecond, and (2)
the electrons should be in the second shell, so that singlet and
triplet states have the same charge distribution. This means that
the best exchange gate is predicted to occur for the six-electron
DQD with four nonparticipating “core” electrons, so that the
desired transition is actually between (3,3) and (4,2).

Presently only one other approach has been proposed to
mitigate charge noise. There is the suggestion to encode
singlet-triplet qubits into many-electron QDs (N > 3), so
that background electrons may screen charge fluctuations.16–18

This approach involves strong renormalizations of the QD’s
one-particle wave functions when interacting with charge
traps; our approach is quite distinct, involving only weak state
renormalizations.

Model. Our description of DQDs starts with the single-
particle eigenstates of a circular QD with confining potential
V (x,y) = mω0

2 r2 (Refs. 19 and 20) and out-of-plane magnetic
field B. The eigenstates are the Fock-Darwin (FD) states ψn,l ,21

with energies En,l = (2n + |l| + 1)h̄� − βh̄ωc;22,23 ωc = eB
2m

and �2 = ω2
0 + ω2

c . We consider moderate B fields: the
degeneracies En,l , for the same l, are lifted, but En,l with
different n do not cross (ωc/ω0 � 1). The single-particle
eigenstates are grouped into “atomic” energy shells.24 The
ground state ψ0,0 is well separated from the first two excited
states ψ0,±1.

We employ a description for few-electron DQDs that takes
into account multiple energy levels and electron-electron
interactions.25,26 As in the work of Burkard et al.,19 we
construct a Hubbard model building upon the FD states. In
contrast to more numerically oriented techniques, such an
approach relies heavily on the chosen basis as couplings
to other states are neglected. It has the advantage that all
obtained results can be understood analytically. For two-
electron DQDs, we include only the (1,1), (2,0), and (0,2)
electron configurations. The singlet (S) and sz = 0 triplet (T)
state can be written as the product of spin and orbital part:
�S/T = {φ1,φ2}s/a ⊗ |↑↓〉∓|↓↑〉√

2
. The electrons occupy states

φi , which need to be symmetrized/antisymmetrized for the
S/T state (as indicated by {· · · , · · ·}s/a).

In general, we cannot use a single FD state ψn,l for
the description of the states φ1/2 directly. But in the (1,1)
configurations, φ1/2 is close to the FD ground state ψ

L/R

0,0 on
the left/right QD. In the (2,0) and (0,2) singlet configurations,
both electrons fill the same orbital ground state, close to ψ

L/R

0,0
on the respective QD. For the triplet, the Pauli exclusion
principle requires two different states to be occupied, such
that one electron is in ψ

L/R

0,0 and the second is in ψ
L/R

0,1 . As in

atoms, the first electron shell ψ
L/R

0,0 is completed with two
electrons in a singlet. We assume that in the six-electron
configuration the first two electrons on each QD complete
this first shell. We then adopt a frozen-core approximation:
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The (3,3) configuration for six-electron DQDs is therefore
equivalent to the (1,1) configuration for two-electron DQDs
[and similarly the (4,2)/(2,4) and (2,0)/(0,2) configurations].
One just needs to use the appropriate orbital wave function of
these “valence” electrons. The valence orbital ground state is
then ψ

L/R

0,1 , while the first excited state is ψ
L/R

0,−1.
The two-electron DQD Hamiltonian is expressed in the

basis (1,1)S/T , (2,0)S/T , and (0,2)S/T [and equivalently,
without further specification, (3,3)S/T , (4,2)S/T , and (2,4)S/T

for the six-electron DQD]:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 τS 0 τS 0
0 0 0 τT 0 τT

τS 0 US − ε 0 0 0
0 τT 0 UT − ε 0 0
τS 0 0 0 US + ε 0
0 τT 0 0 0 UT + ε

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(1)

The diagonal entries describe the energy of each state. The
difference between (1,1)S and (1,1)T matrix elements is
neglected, since it is commonly small.19 Unequally occupied
QDs are higher in energy by US/T .27 
 ≡ UT − US is
the energy difference between the doubly occupied states.
Electrostatic bias, modeled by the parameter ε, influences
the relative state energies of uniform and unequal electron
arrangements. The off-diagonal elements in Eq. (1) describe
the spin-conserving hopping process of electrons between the
dots.

Figure 1 shows the energy spectrum as a function of ε. Close
to state degeneracies |ε| = Uσ , the hopping process hybridizes
electron configurations of the same total spin. The ground state

FIG. 1. (Color online) Energy diagram for two- and six-electron
DQDs, as described by Eq. (1): Electrostatic bias, modeled by ε,
transfers one electron from uniform electron distribution on the two
QDs towards two excess electrons on the left QD. The blue/red
line represents the singlet/triplet ground state ES/T ; black curves
are excited states. Charge noise generates fluctuations between ES

and ET , as described in the main text. The electron configurations
are highly insensitive to charge noise at ε = 0 (the “neutral” electron
configuration) and ε = εHB (the “high-bias” configuration far away
from the two anticrossings). The inset shows the charge stability
diagram following van der Wiel et al. (Ref. 28). (nL,nR) is the stable
charge configuration on the left and the right QD. VL/R describes
electrostatic voltages applied to the left/right QD; red arrows indicate
gate tunings corresponding to the energy diagram.

ES/ET is shown in blue/red. At ε = 0, both energy levels
are mainly in the (1,1) charge configuration, and their energy
difference is minimal. ES and ET are lowered in energy for
increasing bias, due to the transfer of electrons between the
QDs. For large ε, the ground states are close to (2,0)S,T with
an energy difference 
; we indicate one point deep in the (2,0)
region as the “high-bias” configuration ε = εHB .

Our treatment of few-electron DQDs is not self-consistent;
it employs energy spectra of single-particle states, which
are successively filled with electrons. The FD states are
a valid ansatz for the description of few-electron QDs, if
the electron-electron interaction influences the single-particle
energies weakly or shifts all energy levels by a fixed value.
The last scenario is consistent with the calculations of Güçlü
et al., where the addition energy of interacting electrons has a
constant offset compared to the noninteracting case.29 This is
consistent with the constant-interaction model, introduced by
Averin and Likharev,30,31 in which the energy spectrum of QDs
remains unchanged when an electron is added to or removed
from a QD.

Charge noise. Charge noise is generally modeled by a
random distribution of classical two-level fluctuators (TLFs),
which couple electrostatically to QDs.32,33 If the occupations
of the charge traps (CTs) vary with a broad distribution of
fluctuation rates, 1/f noise is generated. The coherence of the
QD decreases, as seen by the time evolution of superpositions:

〈σx〉(t) = 〈
e−i

∫ t

0 dt ′ EST (t ′ )
h̄

〉 ≈ e
−( t

T2
)2

σ ideal
x (t). (2)

EST (t) is the time-varying energy difference of the qubit levels,
which deviates from the ideal value due to the coupling to
TLFs: δEST = EST − 〈EST 〉. 〈. . .〉 describes averaging over
many experiments. Assuming a static environment during one
run, the coherence time T2 is related to the statistics of the
TLFs: T −1

2 = σδE/
√

4π ; σ 2
δE = ∫ ∞

−∞ dtδE2(t).12,34–36

We analyze the relative energy shift of the qubit levels of a
DQD which couples to a CT. In first-order perturbation theory
the fluctuation of the singlet-triplet splitting is described by37

δE
(1)
ST = 〈�T |e�CT|�T 〉 − 〈�S |e�CT|�S〉. (3)

�CT is the electrostatic potential of a CT. Since for QDs that
are suitable for qubits, CTs are at some distance from the
QD center, we make a multipole expansion of �CT: �CT ≈
�(r0) − E(r0) · r − 1

2 [∂iEj (r0)]rirj .38 r0 is the position of
the CT relative to the center of the DQD; r is the QD electron
coordinate. This expansion resolves the coupling of a TLF into
dipole (−E · d) and quadrupole [−(1/2)(∂iEj ) · Qij ] terms;
di = e〈�|ri |�〉, and Qij = e〈�|rirj |�〉 are the first two
electric moments of the DQD. We analyze two points in the
charge stability diagram ε = 0 and ε = εHB (“sweet spots,”
introduced in Fig. 1) at which coupling is weak to TLFs. High
couplings are obtained if the qubit states have different dipole
moments, which generate energy shifts scaling like, e.g., 1/r2

0 .
The eigenstates of the singlet-triplet qubit of Eq. (1) can

be approximated at ε = 0: �S/T ∝ |11〉S/T − τS/T

US/T
(|0,2〉S/T +

|2,0〉S/T ).39 These have equivalent dipole moments for the
two-qubit levels; the charge distribution of a DQD arranged
in the x direction has mirror symmetry to the y-z plane. The
quadrupole contribution describes the spread of the charge
distributions. The unequal degree of hybridization of the
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singlet and the triplet state creates different variances in the x

direction: δE
(1)
ST ≈ [( τS

US
)2 − ( τT

UT
)2] · ed2

0
4 · e

4πε0εr
( x2

0

r5
0

− 1
r3

0
). The

first factor describes the hybridizations for the singlet and
the triplet, the second factor involves the interdot distance d0

of the DQD, and the third factor is the gradient contribution
of the electric field of the TLF. It describes an energy
shift proportional to the hybridization of the ground state
(τS/T /US/T )2, which decays like 1/r3

0 in the TLF-QD distance.
A similar expression holds for the six-electron DQD.

Considering the two-electron DQD for high bias (ε = εHB),
the left QD is lower in energy than the right QD. We assume
we are far away from the transition region in which the valence
electrons occupy single-particle eigenstates of the left QD. For
the singlet both electrons are placed into ψL

0,0; for the triplet one
electron occupies ψL

0,0, the other ψL
0,1. The dipole contributions

to Eq. (3) vanish, because the charge distribution of �S and �T

are both centered at the left QD. The quadrupole contribution

of Eq. (3) is δE
(1)
ST ≈ ( eh̄

4m�
) · e

4πε0εr
( x2

0 +y2
0

r5
0

− 2 z2
0

r5
0
). The first

factor comes from the different spread of the density of the
qubit states, while the second factor describes the influence of
the CT. We find a 1/r3

0 scaling in the CT-QD distance as for
the low-bias sweet spot.

The situation improves for six-electron DQDs. As the va-
lence electrons’ wave functions ψ0,±1 are complex conjugates
of each other, not only the quadrupole term of Eq. (3), but
all multipole contributions vanish. δE

(1)
ST depends only on

the charge density of the single-electron wave functions, as
e�CT in Eq. (3) contains exclusively single-particle operators.
The second-order dipole contribution of TLFs (second-order
Stark effect) vanishes accordingly, since it involves only an
overall shift of the confining potential. The first nonvanishing
contributions are second-order quadruple couplings: δE

(2)
ST ≈

− e
2 (∂iEj )2 |〈ψ0,1|ri rj |ψ0,−1〉|2

E0,1−E0,−1
. We note that this contribution has

1/r6
0 scaling with the CT-QD distance, which suppresses

δE
(2)
ST considerably. This protection criterion for six-electron

DQDs is strongest for perfect circular symmetry. For weakly

elliptic QDs, V = mω2
0

2 ρ2(1 + β cos(2φ)), the diagonal terms
of the quadrupole tensor differ, weighted by the ellipticity β:
Qxx,yy

φ0,1
− Qxx,yy

φ0,−1
≈ ∓β 3h̄

mωc
+ O(( ωc

ω0
)2), giving a small 1/r3

0
contribution.

A summary of δEST is given in Table I. For ε = 0, a
sweet spot is present for both the (1,1) and (3,3) cases. δEST

comes from a direct coupling of TLFs to the quadrupole
moment of the DQD. The energy shifts are on the order of
a few gigahertz, corresponding to a dephasing time of ns.
This time scale is consistent with experiments on DQD charge
qubits.40,41 Another sweet spot is identified at ε = εHB . For
two-electron DQDs the scaling in r0 is identical to ε = 0, only
lacking the hybridization factor (τS/T /US/T )2. T2 is improved
for six-electron DQDs, as the CTs modify EST coupling only
to the quadrupole moment in second order.

Robust single-qubit gating. We have identified two points
ε = 0 and ε = εHB that are well isolated from external noise
sources. It is possible to manipulate the qubit while staying
mainly at these sweet spots. Changing the magnitude of EST

produces a phase gate: U = Jσz, J = ∫ t

0 dτEST (τ ). EST is
small at ε = 0, while at ε = εHB , EST = 
. A possible gate
sweep starts from ε = 0, tunes the bias rapidly to ε = εHB ;

TABLE I. Influence of CTs on two- and six-electron DQDs. EST

is shifted, depending on the distance r0 between CT and DQD.
Two sweet spots ε = 0 and ε = εHB are identified (cf. Fig. 1). The
hybridization factor (τS/T /US/T )2 [parameter introduced in Eq. (1)]
enhances the coherence time for ε = 0. δEST decreases with r0. Note
that for the six-electron DQD the decay is much faster at ε = εHB : the
CTs and the qubit couple only in second-order perturbation theory.

ε = 0 ε = εHB

two and six electrons two six

Mechanism Coupling to electric quadrupole moment

direct direct second order
Scaling ∼ (

τS/T

US/T
)2 1

r3
0

∼ 1
r3
0

∼ 1
r6
0

T2 ∼ns <ns >ns

after some waiting time the bias is brought back to ε = 0 (cf.
inset of Fig. 2). While the manipulation must be fast to avoid
charge noise, it should still be adiabatic with respect to the
coupling to excited states (cf. Fig. 1). The slew rate is limited
by the leakage to higher states, which is approximated with the
transition probability at a Landau-Zener crossing of strength
τ which is crossed with velocity vslew:42 PLZ = e−2π(τ 2/h̄vslew).
Since the tunnel coupling enters PLZ quadratically, realistic
values of τ allow very fast manipulations with permitted pulse
lengths far below nanoseconds.

We show a fidelity analysis of a π -phase gate for a two- and
six-electron DQDs in Fig. 2. The slew rates are fixed through
PLZ to produce negligible leakage.43 We use similar densities
of the CTs for the two- and six-electron DQDs, which are
positioned randomly around the DQD to generate 1/f noise;

FIG. 2. (Color online) Fidelity analysis for π -phase gate for a
two/six-electron DQD, shown in red/blue. Points are from simulations
involving 1/f noise sources. The fidelities are poor for slow
manipulation times, which are required by small tunnel couplings
τ = τS = τT ; cf. the transition probability at a Landau-Zener crossing
PLZ . Increasing τ allows faster qubit manipulations, which increases
the fidelity. The fidelity of the six-electron DQD approaches 1, while
it stays much lower for the two-electron system. The solid lines are fits
using Eq. (2), with T2 = 1.5/29.3 ns for the two/six-electron system.
The inset describes the pulse profile of a π -phase gate. Starting from
ε = 0, the DQD is biased to ε = εHB ; we linearly increase ε for a time
tslew. The qubit stays at ε = εHB for twait; finally the qubit is brought
back to ε = 0, picking up in total an odd number of π rotations. The
overall gate time equals 2tslew + twait.
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the coupling to CTs vary the parameter 
 through electrostatic
couplings to the DQD potential. We exclude a volume around
the QD, where no CTs are permitted; such nearby TLFs make
the DQD completely nonfunctional as a qubit. We take the
excluded volume for two-electron DQDs to be considerably
larger than for the six-electron system. Fluctuations in the
coupling or the pulse profiles are disregarded. The sweet spots,
especially ε = εHB , offer the advantage that EST does not
change over a wide range of ε.

The fidelity of the gate, both for the two-electron and
the six-electron systems (blue/red), is low for small tunnel
couplings τ . The fidelity increases very quickly with τ for
six-electron DQDs and reaches an ideal value very close to 1.
The improvement of the fidelity for the two-electron system
is much slower. We approximate the curves according to
Eq. (2), yielding a coherence time of 1.5 ns for the two-electron
system and 29.3 ns for the six-electron case. Steps seen for the
two-electron system are generated by different waiting times
in (2,0) when constructing a π -phase gate; a one-parameter fit
to Eq. (2) cannot completely reproduce these results.

Conclusion. We propose a fast and robust way to manipulate
singlet-triplet qubits (STQs) via a high-bias phase gate.
Contrary to current realizations of phase gates, our approach
works by going to high bias. The qubit couples weakly to
CTs; we manipulate rapidly between two sweet spots. The
“high-bias” sweet spot εHB is not at a specific point in the
charge diagram; there is a large range of parameters where
EST is constant. Note that the Rabi rotation gate needed for
full qubit control is envisioned to occur also at a sweet spot
(at ε = 0), employing magnetic field gradients. It is worth
pointing out that the proposed high-bias phase gate works

also as a maximally entangling two-qubit gate for single-QD
qubits.1

It would be favorable for our proposal for DQDs to
have small singlet-triplet energy splitting at ε = εHB (
,
cf. Fig. 1), to give comfortable electrical manipulation times
(subnanosecond has become accessible44). DQDs with 
 on
the order of 30 GHz have been reported.15 One can decrease
the singlet-triplet energy splitting further by using favorable
dot sizes and external magnetic field parameters. Indeed, we
note that a transition from a singlet to a triplet ground state is
indicated in calculations on four-electron QDs.45 However,
a triplet ground state is not permitted in our parameter
regime of moderate magnetic fields and QDs with weak-state
renormalizations from Coulomb interactions.

A clear prediction of our work is that the many-electron
QDs, specifically those for which the valence electrons
occupy the second shell, are uniquely suited to protect
STQs from charge noise, because singlet and triplet charge
densities are identical in the second shell. The manipula-
tion of our six-electron STQs can be performed the same
way as for the two-electron DQDs, including initialization,
manipulation, and measurement. Additional noise sources,
which couple in via the charge density, like pure phonon
dephasing,46,47 are also directly suppressed in our approach.
We are hopeful that the prospect of an order of magnitude
improvement in gate fidelity will motivate further experimental
exploration of the multielectron regime in quantum dot
qubits.
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