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Tunneling spectra simulation of interacting Majorana wires
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Recent tunneling experiments on InSb hybrid superconductor-semiconductor devices have provided hope for a
stabilization of Majorana edge modes in a spin-orbit quantum wire subject to a magnetic field and superconducting
proximity effect. Connecting the experimental scenario with a microscopic description poses challenges of
a different kind, such as accounting for the effect of interactions on the tunneling properties of the wire. We
develop a density matrix renormalization group (DMRG) analysis of the tunneling spectra of interacting Majorana
chains, which we explicate for the Kitaev chain model. Our DMRG approach allows us to calculate the spectral
function down to zero frequency, where we analyze how the Majorana zero-bias peak is affected by interactions.
For topological phase transitions between the topological and trivial superconducting phase in the Majorana wire,
the bulk gap closure generically affects the proximity peaks and the Majorana peak.
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Introduction. The field of topological phases in correlated
electron systems is witnessing enormous interest in contem-
porary condensed matter physics. A new stage has been set
by the field of topological insulators and superconductors,
which promoted the role of spin-orbit coupling from a quanti-
tative relativistic correction to a substantial system parameter
characterizing electronic quantum states of matter.1,2 Aside
from the fundamental significance on its own, this direction
revitalized the search for Majorana bound states (MBS) as
soon as Fu and Kane realized that topological insulators can
induce MBS at the surface in proximity to a superconductor,3

which could be detected through resonant Andreev tunneling at
the surface.4 Along with the challenging experimental effort
to make these interfaces accessible,5 Sau et al.6 as well as
Alicea7 suggested alternative setups for such an effect via
composite compounds of semiconductors and ferromagnetic
insulators. Preceded by a milestone work of Kitaev,8 this
paved the way for theoretical proposals of one-dimensional
versions of this scenario where a spin-orbit quantum wire is
placed in proximity to a superconductor and subject to an
applied magnetic field. There, Majorana modes are predicted
to appear at the edge of the wire9–12 and manifest themselves
as a conductance peak.4,13,14 The tunneling experiments by
the Kouwenhoven group15 along with subsequent independent
accomplishments by other groups employing tunneling16–20

and Josephson21 measurements suggest that the spin-orbit
quantum wires are an experimental scenario where MBS might
be detectable: The InSb wires possess large spin orbit coupling,
and appropriate contacts guarantee high transparency for
electrons to induce superconducting (SC) gaps.22 At the same
time, the high Landé factor of InSb (Ref. 23) assures that
one can still efficiently induce spin alignment in the wire by
comparably low magnetic fields which do not significantly
affect the SC proximity effect.

A first microscopic perspective on MBS emerged from
the Pfaffian wave function in the context of paired Hall
states24,25 which was subsequently connected to the A phase
of 3He,26 p + ip superconductors,27 and recently to optical

lattice scenarios28 as well as Majorana spin liquids.29 MBS
emerge as zero energy midgap states in the vortex solution
of the Bogoliubov–de Gennes equation.8,27,30–32 The MBS
vortex state is protected through the emergent particle-hole
symmetry of the superconductor and exhibits a vortex energy
gap. Due to lack of phase space associated with the edges of
the wire in the clean limit, the are no competing midgap states
localized at the edge, suggesting that the MBS are protected by
the full proximity gap � ∼ 1K .15 Moreover, the tunability of
several system parameters should make it feasible to observe
the topological phase transition between a phase with and
without MBS at the edge.

Various effects such as disorder, strength and direction
of magnetic field, or temperature have been investigated
for the Majorana wire.33–46 This is an essential step to
further understand experiments, as there are various alternative
resonances induced by Josephson or Andreev bound states,
Kondo physics, or disorder-imposed midgap states that could
give rise to similar transport signals. Among all of these
effects, the role of interactions is most complicated to address
microscopically for a finite wire, as the Hamiltonian loses its
bilinear form. As such, interactions cannot be easily treated
for large system sizes unless a Luttinger liquid approximation
is adopted where the proximity gap can only be included
perturbatively, or interactions can only be considered in special
scaling limits.47–49 The mesoscopic limit q,ω → 0 suggests
that the low energy treatment of tunneling experiments only
depends on the existence of Majorana edge modes irrespective
of the spectral properties in the bulk. This assumption,
however, is invalid for any ac-type measurement at finite ω

and for dI/dVSD dc measurements at finite bias, where VSD is
the source-drain voltage.

In this Rapid Communication, we develop a density matrix
renormalization group (DMRG) ansatz to study the role of
interactions in Majorana wires by computing the full spectral
function down to zero frequency. DMRG has been previously
employed to obtain the doubly degenerate ground state of the
Majorana wire.50 The motivation to formulate a DMRG ansatz
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for the full spectral function is twofold. First, this allows to
investigate the role of interactions on a microscopic level and
connect its effects to the dI/dVSD signal. In particular, the
suspected Majorana zero-bias peak is centered around zero
frequency, which would be hard to resolve in conventional
time-resolved DMRG where an infinite time evolution would
have to be performed. Second, we thus develop the platform to
consider the interplay of effects such as disorder, temperature,
and interactions in a most suited microscopic framework,
which is likely to stimulate a subsequent quantitative analysis
of experimental scenarios.

Model. We consider the effective description along the
proposal by Kitaev8 for a single open chain:

H =
M−1∑

i=1

(−tc
†
i ci+1 + �ci ci+1 + H.c.) − μ

M∑

i=1

ni

+
M−1∑

i=1

V nini+1, (1)

where ni = c
†
i ci , M denotes the number of sites, t the

nearest-neighbor hopping (set to unity in the following),
� the proximity gap, μ the chemical potential, and V the
nearest-neighbor Hubbard interaction. For V = 0, the system
can be studied analytically in a single-particle picture.8 As a
function of μ, a topological phase transition is driven between
a bulk-gapped SC wire with (|μ| < 2t) and without (|μ| � 2t)
one Majorana mode per edge which are still entangled, whereas
correlations decay at the scale ∼1/� in the bulk. The spectral
signature of this is given by a ground state degeneracy for
the two different parity sectors P = (−1)

∑
i ni labeled even

(P = 1) and odd (P = −1). For the ground state in the even
case, all electrons pair and avoid the proximity gap scale. For
the odd case, the excess electron pays a Bogoliubov excitation
energy ∼� in the trivial SC phase of the wire, while it can be
located in the zero energy entangled state in the topological
SC phase of the wire as provided by the Majorana edges.
Accordingly, a single electron in transport takes advantage of
the zero energy fermionic state formed by the two Majorana
edges, yielding a shift in the quantized conductance and a
zero-bias peak in the dI/dVSD signal.4,13,14 In particular, the
energy location of the fermionic state energy formed by the
Majorana edges is protected by particle-hole symmetry: As
soon as the SC phase forms in the wire, the MBS does not
evolve in energy and hence should give a zero-bias peak
irrespective of modifications imposed on the wire which leave
the specific SC phase intact, i.e., which do not close the bulk
gap. From a different perspective of one-dimensional systems,
the nontrivial phase of (1) can also be labeled topological51 in
the sense that the bulk gap forms without breaking continuous
lattice symmetries, and yields fractionalized edge modes as
compared to the constituent fermions which span the Hilbert
space of the system. This is similar to the Haldane gap scenario
of S = 1 chains where the featureless bulk is gapped and the
edges form S = 1/2 degrees of freedom.52

The second line in (1) represents the most short-range
interaction term between the fermions allowed by Pauli
principle. While the proximity of the superconductor will be
efficient in screening the long-range part of generic Coulomb

interactions between the electrons, the short-range potential
is less affected and needs to be considered. We treat finite
size realizations of (1) up to M = 200 for specific points,
and compute the spectral function A(ω), i.e., the local single-
particle density of states, which dictates the dI/dVSD signal
of a tunneling current I .

Method. The spectral function is obtained from the imagi-
nary part of the retarded Greens function

Gr(z) = G+
ĉx ,ĉ

+
x

− G−
ĉ+
x ,ĉx

, (2)

G±
Â,B̂

(z) = 〈�0|Â (E0 − H ± z)−1 B̂|�0〉, (3)

where Â and B̂ are placeholders for the operators of interest
(ĉx0

,ĉ+
x0

), |�0〉 is the ground state with energy E0, x0 denotes
the position where the local density of states is evaluated,
and z = ω + iη the complex frequency including the level
broadening which has to be introduced to smear over finite size
effects.53 We evaluate the resolvent equations (3) by expanding

f±(H − E0,z) = 1

E0 − H ± z
(4)

into Chebyshev orthogonal polynomials Tn,54,55

f±(z,x) = 1/(±z − x) =
∞∑

n=0

α±
n (z)Tn(x), (5)

α±(z) = 2/(1 + δn,0)

(±z)n+1(1 + √
z2

√
z2 − 1/z2)n

√
1 − 1/z2

. (6)

In contrast to the standard kernel polynomial scheme,56 we
evaluate the expansion at a finite broadening η,53,55 with the
local density of states

A(ω) = − 1

π
lim

η→0+
Gr

ĉ,ĉ+ (ω + iη). (7)

The moments Tn = 〈�0|Tn(E0 − H )|�0〉 are obtained using
the recurrence relations for the Chebyshev polynomials and all
|ζn〉 = Tn(E0 − H )|�0〉 states are added to the density matrix
to optimize for the basis at each DMRG step. We exploit the
parity quantum number, and are typically using at least 1000
states per DMRG block. For calculating the moments for the
Chebyshev expansion, we perform a first calculation for the
first ten moments only. We then restart the DMRG to increase
the number of moments in several restarts up to n = 800. As for
the single-particle limit V = 0, we verified our results against
a generalized Bogoliubov transformation.57 We deconvolute
the applied η = 0.1 (0.17) of the M = 96 (48) site systems as
described in Ref. 53.

V -μ phase diagram. Figure 1 displays the numerical phase
diagram as obtained from our DMRG approach: As a function
of V and μ, the system can reside in the trivial and topological
SC phase, as well as in an (incommensurate) density wave state
(I)DW for strong repulsive coupling. The topological SC phase
is detected by the twofold degenerate ground states belonging
to different parity sectors. In contrast, the two ground states
of the (I)DW phase belong to the same parity sector, where a
distinction between IDW and DW can be made by analyzing
the homogeneity of local densities and entropy signatures. The
four different gapped phases are separated from each other
by critical lines. We observe a strong renormalization of μc
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FIG. 1. (Color online) Phase diagram of (1) for � = 0.5. Data
points are obtained within DMRG for different system sizes: A
trivial SC phase (yellow), the topological SC phase (light blue), an
incommensurate density wave (IDW) (red), and a regular density
wave (DW) phase (green) is found. Orange lines denote the parameter
regions for Figs. 3 and 4.

separating the trivial and topological SC phase as a function
of interaction strength. Our numerical phase diagram agrees
quite well with the asymptotic analytic solution obtained by
mapping the Kitaev chain to a Josephson junction array.58

In particular, following the suggestion in Ref. 58, Josephson
junction array scenarios establish a new arena where the
Majorana wire interaction effects we investigate are relevant,
as they can be tuned to strong interactions.

� dependence. We pick the phase space point (V,μ) =
(1,0.5) located in the topological SC phase, and enhance the
proximity scale � (Fig. 2). As soon as � is turned on, we find
a clean Majorana zero-bias peak along with proximity peaks
around ω = ±�. Note that even though the system without an
SC proximity term breaks particle-hole symmetry due to finite
μ, the spectral function for the full model shows the expected
emergent particle-hole symmetry for |ω| < �.

μ dependence. We fix V and investigate the behavior of
the spectral function for increasing μ > 0 as we trace through
the topological SC phase along the horizontal orange line in
Fig. 1. The holelike weight gets increasingly shifted to the
electronlike regime, while the Majorana peak signal is robust
independent of μ (Fig. 3).

V dependence. To show the specific evolution of the
spectral function for varying interaction strengths, we trace
a regime of V from weakly attractive to strongly repulsive
in the topological SC regime (Fig. 4), as depicted by
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FIG. 2. (Color online) DMRG spectral functions A(ω) for dif-
ferent amplitudes �. (M = 96, V = 1, and μ = 0.5.) The proximity
peaks are asymmetric due to finite μ.
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FIG. 3. (Color online) DMRG spectral functions A(ω) for differ-
ent μ. (M = 96, V = 1, and � = 0.5.)

the vertical orange line in Fig. 1. Weak attractive V sharpens
the proximity peaks and enhances the Majorana zero-bias
peak, along with the effective renormalization of the charge
gap. The proximity peaks become broad due to repulsive V .
Similarly, the zero-bias peak is sensitive to the interaction
strength and quickly decreases in height as the interactions
become repulsive. A major source of this effect is due to finite
size effects such as the degeneracy splitting of the Majorana
levels, which we checked to significantly vary as a function of
interactions and system size. It relates to finite wave function
overlap between the Majorana modes at the two ends.34 The
inset in Fig. 4 shows the FWHM divided by peak height of
the zero-bias peak as a function of V , where a significant
broadening is observed. It suggests that in the actual dI/dVSD

measurement, the zero-bias broadening is a combined effect
of temperature and interactions.

Topological phase transition. An important feature of the
topological SC phase with the Majorana zero-bias peak is the
transport signature of phase transitions. Figure 4, if continued
for higher V , would display the interaction-induced transition
into a DW phase, where all previous main features such as the
Majorana peak and the proximity peaks disappear. Figure 3, if
continued to higher μ, would eventually illustrate the evolution
of the transport signal into a trivial SC phase which also exists
in the noninteracting case. There, a separate investigation
of the Majorana peak and the proximity peaks, however, is
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FIG. 4. (Color online) DMRG spectral functions A(ω) for various
interaction strengths V . (M = 96, � = 0.5, and μ = 0.) Crosses
for V = 0 denote the exact analytical solution, matching precisely
with the according DMRG results. Moderate attractive V increases
the Majorana peak height, while repulsive V suppresses the zero-
bias peak. The Majorana peak broadens as illustrated in the inset
displaying the FWHM divided by the peak height.
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FIG. 5. (Color online) DMRG spectral functions A(ω) in the
regime V = −2, . . . , − 4 in increments of 0.2. (M = 48, � = 0.5,
and μ = 0.) The bulk-gap closure induces a joint collapse of the
Majorana peak and the proximity gaps until the latter reopen in the
trivial superconducting phase (Fig. 1).

quite hard to pursue because of the overpopulated electronlike
Bogoliubov band. On fundamental grounds of characterizing
topological phase transitions, at the transition between a trivial
and a topological SC phase, the bulk gap must close. In turn,
this implies that the Majorana peak cannot vanish without
the proximity peaks being affected as well. To illustrate this
aspect and also to choose a transition which might allow one
to draw connections to the experimental setup where μ is held
fixed,15 we investigate the interaction-induced topological to
trivial SC transition at μ = 0 by varying V from −2 to −4
(Fig. 5). As we get closer to the transition, the Majorana peak
shrinks along with a successive vanishing of the proximity
gap until after the transition at Vc ∼ −3.0, the proximity gap
reopens without the Majorana peak. Since this is suitably
kept in the DMRG spectral function, it suggests that it should

generically be observed for a topological SC phase transition
in the transport signal of Majorana wires. Note, however, that
the leads and the Andreev reflectivity of the bulk-gap closing
mode play a crucial role in connecting the tunneling density
of states to a conductance measurement.

Summary and outlook. We have shown that the Chebyshev
expansion method in DMRG allows us to obtain a detailed
phase diagram of the Kitaev chain in the presence of interac-
tions via spectral function calculations down to zero frequency.
In the topological SC phase we find a clean Majorana zero-bias
peak. Investigating the dependence of the spectral function on
system parameters in the presence of interactions, we find that
while μ changes the occupation of the holelike versus the
electronlike Bogoliubov band, the Majorana zero-bias peak
is hardly affected. The interactions modify the charge gap
and as such, for one effect, renormalize μc separating the
topologically trivial from the nontrivial SC phase in the wire.
The interactions affect the height-width ratio of the Majorana
peak. As the interactions reduce the bulk gap in the wire, the
Majorana peak broadens and vanishes along with the proximity
gap peaks. We have investigated differently tuned topological
phase transitions and find that the bulk-gap closure manifests
itself as a joint decay of the Majorana peak and the proximity
gap. Our analysis establishes a starting point to endeavor
the spinful Majorana wire models as well as to study joint
effects of disorder, temperature, and interactions to establish a
quantitative comparison with experimental signatures. Includ-
ing explicit estimates for transmission curves, it will also be
interesting to further analyze the possible renormalization of
ac and dc conductance49,59–62 in interacting Majorana wires.
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