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The valley Chern and spin-valley Chern numbers are the key concepts in valleytronics. They are topological
numbers in the Dirac theory but not in the tight-binding model. We analyze the bulk-edge correspondence between
the two phases which have the same Chern and spin-Chern numbers but different valley Chern and spin-valley
Chern numbers. Though the edge state between them is topologically trivial in the tight-binding model, it is
shown to be as robust as the topological one both for zigzag and armchair edges. We construct Y-junctions made
of topological edges. They satisfy the topological Kirchhoff law, where the topological charges are conserved
at the junction. We may interpret a Y-junction as a scattering process of particles which have four topological
numbers. It would be a milestone of future topological electronics.
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I. INTRODUCTION

Topological insulators are one of the most fascinating
concepts discovered in this decade.1,2 A topological insulator is
characterized by topological indices such as the Chern number
C and the Z2 index. When the spin sz is a good quantum
number, the spin-Chern number Cs replaces the role of the Z2

index.3–5 We consider honeycomb lattice systems. Electrons
reside either in the K or K ′ valley in the low-energy physics
subject to the Dirac theory. Accordingly, we can define the
valley Chern number6–8 Cv and the spin-valley Chern number6

Csv in the Dirac theory. This valley degree of freedom leads to
valleytronics.9–20 On the other hand, C and Cs are independent
of the valley degree of freedom since they are defined by the
summation of Berry curvatures over the entire Brillouin zone.
Namely, a state is indexed by the two topological numbers
in the tight-binding model, while it is indexed by the four
topological numbers in the Dirac theory.

There are four independent spin-valley-dependent Chern
numbers in the Dirac theory of honeycomb systems. Each
Chern number can be controlled independently by changing
the sign of spin-valley-dependent Dirac masses. There are 16
types of topological insulators, as shown in Table I. They are
the quantum anomalous Hall (QAH) insulator, four types of
spin-polarized QAH (SQAH) insulators, the quantum spin Hall
(QSH) insulator, and the band insulator with charge-density-
wave (CDW) or antiferromagnetic (AF) order. The CDW and
AF insulators are regarded as trivial in the tight-binding model.

In this paper, we study the bulk-edge correspondence with
respect to Cv and Csv by examining the boundary of two
insulators which have the same C and Cs but different Cv

and Csv . We show that gapless edge states appear along the
boundary, although they are trivial in the tight-binding model.
Furthermore, we show that they are as robust as the topologi-
cally protected edges both for zigzag and armchair edges.

We propose a topological electronics based on the edge
states in the Dirac theory. We are able to assign four topological
numbers C, Cs , Cv , and Csv to each edge state. By joining
three different topological insulators at one point, we can
construct a Y-junction made of topological edge states. The
edge states at the junction satisfy the conservation of four
topological numbers, which we call the topological Kirchhoff

law. We can change the connectivity of edge states by changing
the topological property of bulk insulators, for instance by
applying an electric field. The process may be interpreted as a
pair annihilation of two Y-junctions.

II. HAMILTONIAN

The honeycomb lattice consists of two sublattices made of
A and B sites. We consider a buckled system with the layer
separation 2� between these two sublattices. The states near
the Fermi energy are π orbitals residing near the K and K ′
points at opposite corners of the hexagonal Brillouin zone. The
low-energy dynamics in the K and K ′ valleys is described by
the Dirac theory. In what follows, we use notations sz =↑↓,
tz = A,B, η = K,K ′ in indices while sα

z = ±1 for α =↑↓,
t iz = ±1 for i = A,B, and ηi = ±1 for i = K,K ′ in equations.
We also use the Pauli matrices σa and τa for the spin and the
sublattice pseudospin, respectively.

We have previously proposed a generic Hamiltonian for
honeycomb systems,21 which contains eight interaction terms
mutually commutative in the Dirac limit. Among them, four
contribute to the Dirac mass. The other four contribute to the
shift of the energy spectrum. We are able to fully control the
Dirac mass and the energy shift independently at each spin and
valley by varying these parameters, and materialize various
topological phases.22,23

By taking those affecting the Dirac mass, the tight-binding
model is given by21,24,25

H = −t
∑
〈i,j〉α

c
†
iαcjα + i

λSO

3
√

3

∑
〈〈i,j〉〉αβ

νij c
†
iασ z

αβcjβ

− λV

∑
iα

μic
†
iαciα + i

λ�

3
√

3

∑
〈〈i,j〉〉αβ

νij c
†
iαcjβ

+ λSX

∑
iα

μic
†
iασ z

ααciα, (1)

where c
†
iα creates an electron with spin polarization α at site i,

and 〈i,j 〉/〈〈i,j 〉〉 run over all the nearest/next-nearest-neighbor
hopping sites. We explain each term. The first term represents
the nearest-neighbor hopping with the transfer energy t . The
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TABLE I. Corresponding to the spin and valley degrees of
freedom, there are four Chern numbers Cη

sz
, each of which takes ± 1

2 .
Equivalently they are given by the Chern (C), spin Chern (Cs), valley
Chern (Cv), and spin-valley Chern (Csv) numbers. Hence there are
16 states indexed by them, among which eight states are explicitly
displayed. The other eight states are the conjugate states such as
QAH∗ with −Cη

sz
for QAH with Cη

sz
.

CK
↑ CK ′

↑ CK
↓ CK ′

↓ C 2Cs Cv 2Csv

QAH 1/2 1/2 1/2 1/2 2 0 0 0
SQAH1 1/2 1/2 1/2 −1/2 1 1 1 −1
SQAH2 1/2 −1/2 1/2 1/2 1 1 −1 1
SQAH3 1/2 1/2 −1/2 1/2 1 −1 1 1
SQAH4 −1/2 1/2 1/2 1/2 1 −1 −1 −1
QSH 1/2 −1/2 1/2 −1/2 0 2 0 0
CDW 1/2 1/2 −1/2 −1/2 0 0 2 0
AF 1/2 −1/2 −1/2 1/2 0 0 0 2

second term represents the SO coupling24 with λSO. The third
term is the staggered sublattice potential term26 with λV = �Ez

in electric field Ez. The fourth term is the Haldane term27 with
λ�. The fifth term represents the antiferromagnetic exchange
magnetization21,28 with λSX.

We give typical sample parameters, although we treat
them as free parameters. Silicene is a good candidate, where
t = 1.6 eV, λSO = 3.9 meV, and � = 0.23 Å. The Haldane
term might be induced by the photoirradiation, where λ� =
h̄v2

FA2�−1, with � the frequency and A the dimensionless
intensity.23,29,30 The antiferromagnetic exchange magnetiza-
tion might be induced by certain proximity effects. The
second candidate is perovskite transition-metal oxide grown
in the [111] direction, which has antiferromagnetic order
intrinsically.31 This material also has a buckled structure, as in
the case of silicene. Parameters are t ≈ 0.2 eV, λSO = 7.3 meV,
λV = �Ez, and λSX = 141 meV for LaCrAgO.

The low-energy Hamiltonian is described by21

Hη = h̄vF(ηkxτx + kyτy) + λSOσzητz

−λV τz + λ�ητz + λSXσzτz, (2)

where vF =
√

3
2h̄ at is the Fermi velocity. The coefficient of τz

is the mass of Dirac fermions in the Hamiltonian,

�η
sz

= ηszλSO − λV + ηλ� + szλSX. (3)

The band gap is given by 2|�η
sz
|.

III. TOPOLOGICAL NUMBERS

We consider the systems in which the spin sz is a good
quantum number. The summation of the Berry curvature over
all occupied states of electrons with spin sz in the Dirac valley
Kη yields1,2,32

Cη
sz

= η

2
sgn

(
�η

sz

)
. (4)

There are four independent spin-valley-dependent Dirac
masses determined by the four parameters λSO, λV , λ�, and
λSX. Accordingly, we can define

C = CK
↑ + CK ′

↑ + CK
↓ + CK ′

↓ , (5)

Cs = 1
2 (CK

↑ + CK ′
↑ − CK

↓ − CK ′
↓ ), (6)

and

Cv = CK
↑ − CK ′

↑ + CK
↓ − CK ′

↓ , (7)

Csv = 1
2 (CK

↑ − CK ′
↑ − CK

↓ + CK ′
↓ ). (8)

It should be emphasized that Cv and Csv are not defined in the
tight-binding model.

The possible sets of topological numbers are (C,Cs) =
(0,0), (2,0), (0,1), (1, 1

2 ), (1, − 1
2 ) up to the overall sign ±

in the tight-binding model. They are the trivial, QAH, QSH,
and two types of SQAH insulators, respectively. They are
further classified into subsets according to the valley degree
of freedom in the Dirac theory. Trivial insulators are divided
into two: one with CDW order and the other with AF orders.21

Each type of SQAH insulator is divided into two: There are
four types in all, which we denote by SQAHi , with i = 1,2,3,4.
All of them are summarized in Table I.

IV. BULK-EDGE CORRESPONDENCE

The most convenient way to determine the topological
charges is to employ the bulk-edge correspondence. When
there are two topologically distinct phases, a topological
phase transition may occur between them. The band gap
must close at the topological phase-transition point since
the topological number cannot change its quantized value
without closing the gap. Note that the topological number is
only defined in the gapped system and remains unchanged
for any adiabatic process. Alternatively, we may consider
a boundary separating two different topological phases in a
single honeycomb system.26 Gapless edge modes must appear
along the phase boundary. Let us investigate typical examples.
Similar results are obtained from all other cases.

V. CDW-CDW∗ JUNCTION

We first investigate a trivial insulator in the tight-binding
model. We take an example of a CDW with (0,0,2,0) or a
CDW∗ with (0,0, − 2,0). A nanoribbon made of either the
CDW insulator or the CDW∗ insulator has no gapless edge
modes, which is regarded as being a demonstration of their
triviality: See Fig. 1(b) for a zigzag nanoribbon and Fig. 1(c)
for an armchair nanoribbon. One may wonder how they can
be topological in the Dirac theory without gapless edge modes
in view of the bulk-edge correspondence. The answer to this
problem is that Cv and Csv are not defined in the vacuum. The
gap need not close at such a boundary because Cv and Csv

are defined only inside of the nanoribbon. This explains the
absence of gapless edge modes.

We next investigate a boundary made of a CDW with
(0,0,2,0) and a CDW∗ with (0,0, − 2,0) in a single honeycomb
system.26 We refer to edge modes along the boundary as
inner-edge modes in order to distinguish them from the
ordinary edge modes along a boundary separating the material
and the vacuum. We have calculated the band structure of a
hybrid nanoribbon by separating a nanoribbon into two parts,
one in the CDW phase and the other in the CDW∗ phase: See
Fig. 1(d). Only Cv changes across the boundary separating
these two phases. The phase boundary is a CDW domain wall
with the CDW order reversed at a line defect. Let us take
the line along the x axis. The domain wall is well described
by λV (y) = λV tanh (y/ξ ) with the domain-wall width ξ . The
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FIG. 1. (Color online) Illustration of (a) a nanoribbon and (d) a
hybrid nanoribbon. Band structures of a nanoribbon made of a CDW
insulator for (b) zigzag and (c) armchair edges. Band structures of
a hybrid nanoribbon made of CDW-CDW∗ insulators for (e) zigzag
and (f) armchair inner edges. Up, down, and degenerate spin bands
are shown in magenta, cyan, and violet, respectively. For illustration,
we have taken λSO = 0.2t and |λV | = 0.4t ; the domain-wall width
ξ = a and the nanoribbon width w = 28a for the zigzag edge; and
w = 50.5a for the armchair edge. Typical structures remain as they
are for realistic values.

band structure of a hybrid nanoribbon is given for a zigzag
nanoribbon in Fig. 1(e) and for an armchair nanoribbon in
Fig. 1(f). It is insensitive to the domain-wall width ξ provided
it is much smaller than the width w of a nanoribbon.

We find one inner-edge state crossing the Fermi energy
twice in the band structure of the zigzag boundary in Fig. 1(e),
where up-spin and down-spin states are degenerate. It is highly
enhanced at the � point, where it almost touches the bulk
band. This implies that the inner-edge state is almost as robust
as a topologically protected state. Note that the topologically
protected phase is stable against perturbation whose energy
scale is less than the SO interaction energy λSO. We have
checked that the band structure is insensitive to the width of
a nanoribbon. This is in agreement with the analysis33 of a
helical zigzag edge channel, where the penetration depth of
the channel is as short as the lattice constant.

We also examine inner-edge states in the band structure
of the armchair boundary [Fig. 1(f)]. The inner-edge state is
almost as robust as a topologically protected one also for the
armchair boundary. We have checked that the band structure
is insensitive to the width of a nanoribbon provided it is
reasonably wide. This is in agreement with the analysis33 of a
helical armchair edge channel, where the interference occurs
between two edge states when the width is too narrow due to
a relatively large penetration depth of the channel.

VI. SQAH-SQAH JUNCTION

We next investigate the junction made of two different
SQAHs. As an example, we take SQAH3 with (C,Cs ,Cv,Csv) =

--π π π π

SQAH3

SQAH4

(d)  hybrid nanotube

(e)  SQAH3-SQAH4 (zigzag)
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FIG. 2. (Color online) Illustration of (a) a nanotube and (d) a
hybrid nanotube. Band structures of a nanotube made of a SQAH3

insulator for (b) zigzag and (c) armchair edges. Band structures of a
hybrid nanotube made of SQAH3 and SQAH4 for (e) zigzag and (f)
armchair inner edges. We have taken λSO = |λV | = |λSX| = 0.2t for
illustration. See also the caption of Fig. 1.

(1, − 1,1,1) and SQAH4 with (1, − 1, − 1, − 1). It is not
appropriate to use a hybrid nanoribbon in the present case since
gapless edge modes appear even for a simple nanoribbon in the
SQAH phase. We calculate the band structure of a nanotube
geometry since no gapless edge modes appear even for a
simple nanotube in the SQAH phase due to the lack of the
edge itself: See Fig. 2(b) for a zigzag nanotube and Fig. 2(c)
for an armchair nanotube. We calculate the band structure of
a hybrid nanotube where one-half of the nanotube is SQAH3

and the other half is SQAH4, as illustrated in Fig. 2(d). We
see clearly a gapless inner-edge mode highly enhanced at the
� point for the zigzag boundary in Fig. 2(e) and at k = ±π

for the armchair boundary in Fig. 2(f). The inner-edge state is
almost as robust as a topologically protected one also in this
case.

VII. GAPLESS EDGE MODE IN DIRAC THEORY

We proceed to construct the Dirac theory of gapless inner-
edge states.26 They emerge along a curve where the Dirac mass
vanishes, �

η
sz

(x,y) = 0. Let us take the edge along the x axis.
The zero modes emerge along the line determined by �

η
sz

(y) =
0, when �

η
sz

(y) changes sign. We may set kx = const due
to the translational invariance along the x axis. We seek the
zero-energy solution by setting ψB = iζψA with ζ = ±1.
Here, ψA is a two-component amplitude with the up spin and
down spin, ψA = (ψ↑

A,ψ
↓
A). Setting ψA (x,y) = eikxxφA (y),

we obtain HηψA (x,y) = Eηζ ψA (x,y), together with a linear
dispersion relation Eηζ = ηζh̄vFkx . We can explicitly solve
this as

φA (y) = C exp

[
ζ

h̄vF

∫ y

�η
sz

(
y ′) dy ′

]
, (9)
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FIG. 3. Illustrations of typical Y-junctions. The edge between
two different topological insulators carries a set of four topological
charges. Three edges can make a Y-junction provided that the sum of
their topological charges is zero.

where C is the normalization constant. The sign ζ is deter-
mined so as to make the wave function finite in the limit
|y| → ∞. This is reminiscent of the Jackiw-Rebbi mode34

presented for the chiral mode. The difference is the presence
of the spin and valley indices in the wave function.

VIII. TOPOLOGICAL KIRCHHOFF LAW

We consider a configuration where three different topo-
logical insulators meet at one point: see Fig. 3. In this
configuration, there are three edges forming a Y-junction. It
is convenient to assign the topological numbers to each edge,
which are the difference between those of the two adjacent
topological insulators. Namely, when the topological insulator
with (CL,CL

s ,CL
v ,CL

sv) is on the left-hand side of the one
with (CR,CR

s ,CR
v ,CR

sv), we assign the numbers [CL − CR,CL
s −

CR
s ,CL

v − CR
v ,CL

sv − CR
sv] to the boundary, as illustrated in Fig. 3.

The condition under which edges can make a Y-junction is
the conservation of these topological numbers at the junction.
This law is reminiscent of the Kirchhoff law, which dictates the
conservation of currents at the junction of electronic circuits.
We call it the topological Kirchhoff law.

The number of Y-junctions is given by the combination of
selecting 3 from 16 topological insulators, i.e., 16C3 = 560.
The number of topological edge states is determined by the
combination of selecting 2 from 16 topological insulators. We
have 16C2 = 120 types of topological edge states. We show
typical examples of Y-junctions in Fig. 3.

We present an interesting interpretation of the topological
Kirchhoff law. We may regard each topological edge state as a
world line of a particle carrying the four topological charges.
The Y-junction may be interpreted as a scattering process
of these particles. In this scattering process, the topological
charges conserve.

IX. TOPOLOGICAL ELECTRONIC CIRCUITS

We can construct electronic circuits made of edge states
by joining Y-junctions. Each topological edge state carries
conductance,35 whose magnitude is given by the Chern number
C in units of e2/h. The present-day electronic circuits only use

CDW

CDW

QSH SQAH

CDW

CDW

QSH SQAH

FIG. 4. Schematic illustration of a topological electronic circuit.
The CDW phase is created by applying electric field Ez to the QSH
phase beyond the critical value Ecr. Tuning it locally, we can change
the form of the circuit by a pair annihilation of two Y-junctions.

this charge degree of freedom. In our circuits of topological
edges, we can make full use of four types of charges: C, Cs , Cv ,
and Csv . This would greatly enhance the ability of information
processing.

We can control the position of the edge state by controlling
the parameters of the bulk states. The easiest way is to apply
electric field Ez locally. Let us review the topological phase
transition taking place as Ez changes26 by taking λ� = λSX =
0, where the Dirac mass is given by �

η
sz

= ηszλSO − �Ez.
The condition �

η
sz

= 0 implies Ez = ±Ecr with Ecr = λSO /�.
It follows that (C,Cs) = (0,0) for |Ez| < Ecr and (0, 1

2 ) for
|Ez| > Ecr. For instance, the two CDW domains are made in
this way in Fig. 4(a). Applying Ez only to a part in the QSH
domain near the SQAH domain, we can turn this part into the
CDW domain as in Fig. 4(b). We have thus changed the form of
the circuit by a pair annihilation of two Y-junction by applying
Ez. This will pave the way for topological electronics.

X. DISCUSSION

We have proposed a network of inner-edge states appearing
along boundaries separating different topological phases in a
single honeycomb system. They carry charges C, Cs , Cv , and
Csv . They are topological charges in the low-energy Dirac
theory. The phase boundaries as well as these topological
phases are as robust as the genuine topological ones in
the tight-binding model. When there are impurities or edge
disorder on a boundary, the current detours around them by
penetrating into the bulk, and the topological conservation law
is maintained. We have already found such a detour along a
rough edge by numerical computations for the helical edge
current.36
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