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Experimental determination of conduction channels in atomic-scale conductors based
on shot noise measurements
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We demonstrate a general procedure for determining the conduction channels of quantum conductors from
shot noise measurements. This numerical approach allows multichannel analysis which was previously limited
to superconductors. Channel analysis of Ag and Au atomic contacts reveals a remarkable behavior in which the
channels fully open one by one with increasing conductance. These results allow us to unambiguously distinguish
between free-electron and tight-binding descriptions for the conductance of monovalent contacts. Furthermore,
the channel resolution uncovers the presence of tunneling channels in parallel to the conductance through the main
contact and provides a means for distinguishing between the contact conductance and tunneling contributions.
Finally, unique channel distributions were found for Al and Pt contacts reflecting their distinct valence orbital
structures.
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The conductance of a coherent quantum conductor can
be described as a sum of independent conduction channels,
originating from the quantization of the electron wave modes
when the transverse dimensions of the conductor are on the
order of the electron Fermi wavelength.1–3 The conductance
associated with each channel is limited by the conductance
quantum G0 = 2e2/h while the total conductance is given
by G = G0

∑N
n=1 τn, where 0 � τn � 1 are the transmission

coefficients of N conduction channels (i.e., transmission eigen-
values of the scattering matrix). This description is related to
a wide variety of quantum systems such as mesoscopic scale
quantum dots,4 nanowires and nanotubes,5,6 atomic contacts7

and molecular junctions.8 The set of coefficients {τn}Nn=1 can
be viewed as a unique PIN code which describes the transport
properties of the conductor.9 The possibility to measure the
PIN code rather than merely the overall conductance would
enable one to link between the observed conductance to the
fundamental principles of electronic transport. For example, by
analyzing the subgap structure of current-voltage curves in the
superconducting state, Scheer and co-workers demonstrated
that the number of channels in single-atom contacts is limited
by the number of atomic valence orbitals.10,11 Experimental
studies of conduction channels have shed light on the orbital
structure,12,13 atomic configurations,14 and electron-vibration
interactions15 in atomic-scale junctions. Still, up-to-date
experimental data regarding the conduction channels is
limited since obtaining the transmission coefficients has
proven to be very challenging. While the transmission
coefficients can be calculated from the subgap structure, these
measurements are restricted to systems that can be driven to
the superconducting state. For nonsuperconducting systems,
several experiments on atomic-scale junctions showed that
the transmission coefficients can be estimated from shot noise
measurements at low temperatures15–17 and also at ambient
conditions.18 Although shot noise can be measured in a wide
variety of systems, analytical treatment of shot noise data
allows calculating the transmission coefficients only when
the conductance is known to be composed of at most two
channels. Since in general this assumption cannot be made a
priori, it is impractical to obtain the channels analytically.

In this Rapid Communication, we describe a straightfor-
ward approach to determine the conduction channels from
shot noise measurements beyond the analytical limit of two
channels. Our approach is based on enumerating the set
of transmission coefficients and identifying the range of
results which are consistent with the measured shot noise and
conductance. Using a break junction setup to form Ag, Au, Al,
and Pt atomic contacts we demonstrate how different aspects
of electronic transport are revealed by numerically obtaining
the channel resolution. A statistical analysis of transmission
coefficients obtained for ensembles of Ag and Au contacts
reveals a consistent tendency of the conduction channels to
fully saturate one by one as the conductance of the contact is
increased. In particular, in multiples of G0 the conductance
is composed of fully open channels. The presented channel
analysis allows us to unambiguously distinguish between
different theoretical models. In addition, it is found that
partially open channels can originate from parallel tunneling
contributions between atoms in the vicinity of the contact.
The channel distribution obtained for Al contacts proves to be
in excellent agreement with both sub-gap measurements and
theoretical calculations. Finally, we show that the number of
conduction channels through single-atom Pt contacts can vary
significantly between two different contact configurations.

Combining shot noise and conductance data can provide
information on the conduction channels. The conductance
is driven from the average current, often referred to as
the first moment of current. Distinctively, shot noise de-
scribes the second moment of current and therefore provides
independent information.19 The suppression ratio of shot
noise from Poissonian noise is expressed by the Fano factor
F = ∑N

n=1 τn(1 − τn)/
∑N

n=1 τn, which can be determined
experimentally from the dependence of shot noise on applied
bias voltage (see Supplemental Material20). Therefore, the
measured Fano factor (F) and conductance (G) provide two
independent equations for the transmission coefficients. These
expressions can be used to determine the coefficients {τn}Nn=1
when there are up to N = 2 conduction channels; however, for
more than two channels, the exact set of transmissions cannot
be uniquely determined.
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In general, a given combination of F and G can result from
an infinite number of possible sets of transmission coefficients.
However, certain values of F and G may limit the range of
possible τn values. Without loss of generality, we assume the
coefficients are ordered by decreasing transmission τ1 � τ2 �
· · · � τN . Using a finite precision �τ for the transmission
coefficients limits the number of possible transmission sets
to a finite number. Our procedure enumerates the (1/�τ )N

possible sets. For each set, the Fano factor and conductance
are computed and compared to the experimental values of F
and G. A transmission set {τn}Nn=1 is considered to match the
experimental values if it satisfies the following inequalities:

G − �G � G0

N∑
n=1

τn � G + �G, (1)

F − �F �
N∑

n=1

τn(1 − τn)

/ N∑
n=1

τn � F + �F, (2)

where �F and �G are the experimental errors in F and
G, respectively. We define {τi,n}Nn=1 as the ith set out of k

transmission sets that match the experimental values. The
transmission coefficient τn can now be determined to be
in the range between τmin

n = min{τi,n}ki=1 − �τ and τmax
n =

max{τi,n}ki=1 + �τ . The additional margins �τ are added to
ensure all possible solutions for τn are included between τmin

n

and τmax
n (more details can be found in the Supplemental

Material20). Note that spin degeneracy is assumed in this
analysis; however, it is straightforward to extend the method
to account for nondegenerate systems.

The extraction of the transmission coefficients is illustrated
in Fig. 1 for a certain combination of F = 0.20 ± 0.01 and
G = 2.00 ± 0.01. The panel for each coefficient τn (n = 1–4)
displays the distribution {τi,n}ki=1 of the computed values that
match the given F and G. While in principle there are an
infinite number of solutions, the histograms of the individual
coefficients that match the given F and G imply that τn do not
span the whole range between 0 and 1. Rather, they are limited
to a much smaller range. As a consequence, each transmission
coefficient can be determined up to a limited uncertainty,
which is given by the edges of the corresponding distribution
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FIG. 1. (Color online) Calculated transmission coefficients for
four channels matching F = 0.20 ± 0.01 and G = 2.00 ± 0.01,
using N = 4 and �τ = 0.01. The four left panels show the
distribution of calculated values for τ1–τ4. The rightmost panel
shows the transmission range for each coefficient: τ1 = 0.86–1.00,
τ2 = 0.69–0.90, τ3 = 0.10–0.30, and τ4 = 0.00–013.

(Fig. 1, rightmost panel). The resulting uncertainties in τn

greatly depend on the measured F and G values. Detailed
information on the sensitivity with respect to F and G can be
found in the Supplemental Material.20 As will be demonstrated
below, in many cases the transmission coefficients of nanoscale
conductors can be determined with sufficient accuracy to
capture the important physical aspects of the conduction
channels.

The presented analysis was used to examine the evolution
of conduction channels in atomic contacts under variation of
the contact geometry. Atomic contacts were formed at 4.2 K
in cryogenic vacuum using a mechanical controllable break
junction (MCBJ) technique.21 A microscopic wire (0.1 mm
diameter) with a small notch at its center is pulled apart in a
controlled fashion. During the elongation process the number
of atoms in the cross section of the wire constriction is gradu-
ally reduced until reaching a single-atom contact. A three-point
bending mechanism driven by a piezoelectric element was used
to control the elongation of the contact with sub-angstrom
resolution. The wires that were used are composed of pure
(>99.99%) Ag, Au, Al, and Pt. The differential conductance
(dI/dV ) of the contacts was measured across the wire using a
lock-in technique. In order to measure shot noise, two sets of
voltage amplifiers were connected in parallel to the sample, and
the cross spectrum of the two signals was calculated as function
of applied bias current.22 Detailed information regarding shot
noise measurements and the extraction of the Fano factor can
be found in the Supplemental Material.20 We then apply our
numerical method to extract the conduction channels from
the measured values F ± �F , G ± �G. The transmission
coefficients are calculated using �τ = 0.005 and a maximum
of N = 6 channels, which is a valid high limit since the number
of channels for a single-atom contact is limited by the number
of atomic valence orbitals.10 In general, the analysis can be
repeated for N + 1 channels to verify the validity of the results
for N channels.

We start by examining the monovalent metals Ag and Au.
For these metals, the conductance of a single atom is expected
to be carried by one conduction channel, explained by the
dominant contribution of a single s valence orbital.10 For each
metal, shot noise measurements were performed on more than
600 distinct atomic contacts. Before each measurement, the
metal wire is reformed up to a conductance of 70G0 and pulled
apart to reach a new atomic configuration. Figures 2(a) and 2(b)
show the distribution of F and G values measured on Ag and
Au contacts, respectively. The results show a clear tendency
to follow the minimum Fano factor curve (represented in both
figures as a black line). At integer conductance values, the
majority of measurements show a strong suppression of the
Fano factor. This suppression is a clear signature for quantized
conductance through fully transmitting channels.11,22 For both
metals a full suppression can be observed at 1G0 and 2G0.
However, while at 3G0 the Fano factor is strongly suppressed
in the case of Ag, a deviation to slightly higher values is
observed for Au.

The numerical analysis of the sets of data that appear
in Figs. 2(a) and 2(b) provides the range of values for the
transmission coefficients. The coefficients are calculated to
account for the statistical spread of the data in the following
way. First, the Fano factor values are binned by conductance

161404-2



RAPID COMMUNICATIONS

EXPERIMENTAL DETERMINATION OF CONDUCTION . . . PHYSICAL REVIEW B 88, 161404(R) (2013)

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

Conductance [G0]

Fa
no

 F
ac

to
r

1 2 3 4
0

0.2

0.4

0.6

0.8

1

Conductance [G0]

Tr
an

sm
is

si
on

 (
n)

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

Conductance [G0]
Fa

no
 F

ac
to

r

1 2 3 4
0

0.2

0.4

0.6

0.8

1

Conductance [G0]

Tr
an

sm
is

si
on

 (
n)

(a)

(c) (d)

(b)

FIG. 2. (Color online) (a), (b) F and G values measured on
an ensemble of 633 Ag (a) and 702 Au (b) atomic contacts. The
experimental errors do not exceed �G < 0.015G0 and �F < 0.02.
Black line reflects the theoretical minimum Fano factor. (c), (d)
Computed transmission ranges for τ1–τ4 extracted from the data in
(a) and (b), respectively. Black, red, blue, and cyan areas represent
the transmission ranges for τ1, τ2, τ3, and τ4, respectively.

intervals of 0.04G0. Then, for each bin, the values of F and
�F used in Eqs. (1) and (2) are set to F = (Fmin + Fmax)/2
and �F = (Fmax − Fmin)/2, where Fmin and Fmax are the
minimum and maximum Fano factor measured within the
conductance bin. This ensures that the computed τmin

n and
τmax
n capture all the possible transmission coefficients that

correspond to the Fano factor values within the relevant
conductance bin.

Figures 2(c) and 2(d) display the distribution of τn as a
function of conductance for Ag and Au, respectively. The
colored areas show the possible values for τn accounting for
both the statistical spread in the Fano factor and the uncertainty
in the numerical calculation. The transmission coefficients
calculated for Ag [Fig. 2(c)] show that the conduction channels
fully open, one by one, as the conductance of the contact
increases. Around half-integer conductance values (i.e., 1.5G0,
2.5G0, and 3.5G0) the spread in the transmission range
increases as a result of the limited accuracy of our analysis at
these conductance values (see Supplemental Material20). The
spread is lower near integer conductance values, indicating that
the conductance is composed of fully open channels. In the
case of Au, a clear tendency for sequential channel saturation
is also observed up to 2.5G0; however, at higher conductance
values this behavior is less pronounced. Altogether, this
analysis clearly demonstrates for both noble metals that the
conductance is composed of saturated conduction channels
and, in the case of noninteger conductance, an additional partly
transmitting channel.

The possibility for sequential saturation of conduction
channels was suggested before to explain the observed shot
noise11 and conductance fluctuations23 in monovalent metals,

although the transmission coefficients were not obtained
directly. Conversely, subgap measurements on Au contacts
showed that when G > 1G0 the conductance can be composed
of several partly opened channels.10,24 The latter experiments
were carried out by inducing superconductivity on thin Au
layers placed on Al contacts using the proximity effect. The
discrepancy from subgap measurements could be explained by
the difficulties in fitting the I-V characteristics in the nonideal
case of superconductivity induced by the proximity effect.25

Note that for bare Al contacts our results are in good agreement
with subgap measurements, as will be shown.

A theoretical treatment of the transmission coefficients for
Ag and Au was performed by a combination of molecular
dynamics simulations and tight-binding calculations.24,26,27

For both metals, a single channel contributing up to 1G0 is
found in agreement with our results; however, the sequential
saturation behavior is not reproduced and several partially
opened channels can be found above 1G0. Interestingly, our
results are in very good agreement with a description of free
electrons with disorder, in which the atomic neck is modeled
by a smooth constriction.28,29 This is a surprising observation
since one would expect that the transmission coefficients will
depend on the details of the atomic configuration, rather than
only on the diameter of the smallest cross section.

In order to study the effect of the atomic configuration, the
transmission coefficients were obtained simultaneously during
gradual narrowing of atomic contacts subject to mechanical
stretching. Figure 3(a) presents an example trace for Ag,
showing the evolution of the conductance (top panel) and
transmission coefficients (lower panels) as a function of con-
tact elongation. During elongation, the conductance exhibits a
series of plateaus, which are related to stable atomic configura-
tions, separated by sudden jumps due to plastic deformation.30

The decomposition to transmission coefficients shows that the
conductance of each plateau consists of saturated channels
accompanying up to one partly open channel. The jumps do
not necessarily result in a reduction of the number of channels,
as can be seen in the first jump between 3G0 to 2.2G0,
which results from a decrease in the transmission of τ3. In
the presented Au trace [Fig. 3(b)], the last plateau begins with
conductance slightly higher than 1G0 that gradually decreases
to 1G0 at 1.8 Å. Resolving the conductance in terms of
channels provides insight into this observation; throughout
the elongation the main channel (τ1) is fully open while
a second channel (τ2) shows a tunneling-like exponential
dependence on electrode displacement. This indicates that
tunneling between neighboring atoms can contribute to the
overall conductance. Thus, the channel resolution provides a
means to distinguish between parallel tunneling channels and
direct electronic transport through the atomic contact.

We now turn to study the sp metal Al, where the
conductance of a single-atom contact is composed by three
main channels.12,13 An example for an Al trace showing the
evolution of the conduction channels under elongation of a
single-atom contact is presented in Fig. 3(c). At the beginning
of the trace, the conductance is mainly composed of three
approximately equally distributed channels. As the contact
is stretched, one channel increases significantly while the
other two decrease. This is a typical behavior observed in
15 Al traces examined in this communication. The number
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FIG. 3. (Color online) Conductance traces (black circles) and transmission coefficients of the different channels measured on Ag (a), Au
(b), Al (c), and Pt (d) point contacts. Black, red, blue, and cyan error bars represent the possible transmission ranges for τ1, τ2, τ3, and τ4,
respectively. The dashed red line in the top panel of (b) marks the value of 1G0 to better visualize the contribution of the secondary channels
to the conductance.

of observed channels and their dependence on elongation
are in very good agreement with previous experimental
results obtained using subgap measurements.12 In contrast to
previous subgap measurements on Au contacts, in which the
superconducting state was induced by the proximity effect, for
pure Al contacts the comparison between the two experimental
methods is more straightforward.31

Finally, we examine the conduction channels in atomic Pt
contacts. Figure 3(d) shows an example for a conductance trace
measured during the elongation of a single-atom constriction.
After an elongation of 1 Å, the conductance shows a sudden
drop from 2.5G0 to a semiplateau ranging between (1–1.5)G0.
Similar conductance drops were associated with a geometric
reordering of the contact from a single apex atom to a dimer
configuration.26,32 After the transition, the number of observed
channels drops from 3–4 channels down to 2 channels, with
a possible small contribution from other channels. A similar
behavior is observed in more than 30 measured traces. In all
traces a highly transmitting channel 0.7 � τ1 � 1 is observed
during the whole elongation process. Interestingly, the main
channel is less affected during the conductance drop while the
other channels decrease significantly. These observations are
in accordance with theoretical calculations,26,33 which predict
a dominant conduction channel associated with a hybridization
of s, pz, and dz2 orbitals, and two less transmitting channels,
dominated by contributions from dzx and dyz orbitals. The
significant spherical symmetry of the main channel could be

the reason for its relative insensitivity to the structural changes
occurring with elongation.

To conclude, we have presented a numerical method for
directly obtaining the conduction channels of low-dimensional
conductors from shot noise measurements. We stress that
the presented procedure is universal and can, in principal,
be applied to any low-dimensional conductor that can be
described by Landauer formalism. The conduction channels
obtained for a large ensemble of Ag and Au contacts
show a remarkable tendency to fully saturate one by one
with increasing conductance, uncovering the free-electron
nature of these monovalent metals. Channel-resolved traces
further reveal that partly open channels can originate from
parallel tunneling between neighboring atoms. These results
demonstrate the duality of the free-electron and atomistic
descriptions for monovalent atomic contacts. For Pt contacts,
the experimentally obtained channels are in excellent agree-
ment with atomistic-based theoretical calculations, allowing
us to probe the sensitivity of the orbital contributions to
structural changes. Overall, these results demonstrate that
experimental determination of conduction channels allows
a direct comparison between experiment and theory and
illuminates the underlying mechanisms for electronic transport
beyond standard conductance measurements.
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