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We report a purely nonempirical generalized gradient approximation for the noninteracting free energy
functional of orbital-free density functional theory obtained via a novel constraint-based parametrization scheme.

We use that functional to provide forces for finite-temperature molecular dynamics simulations in the warm dense
matter (WDM) regime and demonstrate good-to-excellent agreement with reference Kohn-Sham calculations un-
der WDM conditions at a minuscule fraction of the computational cost of corresponding orbital-based simulations.
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Compared to ordinary condensed matter, the warm dense
matter (WDM) regime'> poses experimental accessibility
issues (e.g., inertial confinement fusion hohlraums?®) that
make computational characterization of WDM thermody-
namics particularly significant. Current practice, for example
Refs. 4,5, is ab initio molecular dynamics (AIMD) with Born-
Oppenheimer electronic forces on the ions from finite-7 Kohn-
Sham (KS) density functional®® calculations. Computational
costs for KS-AIMD scale no better than N, b3 per MD step, with
N, the number of occupied KS orbitals. N;, grows unfavorably
with increasing 7. KS-AIMD thus becomes prohibitively
expensive at elevated 7" and path-integral Monte Carlo (PIMC)
simulations, which have comparable computational cost, come
into play.”

A long-standing potential alternative to KS-DFT, orbital-
free DFT (OFDFT), would scale linearly with system size.
Use of OFDFT for WDM has been limited by clearly inade-
quate functionals, e.g., Thomas-Fermi,” for the noninteracting
kinetic energy (KE) part 7; of the free energy (though TF
is, of course, the proper KS limit for high 7 and high
material densities®). Ground-state two-point orbital-free KE
functionals'® are, unfortunately, of little utility for extension
to WDM because those two-point functionals which treat
different material phases equally well are both parametrized
and introduce substantial extra computational complexity.
Therefore we have focused on single-point functionals.

Here we present a purely constraint-based parametrization
scheme for the generalized gradient approximation (GGA)
for 75 and its associated entropy functional, thus providing
a nonempirical noninteracting free energy functional F. It
extends and rationalizes the recently published constraint-
based, but empirically parametrized GGA.'! We show that this
nonempirical functional makes OFDFT-AIMD competitive
with finite-7" KS-AIMD calculations for accuracy and much
faster. For deuterium in the WDM regime, the OFDFT
AIMD and reference KS results agree well at intermediate T,
6 x 10* — 1.8 x 10° K. In the range 2 x 10° — 4 x 10° K,
where computational cost makes KS-AIMD data unavailable,
the OFDFT AIMD and all-electron PIMC results'> compare
well. Similarly, the OFDFT-AIMD electron heat capacities
for H at different material densities agree well with reference
KS calculationsup to T = 1 x 10° K.
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Reference 11 showed that well-behaved noninteracting
free-energy GGA functionals should be defined in terms of
distinct KE and entropic enhancement factors, F;(s;) and
F,(ss), and showed that a useful approximation to their
exact thermodynamic relationship is Fy(s,) = 2 — F(S).
Each is a function of reduced density gradients with distinct
explicit T dependence, s.(n,Vn,t) and s,(n,Vn,t), shown
in detail in Ref. 11. Here the reduced temperature is ¢t =
T/Tx = 2/B[372n(r)]*3, with B = (kgT)~". Both s, and s,
go to the reduced density gradient familiar in exchange GGA
functionals, s(n,Vn) = |Vn|/{2B372)3n*3) as T — 0 K.
The GGA form for the noninteracting (KS system) free energy
thus is

FIAn,T] =/drtoTF(n){ﬂt)Fr(sr)—Z(t)Fa(Sa)}, (1)

where 7," is the zero-T TF KE density. The functions &(t)
and ¢(t) are smooth, well-behaved combinations of Fermi-
Dirac integrals, with forms given explicitly in Ref. 11. The
unaddressed problem in Ref. 11, which we resolve here, is
how to get a reliable, wholly nonempirical representation
of F;.

In Eq. (1), t appears such that the T = 0 K limit of the GGA
free energy is a ground-state OF-KE functional defined by the
enhancement factor F,(s); that is,

lim FSOA,T] = / drigf(n)Fo(s) = TS9An]. ()

Therefore the enhancement factor F;(s) and the functional
Eq. (2) are subject to T = 0 K KE constraints. These include
(i) recovery of the second-order gradient expansion (GE) in
the small-s limit,'3 F,(s) ~ 1 + (5/27)s?; (ii) a nonnegative
Pauli potential,'4'°
. 8Ty _ 8(Ts[n] — Tywlnl)
vo([nlir) i= — =
én én(r)

with Tyw([n] = f drrOTF(n)(Ss2 /3) the von Weizsacker (VW)
functional;'” and (iii) recovery of vW behavior in the large-s
limit.

Constraint (i) guarantees a correct description for uniform
and slow-varying densities. As shown in Refs. 18,19, positivity
of vy is required to achieve molecular and solid binding.
Constraint (iii) follows from the character of charge densities

=0,vVr, (3
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far from any nucleus and the so-called IP theorem. 15 However,
the analytical form of the KE enhancement factor is a matter
of design choice, sometimes motivated by the conjointness
conjectulre,20 to wit F;(s) o« Fx(s). Thus, the nonempirical
APBEK?! T = 0 K functional uses the PBE X enhancement
factor form.?? Manifestly it violates constraint (iii). As to (i),
the GE coefficient for APBEK is 0.23889, which corresponds
to the modified gradient expansion.”! But v, from APBEK
violates constraint (ii) in that vPBEX has negative singularities
at nuclear positions. The behavior of vy near a nucleus, » =~ 0
follows from the Kato nuclear-cusp condition®®

n(r)y ~e 22" =1 =2Zr)+ 0. 4)

Thus vPPER(r) ~ a/r witha < 0 for r ~ 0.

To satisfy constraints (i) and (ii) simultaneously and
incorporate (iii) therefore requires a more flexible form.
Constraint (iii) also occurs in the VT{84} X enhancement
factor,”* so we adopt a suitably modified form for F,,

2

2 ,—as 2

VTS4F, \ _ ns-e —as™?\, —n)2 5s
F, (S)_I_T/Lsz+(l_e )(s —1)+?,
(5

withm = 8, n = 4. (“F” in “VT84F” denotes this free-energy
adaptation.) The last term in Eq. (5) provides the correct large-s
limit, constraint (iii). The parameters u and « then must be
determined from constraints (i) and (ii). Expansion of Eq. (5)
at small s gives FYT™F(s) = 1+ (5/3 + o — w)s* + O(sH).
Constraint (i) imposes a relation between the two parameters,
o =pu—5/3+5/27. Evaluation of the Pauli potential for
small r from the density Eq. (4) shows that the singular term
a/r becomes marginally positive for u = 2.778. That gives
a = 1.2965. Equation (5) then fixes the kinetic and entropic
enhancement factors in the free-energy functional Eq. (1),
FYT8(s.) and FYT8%(s,) =2 — FYT¥(s,). For compari-
son, we also built the noninteracting free-energy functional
APBEF from the zero-T APBEK KE?!' by use of the same
prescription; that is, FAPBEF(s.) = 1 4+ ws?/(1 + s2u/k) and
FAPBEF(5 )y =2 — FAPBEF (5 ) with o = 0.23889, k = 0.804.

Figure 1 shows the two main differences between the
VT84F and APBEF Pauli enhancement factors, F;(s)—
(55%/3). For VT84F, F.(s) — (5s*/3) is nonnegative and
vanishes at large s and has positive slope near s ~ (0.39
to provide the correct sign of the corresponding vQ’Tg“F
near nuclear sites. APBEF has neither feature. At small s,
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FIG. 1. VT84F and APBEF Pauli term enhancement factors
F,(s) — (55%/3) as a function of s (T = 0 K).

RAPID COMMUNICATIONS

PHYSICAL REVIEW B 88, 161108(R) (2013)

TABLE 1. Equilibrium lattice constants a and bulk moduli B
calculated with the VT84F KE functional. OFDFT calculations with
APBEK do not yield equilibrium configurations. KS LDA values are
shown for comparison. All OFDFT calculations with T'-independent
LDA XC (Ref. 28).

System/Method a(A) B (GPa)
sc-H
OFDFT (VT84F + LDA) 1.353 175.3
KS (LDA)"! 1.446 108.4
fce-Al
OFDFT (VT84F + LDA) 4.095 120.4
KS (LDA)* 4.020 79.66

both functions have similar behavior defined by the gradient
expansion with similar coefficients.

We have implemented these functionals in a modified
version of the PROFESS® code which we have interfaced
to the QUANTUM ESPRESSO code’® to support KS and
OFDFT AIMD calculations on the same footing.?” The data in
Table I illustrate the critical importance of satisfying constraint
Eq. (3). [Both these calculations used Perdew-Zunger local
density approximation (LDA) exchange correlation (XC).?%]
At T = 0 K, the VT84F KE functional gives binding in sc-H
and fcc-Al with lattice constants underestimated by about 6%
for sc-H and about 2% for fcc-Al. The APBEK functional has
typical ordinary GGA KE functional behavior. It fails to yield
binding because of violation of constraint Eq. (3).'® The bulk
moduli from VT84F, however, are higher than the reference
KS values.

To test the OF functionals at finite 7', we started from
static calculations with cold nuclei and hot electrons. Such
a situation arises, for example, when a target is irradiated
by a femtosecond laser pulse.’® Calculations were done
for sc-H at material density py = 0.60 and 2.0 g/cm’
(ry =1.650 and 1.105 bohrs, respectively) with 64 atoms in
the simulation cell. The reference KS calculations used 8
atoms in a supercell and a 13 x 13 x 13 Monkhorst-Pack
Brillouin zone grid.*' Our transferable PAW data set’> was
employed in the KS calculations, and a similarly transferable
local pseudopotential'! was used in the OFDFT calculations.
For this stage of testing, ordinary PZ LDA XC again was
used.”® Owing to machine-time limitations, we were able
to complete KS calculations only up to T =4 x 10° K for
o = 0.60 g/cm? and to 10° K for py = 2.0 g/cm?>.

Figure 2 compares the electronic heat capacity, CS =
(0E® /3T, )y, where E® is the electronic internal energy and
T, is the electronic temperature and the units are per atom. At
low T, CS,' goes linearly with 7. In the high-T limit, it goes to
the classical ideal gas value, (3/2)kg = 4.750 hartrees/MK per
particle. Values from our VT84F functional agree quite well
with the KS data for the whole range of T, except for a small
deviation near 80 kK for py = 0.60 g/cm?. Both the VT84F
and KS values exhibit only a weak dependence on material
density and converge slowly to the TF limit, which is reached
at T =~ 1500 kK. By comparison, C{",l values from the APBEF
and TF functionals agree well with the KS data for low T', up
to about 60 kK for py = 2.0 g/cm?. But for the lower density,
the APBEF results deviate from the KS data up to 20% for
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FIG. 2. (Color online) Electronic heat capacity, C%, as a function
of electronic T for sc-H at material density py = 0.60 and 2.0 g/cm?.
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FIG. 3. (Color online) Upper panel: Pressures for OFDFT and
KS AIMD, both with explicitly 7-dependent XC (Ref. 34) compared
with PIMC (Ref. 12) results for deuterium at pp = 1.964 g/cm?

(rs = 1.40 bohrs). Lower panel: Relative differences of OFDFT and
PIMC pressures with respect to KS values.
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FIG. 4. (Color online) Excess pressure relative to the TF model
for OFDFT (APBEK and VT84F functionals), KS and PIMC
(Ref. 12), for deuterium at material density pp = 1.964 g/cm’
(r¢ = 1.40 bohrs).

T, between approximately 150 kK and 600 kK, whereas the
TF results have a comparable deviation in the range of about
200 kK < T < 900 kK. A technical point is that the second
derivative discontinuity of fits used in the OFDFT calculations
(see Ref. 11) affects the OFDFT results for C\e,I at T ~ Tg/2.
The second finite-7 test of our functional was to calculate
the deuterium equation of state (EOS) in the WDM regime.
All the AIMD simulations were performed with 64—512 atoms
in the simulation cell (depending on material density) using
the NVT ensemble regulated by the Andersen thermostat.
For KS calculations at 7' < 31250 K, we used a 3 x 3 x 3
Monkhorst-Pack k grid,?' while for higher T a single I' point
was used. All the calculations used an explicitly 7-dependent
LDA (TLDA) XC functional;** see Ref. 32 for justification.
The upper panel of Fig. 3 compares pressures for deuterium
at pp = 1.964 g/(:m3 (rs = 1.40 bohrs) from OFDFT and
KS AIMD simulations, along with PIMC results. Our VT84F
functional tends to underestimate the pressure while both TF
and APBEEF overestimate it. However, our functional reduces
the error at 7 = 200 kK to 15% compared to the TF error of
24%. Note that APBEF, which fails to predict an equilibrium
ground state, nevertheless gives about the same relative
pressure error as VT84F, hence provides an inconsistent
description. The error in the OFDFT values decreases with
increasing T, such that at T = 95 250 K that error is about 3%
for the two GGAs versus 6% for TF. At T = 181 825 K (the
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FIG. 5. (Color online) Pressure vs material density for selected
temperatures calculated by OFDFT and KS AIMD for deuterium.
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FIG. 6. (Color online) The OFDFT and KS ion pair-correlation
function for 7' = 31250 K (upper panel) and T = 62500 K (lower

panel).

highest T for which we were able to complete the KS AIMD
simulation), that error is 1.5% for TF compared to tenths of
a percent for VT84F (and for APBEF as well). Comparison
of PIMC to KS gives relative differences of essentially the
same magnitude as the OFDFT calculations which use our
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FIG. 7. (Color online) CPU time per AIMD step as a function
of T for OFDFT-MD calculations compared to the KS-MD data.
Deuterium at pp = 1.964 g/cm® (r; = 1.40 bohrs), 128 atoms in
simulation cell.

predict structural properties at this temperature in reasonable
agreement with the KS results, except for some discrepancies
(peaks) near r = 1.0 A. We suspect, but have not been able to
confirm, that those peaks are related to nuclear site singularities
in the GGA Pauli potential, Eq. (3). Those singularities could
lead to peaks such as seen in hard- or soft-sphere liquid PCFs.%
Note also that the peaks are consistent with the overly large
bulk moduli via the compressibility sum rule; see Eq. (3.16) in
Ref. 36. In any event, for T = 62 500 K and above, the agree-
ment between OFDFT and KS PCFs becomes satisfactory.
Comparison of computational times per AIMD step for
OFDFT and KS is in Fig. 7. The calculations were done
on a single CPU to provide the most favorable case for KS
(no parallel overhead). The OFDFT timings are essentially
independent of 7 and faster than corresponding KS AIMD
runs by from one to two orders of magnitude for the range of
T shown. In practice, the KS calculations typically need 8 to
64 CPUs for reasonable turnaround. In that case, the OFDFT

functionals. At the lowest temperature, 7 = 31250 K, PIMC
overestimates the pressure by 15%, with the error decreasing
rapidly with increasing 7.

In the high-7' TF limit, the system goes over to a fully
ionized electron-ion plasma. Figure 4 shows the excess pres-
sure relative to the TF model for 125000 < T < 4000000 K.
For T = 125000 and 181 825 K, where KS data are available,
both VT84F and APBEF provide excellent agreement (within
about 2%). Our OFDFT results also are in reasonably good
agreement with the PIMC data (almost within the margin of
numerical error).

Figure 5 compares KS and OFDFT pressures for deuterium
as a function of pp, for three temperatures. The small deviations
of the values from the VT84F functional with respect to the KS
values at lowest density, pp = 0.674 g/cm?, T = 31250 K,
diminish quickly with increasing pp or increasing 7 .

Figure 6 compares KS and OFDFT ion pair-correlation
functions (PCF) for two temperatures. The upper panel (T =
31250 K) demonstrates that all the OFDFT -calculations

advantage is substantially greater.

In summary, we have presented a wholly nonempirical
parametrization of a ground-state orbital-free KE functional
and used it to generate kinetic and entropic noninteracting free-
energy functionals. These functionals have several virtues.
First, the ground-state part gives a reasonable description of
the ground-state solid for sc-H and fcc Al, something not
achieved by any other nonempirical KE GGA. Second, the
consequent free-energy functionals give good WDM proper-
ties for sc-H in the static lattice case ( e.g., electronic heat
capacity) and provide a competitive-quality AIMD simulation
of the deuterium EOS. All of this is with the long-promised
computational speed advantage of OFDFT.
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