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Analytic formulations for one-dimensional decay of rectangular homoepitaxial islands during
coarsening on anisotropic fcc (110) surfaces
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Submonolayer homoepitaxial fcc (110) systems display behavior reflecting strong anisotropy at lower
temperatures, including one-dimensional decay during Ostwald ripening of rectangular islands maintaining
constant width in the 〈001〉 direction. To appropriately describe this behavior, we first develop a refined continuum
Burton-Cabrera-Frank formalism, which accounts for a lack of equilibration of island shape and importantly also
for inhibited incorporation of adatoms at almost-faceted 〈1̄10〉 island edges through effective kinetic coefficients.
This formalism is shown to describe accurately the adatom diffusion fluxes between islands and thus island
evolution for a complex experimental island configuration, as confirmed by matching results from realistic
atomistic simulations for this configuration. This approach also elucidates basic dependencies of flux on island
geometry and temperature. Second, a further refinement is presented incorporating separate terrace and edge
adatom density fields either in a continuum setting or alternatively in a spatially discrete diffusion equation
setting. The second approach allows more flexibility and accuracy in accounting for edge-diffusion kinetics
including corner rounding, a lack of equilibration of the edge adatom density at 〈1̄10〉 island edges, and the
effect of rare kinks on 〈1̄10〉 island edges. Significantly, it suggests facile two-way corner rounding at the island
periphery during island decay, contrasting the previous picture.
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I. INTRODUCTION

Submonolayer homoepitaxial films consist of arrays of
single-atom-high two-dimensional (2D) islands on perfectly
flat terraces of extended single-crystal surfaces. These provide
ideal systems for analysis of the details of 2D coarsening
processes.1,2 The most common scenario for coarsening is
Ostwald ripening (OR)3 wherein smaller than average islands
shrink, transferring their adatoms by diffusion across terraces
to larger islands. Typically, equilibration of island shape is
facile during the coarsening process, with individual islands
maintaining their equilibrium shape, which is determined ac-
cording to the Wulff construction by the orientation-dependent
step-edge energies for 2D clusters.4 The thermodynamic
driving force for coarsening process derives from the reduction
in the energy cost associated with broken bonds at island edges,
and this is achieved by decreasing the overall island perimeter
length.5 The preferential dissolution of smaller clusters with
higher average edge curvatures reflects their higher chemical
potential, a quantity which is well-defined given the assumed
equilibrium island shapes.

A basic understanding of island evolution during OR
is often provided by a continuum Burton-Cabrera-Franck
(BCF)6 type “step dynamics” formulation.4,7 This formulation
involves analysis of a boundary value problem (BVP) for the
diffusion equation describing the density of mobile adatoms
on the terraces between islands with appropriate boundary
conditions (BCs) at island edges. These BCs account for both
the island chemical potentials and for the ease or difficulty
of adatom attachment-detachment through so-called kinetic
coefficients. It suffices to adopt a steady-state approximation
since the adatom density relaxes quickly to the local island

configuration. Solution of this BVP gives net fluxes for
attachment-detachment and, thus, island growth or decay rates.
Thus, the island configuration can be incrementally updated
using these rates, the BVP re-solved to obtain new rates, and
the island configuration further evolved, etc. Often instead of
analyzing this many-island problem, just the evolution of a
single island within a “typical environment” is determined to
provide input to the continuity equation for evolution of the
island size distribution in a Lifshitz-Slyozov-Wagner theory.2,5

The above picture applies to isotropic systems and also to
mildly anisotropic systems. However, for strongly anisotropic
systems, one might anticipate qualitatively different behavior.
The traditional expectation is for a complete absence of deter-
ministic OR in purely one-dimensional (1D) systems where
all islands have the same chemical potential.8 In contrast,
coarsening does occur in strongly anisotropic 2D systems.
For example, scanning tunneling microscopy (STM) studies
by Morgenstern et al.9,10 revealed coarsening for rectangular
Ag islands on an Ag(110) surface at a lower temperature
(T ) of around 220 K or below but via an unusual 1D decay
mode. Smaller islands shrank in length while retaining fixed
width in the 〈001〉 direction and thus were unequivocally not
shape equilibrated.11,12 Our goal here is to develop appropriate
analytical formalisms to describe this 1D decay behavior.

In Sec. II, we provide an atomistic-level description
of the thermodynamics and surface diffusion kinetics for
submonolayer fcc (110) homoepitaxial systems. Experimental
observations for 1D decay of Ag islands on Ag(110) and
kinetic Monte Carlo (KMC) simulation results for a realistic
atomistic model for this process are also presented. Then, in
Sec. III, we refine the standard continuum BCF formulation to
treat these strongly anisotropic systems. Refined BCF (rBCF)
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predictions for decay rates of islands in strongly anisotropic fcc
(110) homoepitaxial systems are presented for canonical local
island environments, demonstrating the key dependencies on
island geometry and surface temperature. Predictions are then
provided for island decay in a complex island distribution
taken from STM experiments. Success is confirmed by
comparison against realistic atomistic simulations for the
same configuration, thereby avoiding uncertainty in direct
comparison with experiment due to large intrinsic fluctuations.
However, this rBCF approach does not have the flexibility to
describe the details of edge diffusion kinetics such as corner
or kink rounding and neglects the lack of local equilibration of
edge adatoms. Thus, in Sec. IV, we present a further refined
formalism with multiple adatom density fields to better capture
edge-diffusion kinetics first within a continuum framework and
then through an alternative spatially discrete diffusion equation
(DDE) formalism.13 This approach is shown to reduce slight
discrepancy seen from comparing the rBCF treatment and
realistic atomistic simulation. The approach allows assessment
of the effect of rare kinks that act as traps for diffusing atoms
on almost-faceted 〈1̄10〉 island edges. Most significantly, it
suggests facile two-way corner rounding at island edges during
island decay, contrasting the previous picture for island decay
in this system.9–11

II. HOMOEPITAXIAL FCC (110) SURFACE DYNAMICS
AND 1D ISLAND DECAY

A. Atomistic models for surface diffusion kinetics

A fcc (110) surface consists of an array of parallel channels
(see Fig. 1). The surface unit cell is rectangular with side length
b in the 〈1̄10〉 direction, a = √

2b in the 〈001〉 direction, and
area � = ab. Adatoms hop between the preferred in-channel
adsorption sites (supported by four atoms in the underlying
surface layer) through bridge-site transition states (TS). These
TS differ for in-channel and cross-channel hopping, as do the
diffusion barriers E

‖
d and E⊥

d , respectively. Here, one caveat is

FIG. 1. (Color online) Schematic of a 2D rectangular homoepi-
taxial island on an fcc (110) surface. Also indicated are anisotropic
terrace diffusion barriers (E‖

d and E⊥
d ); conventional pairwise in-

teractions (E‖
b and E⊥

b ) and associated step energies (γ1̄10 and γ001);
unconventional interactions (E′‖

b and E′⊥
b ) for an adatom at a transition

state (TS) for edge diffusion; edge-diffusion barriers (E‖
e and E⊥

e );
corner-rounding barriers (Ecr and E∗

cr); and the surface unit cell as
well as notations for island dimensions and in-surface directions.

that cross-channel diffusion could instead occur preferentially
via exchange for some homoepitaxial fcc (110) systems.

Surface thermodynamics is determined by conventional
interactions between adatoms on preferred adsorption sites.
We assume nearest-neighbor pairwise attractions with a larger
(smaller) magnitude E

‖
b < 0 (E⊥

b < 0) for atoms separated by
b (a) in the 〈1̄10〉 (〈001〉) direction. For a realistic description
of surface-diffusion kinetics, including edge diffusion and de-
tachment, we adopt a multisite lattice-gas (msLG) model14–16

in which we prescribe a second set of unconventional inter-
actions between one adatom at a TS and others at nearby
adsorption sites. Again, just short-range pairwise attractions
are assumed [(E′‖

b < 0 and E′⊥
b < 0); see Fig. 1]. The total

energy, Ei, in the initial state before hopping, and the total
TS energy, ETS, can be determined as the sum of the relevant
adsorption energy and pairwise interactions; then the activation
barrier for hopping is simply determined as Eact = ETS − Ei

(Refs. 14–16), which equals the sum of isolated adatom
diffusion barrier and the difference in total interaction energy
between the TS and initial state. This formalism is more
flexible than the standard initial value approximation, which
sets the unconventional interactions to zero.17–19 Hop rates are
described by an Arrhenius form, h = νe−βEact , with common
prefactor ν = 1013/s and inverse temperature β ≡ 1/(kBT ),
where kB is the Boltzmann constant. For Ag/Ag(110), an
appropriate choice of energetics is described in Ref. 11. For this
study, the parameters of most importance are E

‖
d = 0.28 eV,

E⊥
d = 0.38 eV, E‖

b = −0.18 eV, E⊥
b = −0.045 eV, and a 〈1̄10〉

to 〈001〉 corner-rounding barrier of Ecr = 0.39 eV (Ref. 20;
see Fig. 1).

The key features proposed to produce 1D island decay for
Ag/Ag(110) at lower T described in Sec. I are as follows
(Refs. 9 and 11): (i) Detachment of atoms almost exclusively
from the short 〈001〉 ends of islands. (ii) A lack of detachment
from faceted long 〈1̄10〉 sides, and a lack of corner rounding
from the 〈001〉 ends to the 〈1̄10〉 sides (but see Sec. IV B).
(iii) Inhibited nucleation of new layers on the 〈1̄10〉 sides, and
facile corner rounding of edge atoms from the 〈1̄10〉 sides to
the 〈001〉 ends. See Fig. 1 for our notation.

B. Key experimental observations for Ag/Ag(110)

The key experimental STM observations for coarsening of
rectangular Ag islands on the anisotropic Ag(110) surface,
as well as details of the experimental procedures, have been
described in Morgenstern et al.9,10 and Han et al.11 Above
about 220 K, classic OR behavior is observed with individual
islands retaining their equilibrium shapes during growth or
decay.9 If L‖ (L⊥) denotes the length (width) of rectangular
islands in the 〈1̄10〉 (〈001〉) direction, then the area satisfies
A ≈ L‖L⊥, and the aspect ratio is given by R ≡ L‖/L⊥.
For equilibrated island shapes, one has that R = Req ≈ 3
(Ref. 9). However, at 220 K and below, a 1D decay mode
is observed: smaller (and narrower) islands shrink in length,
L‖, while retaining constant width, L⊥, thus increasing R. This
behavior is observed down to about 175 K, at which point the
coarsening process becomes too slow to be readily tracked.
Analysis of more extensive experimental data indicates that the
island decay rate K = −dA/dt ∝ e−βEOR has an Arrhenius
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FIG. 2. (Color online) 1D decay of a small rectangular Ag island
on Ag(110) at 190 K. (a) Larger scale STM image; (b)–(d) 30 ×
30 nm2 subregion following decay; (e) island linear dimensions (L‖

and L⊥); and (f) island area versus time (since Ag deposition).

dependence with EOR ≈ 0.32 eV (Ref. 11). In Fig. 2, we
provide an example of this 1D island decay at 190 K, which
will be analyzed in detail below.

C. KMC simulation results for 1D island decay on Ag/Ag(110)

Figure 3 shows the results of extensive simulations of the
1D decay process at 190 K for the small island shown in Fig. 2.
These simulations were performed using our atomistic msLG
model described in Sec. II A. Input to the simulations is the
multi-island configuration mimicking the local environment
of the decaying island. In addition, we perform atom-tracking
KMC simulations labeling adatoms originally in the decaying
island with a different color so as to track their transfer to
other islands. Given the small island size and low temperature,
there are significant fluctuations in the decay process. As a
consequence, to reliably assess typical or average behavior, we
perform ∼100 trials and average the results. From the decrease
of the average area of the decaying island, we extract an
initial decay rate of KmsLG ≈ 0.0026 nm2/s. However, after a
transient period of ∼750 s, there appears to be a slight increase
in rate to KmsLG ≈ 0.0033 nm2/s (measured between ∼750 s

4000

FIG. 3. (Color online) KMC simulation of our atomistic model
for decay at 190 K of the Ag island on Ag(110) in Fig. 2. Top frame:
Snapshot of the simulated island configuration early during decay.
Atoms initially in the decaying island of interest are colored white.
Bottom frame: Area versus time averaged over 99 simulation trials.
Large noise t > 2000 s reflects the limited number of trials with a
surviving island. Inset: Areas for individual trials. The dashed blue
line indicates the prediction of rBCF theory.

and ∼1500 s). The apparent discrepancy between the average
msLG rates and the experimental rate Kexpt ≈ 0.007 nm2/s is
not unexpected given the very large fluctuations in the results
for individual simulation trials.

III. rBCF THEORY FOR ANISOTROPIC SYSTEMS
WITHOUT ISLAND EQUILIBRATION

Here, we refine traditional continuum BCF type formu-
lations to better describe coarsening in strongly anisotropic
systems and, specifically, 1D island decay with a large
deviation from island-shape equilibration. Our focus is on
determining for the decay rate, KrBCF = −dA/dt , of smaller
narrower islands from our rBCF theory.

A. Constrained thermodynamics

For fcc (110) homoepitaxial systems with rectangular
islands, the key thermodynamic parameters in our atomistic
model are the chemical potential for an infinite island, μ∞ =
μads + μint (where μads is the isolated adatom adsorption
energy, and μint = E

‖
b + E⊥

b ), and the higher (lower) step
energy per unit length, γ001 = |E‖

b |/(2a) (γ1̄10 = |E⊥
b |/(2b))

for steps aligned in the 〈001〉 (〈1̄10〉) direction (see Fig. 1).
The energy of an island with linear dimension L‖ (L⊥) in the
〈1̄10〉 (〈001〉) direction and area A ≈ L‖L⊥ can be written as

Eisl = A

�
μ∞ + (2γ1̄10L

‖ + 2γ001L
⊥). (1)

Given the lack of island-shape equilibration, we intro-
duce partial chemical potentials, μM , for different possible
modes, M , of island evolution.11,21,22 For this study, the most
relevant mode M = 001 involves changing length L‖ with
constant width L⊥. Then, μ001 = �dEisl/dA obtained using
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dA = L⊥dL‖ with fixed L⊥ yields

μ001 = μ∞ + 2�γ1̄10/L
⊥. (2)

Introducing μ001 assumes a degree of local equilibration
that should also apply for the dilute ideal 2D adatom gas at
the 〈001〉 island edge. If neq denotes the locally equilibrated
adatom gas density per site at the 〈001〉 island edge, then its
chemical potential is given by μgas = μads + kBT lnneq. Since
μgas must match μ001, it follows that neq equals11,23

n001 = n∞e2β�γ1̄10/L
⊥

at 〈001〉 ends. (3)

Here, n∞ = eβμint denotes the equilibrium adatom density at an
extended straight step. Finally, for the observed 1D decay mode
M = 001, Eqs. (2) and (3) indicate that narrower islands with
smaller L⊥ and therefore higher μ001 and n001 should shrink,
while wider islands with bigger L⊥ and therefore lower μ001

and n001 grow.
Similarly, defining a mode M = 1̄10 for changing width L⊥

with fixed length L‖, one has that μ1̄10 = μ∞ + 2�γ001/L
‖

and neq equals n1̄10 = n∞e2β�γ001/L
‖

at 〈1̄10〉 island edges.
Now, for equilibrated island shapes (occurring at higher T ),
one must have that μ001 = μ1̄10, which yields the equilibrium
aspect ratio Req ≡ L

‖
eq/L

⊥
eq = γ001/γ1̄10.

B. rBCF formulation for kinetics

Analytic BCF formulations of OR are based on a steady-
state analysis of the diffusion equation for the adatom density,
n, which for fcc (110) homoepitaxial systems has the form

∂

∂t
n = D‖ ∂2

∂x2
n + D⊥ ∂2

∂y2
n ≈ 0, (4)

where D‖ ≡ D
‖
0e

−βE
‖
d (D⊥ ≡ D⊥

0 e−βE⊥
d ) is the larger

(smaller) diffusion coefficient in the 〈1̄10〉 (〈001〉) x (y)
direction given that 0 < E

‖
d < E⊥

d . We assume a common
attempt frequency for hopping, ν, so that D‖

0 = b2ν and D⊥
0 =

a2ν. Appropriate BCs must be imposed at island edges. The
lack of island-shape equilibration is addressed by assigning
separate partial chemical potentials and equilibrium adatom
densities to the 〈1̄10〉 and 〈001〉 edges.

In a general Chernov formulation, the BCs are written as7

±D‖ ∂n

∂x
= k001(n − n001) (5a)

at 〈001〉 edges, and

±D⊥ ∂n

∂y
= k1̄10(n − n1̄10) (5b)

at 〈1̄10〉 edges. The +(−) sign applies for the right (left)
edge of the island in Eq. (5a) and the upper (lower) edge
in Eq. (5b). In a traditional macroscopic setting,24 the kinetic
coefficients, k001 and k1̄10, which describe the ease of attach-
ment, would traditionally be taken as kmacro

001 = D‖/(eβδ001 − 1)
and kmacro

1̄10 = D⊥/(eβδ1̄10 − 1) where δ001 and δ1̄10 denote the
additional energy barriers for attachment at 〈001〉 and 〈1̄10〉
steps, respectively.13,25 Such barriers are generally zero for
homoepitaxial systems, and thus the kinetic coefficients are
generally taken as infinite for so-called terrace-diffusion-
limited coarsening. Then, Eqs. (5a) and (5b) reduce to simple

Dirichlet BCs: n = n001 at 〈001〉 edges, and n = n1̄10 at 〈1̄10〉
edges, respectively.

Solution of this Dirichlet BVP allows determination of the
integrated net-detachment flux for each edge of each island.
These determine the rate at which the island dimensions
change if one assumes negligible transfer of adatoms by edge
diffusion between different island edges. However, even for
small D⊥, these traditional Dirichlet BCs would lead to a
tendency for widening of islands for aspect ratio R > Req

where n1̄10 < n001. Likewise, there is a tendency for narrowing
when R < Req and n001 < n1̄10. This is not consistent with the
1D decay observed in experiment.

Our resolution to this dilemma is to argue that the
traditional macroscale Chernov-type kinetic coefficients in a
BCF formulation must be modified for analysis of nanoscale
evolution. Specifically, this modification is required when the
characteristic length scale of the decaying objects does not
greatly exceed the characteristic separation, Lkink, between
kinks at island edges.13 The underlying concept is that true
attachment at steps requires incorporation at kink sites and is
thus inhibited for low kink densities even in the absence of
an additional energetic barrier for attachment. This is the case
for the smooth almost-faceted 〈1̄10〉 island edges. As a result,
we introduce a more appropriate very small effective kinetic
coefficient, k1̄10 ∼ D⊥/L2

kink for attachment to the 〈1̄10〉 step
edge,13 which would be negligible for an almost-faceted
step edge with large Lkink. The kinetic coefficient k001 can
reasonably be taken as infinite since 〈001〉 steps are highly
kinked. Within this formalism incorporating k1̄10 = 0, one
immediately recovers 1D decay.

In closing, we note a previous BCF-type treatment by Yao
et al.23 for Ag island decay on Ag(110). They incorporated
finite kinetic coefficients k‖ � k⊥ based on the inequality
D‖ � D⊥, although this only follows in the traditional
macroscopic theory for nonzero δ001 ≈ δ1̄10; however, Yao
et al. did not discuss the assignment of finite k‖ and k⊥ in
the absence of energetic barriers to attachment. They also
predicted a different scaling in time for the island decay rate
from the behavior which we describe below.

C. rBCF analysis for benchmark island configurations

Islands in experimental distributions are often reasonably
well aligned end-to-end with their neighbors in the 〈1̄10〉
direction.11 Thus, we first consider a benchmark configuration
with just two aligned islands of differing widths in a rectangu-
lar simulation cell with periodic BCs (see Fig. 4). This enables
more systematic analysis and elucidation of the fundamental
behavior. We set E⊥

d − E
‖
d = 0.1 eV for Ag/Ag(110) and

set the temperature to 190 K unless otherwise stated. This
implies that ε ≡ D⊥/D‖ = 0.00445. Below, L⊥

cell will denote
the width of the simulation cell and L⊥

narrow (L⊥
wide) the width of

the narrow (wide) island in the 〈001〉 direction. Corresponding
dimensions in the 〈1̄10〉 direction are denoted by superscript
‖. If Lsep denotes the separation between islands in the
〈1̄10〉 direction, then one has L

‖
cell = 2Lsep + L

‖
narrow + L

‖
wide.

Precise determination of the decay rate, KrBCF, for the narrower
island from our rBCF theory and its dependence on various
geometric and model parameters is achieved from numerical
analysis of the diffusion problem using FEMLAB software.26
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FIG. 4. (Color online) Simulation cell with periodic BCs for a
benchmark configuration with a pair of islands aligned end-to-end
shown (top row). FEMLAB results for the rescaled adatom density
δn∗ ≡ (n − nwide

001 )/(nnarrow
001 − nwide

001 ) in the rBCF problem for the
central portion of the cell (bottom row). There are vanishing diffusion
fluxes across red dot-dashed lines through island centers. Geometric

parameters for the simulated configuration are Rnarrow ≡ L
‖
narrow

L⊥
narrow

=
3,

L⊥
cell

L⊥
narrow

= 2.5, Lsep

L
‖
narrow

= 1.5,
L

‖
wide

L
‖
narrow

= 2, and
L⊥

wide
L⊥

narrow
= 1.5.

The bottom frame in Fig. 4 shows results for the rescaled
adatom density, δn∗ ≡ (n − nwide

001 )/(nnarrow
001 − nwide

001 ). Thus, δn∗
takes values of 1 (0) at the end of the narrower (wider) island.
From these results, we can calculate the net detachment fluxes
integrated along 〈001〉 island ends after multiplying integrated
rescaled fluxes, ∫ ∂

∂x
δn∗dy, by D‖(nnarrow

001 − nwide
001 ).

For this aligned island geometry, given the strong
anisotropy in terrace diffusion at 190 K, it is natural to assess
the effectiveness of a quasi-1D estimate, K1D, of the island
decay rate. This estimate corresponds to the diffusion flux in
the 〈1̄10〉 (x-) direction rate for D⊥ = 0 (and, therefore, ε = 0)
and has the form

K1D = 2D‖ L⊥
narrow

Lsep

(
nnarrow

001 − nwide
001

)

≈ 4D‖n∞β�γ1̄10

Lsep

(
1 − L⊥

narrow

L⊥
wide

)
. (6)

The latter expression follows after adopting an approxima-
tion for the adatom density n001 = n∞e2β�γ1̄10/L

⊥ ≈ n∞ +
2n∞β�γ1̄10/L

⊥.
For the geometry in Fig. 4 but varying Lsep, we first compare

the exact KrBCF with K1D. The agreement is particularly good
if the separation, Lsep, between the islands is comparable to
the island length: KrBCF/K1D = 1.12, 1.20, 1.27, and 1.31,
for Lsep/L

‖
narrow = 1, 2, 4, and 8, respectively. For larger

Lsep, the agreement degrades for broader simulation cells. A
key feature reflecting quasi-1D behavior is the dependence
KrBCF ∼ 1/Lsep on Lsep, where all other parameters are fixed.
This feature is well-satisfied as LsepKrBCF increases by only
3%, 6%, 14%, and 17%, as Lsep/L

‖
narrow increases from 1

to 1.5, 2, 4, and 8, respectively. This inverse proportionality
is less well satisfied for broader simulation cells. Such a
decrease in KrBCF with increasing Lsep is much stronger
than the logarithmic dependence found in isotropic systems.11

This feature impacts the T -dependence of island decay (see
Sec. III E). See the Appendix for analysis of the dependence
of KrBCF on other model parameters.

Certainly there are examples in experimental island dis-
tributions where neighboring islands in the 〈1̄10〉 direction
are completely misaligned. It is clear that the net flux of
diffusing adatoms between such islands (which is mediated by
slow cross-channel diffusion) will be relatively small. There
are also cases, as shown in Sec. III D, where neighboring
islands are marginally misaligned, so that the top 〈1̄10〉
edge of one island is aligned with the bottom 〈1̄10〉 edge
of the neighbor. The net flux between such islands for
large anisotropy, ε � 1, should be significantly higher than
for completely misaligned islands. Separate analysis for the
simpler benchmark configurations reflecting these possibilities
for misalignment will help elucidate evolution for general
arrays of islands. To this end, we take the configuration in
Fig. 4 to misalign the islands by shifting in the 〈001〉 direction
to achieve marginal (with L⊥

cell = 2.5L⊥
narrow) or complete (with

L⊥
cell = 3L⊥

narrow) misalignment. FEMLAB analysis determines
the variation of KrBCF with ε → 0: KrBCF decreases by a factor
of 0.54, 0.16, and 0.03 (0.39, 0.06, and 0.005) as ε decreases
by a factor of 10, 100, and 100 from ε = 0.1, suggesting
that KrBCF ∼ ε1/2 (KrBCF ∼ ε1), as ε → 0, for marginally
(completely) misaligned islands. These features are clarified
in Sec. III E.

D. rBCF analysis for an experimental island configuration

For configurations of multiple islands, including those
extracted from experimental STM images, it is also viable to
solve the multi-island rBCF BVP numerically using FEMLAB
software. In this way, one can compare rBCF predictions for
island evolution and particularly the 1D decay of narrower
islands, with experimental observations or with corresponding
KMC simulations. To this end, we input to our numerical
analysis a configuration of several islands shown in Fig. 5
(top) that constitute the local environment of the narrow
decaying island tracked in Fig. 2. We choose the boundary
of the simulation region to correspond roughly to a physical
zero-flux boundary. Note, however, that the specific treatment

FIG. 5. (Color online) Top: Magnified STM image (50.0 ×
15.5 nm2) for the local environment of the small narrow decaying
island shown in Fig. 2. Island dimensions are shown in yellow
and separations in white (in nm). Bottom: FEMLAB results for the
rescaled adatom density field, n† ≡ n/n∞, in the rBCF treatment for
the island configuration (top). The simulation cell has zero-flux BCs
at the outer edges.
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of the outer boundary will not greatly affect the evolution
of the far-removed small, narrow central island. For each of
the islands, we impose a zero-flux BC on the top and bottom
〈1̄10〉 edges and a suitable Dirichlet BC on the 〈001〉 ends.
From Eq. (3), the latter BC sets the adatom densities, n, to

n001 = n∞e2β�γ1̄10/L
⊥ = n∞eβa|E⊥

b |/L⊥ ≈ n∞e1.124/L⊥
(7)

at 190 K, with |E⊥
b | = 0.045 eV for Ag/Ag(110) (Ref. 11)

and with L⊥ in nm.
Results of our FEMLAB analysis for the rescaled density

field n† = n/n∞ are shown in Fig. 5 (bottom). From these
results, we can calculate the net detachment fluxes integrated
along 〈001〉 ends of any island27 after multiplying integrated
rescaled fluxes ∫ ∂

∂x
n†dy by D‖n∞ = 0.0336 nm2/s at 190 K

using parameters for Ag/Ag(100) in Ref. 11. The calculated
net detachment rate from the right side of the small central
island 1 is KrBCF,1R = 0.00147 nm2/s and from the left side
is KrBCF,1L = 0.00073 nm2/s. Thus, the total rate of decay of
the area of island 1 is KrBCF,1 = 0.0022 nm2/s.

It is natural to compare the value of KrBCF,1R with a simple
1D estimate. We note that a segment of length L′⊥ = 1.7 nm on
the right end of island 1 (with L⊥

1 = 2.5 nm) is directly aligned
with the left end of island 5 to the right (with L⊥

5 = 3.3 nm),
which is separated from island 1 by a distance L1→5

sep = 8.3 nm.
Thus, it follows that

K1D,1R = D‖n∞(e1.124/L⊥
1 − e1.124/L⊥

5 )

×L′⊥/L1→5
sep = 0.0011 nm2/s,

which just 25% below KrBCF,1R. The left end of island 1
is misaligned with the neighboring island to the left, but
just marginally, so that KrBCF,1L is still significant relative to
KrBCF,1R. Both features can be anticipated from the results in
Sec. III C.

There are complications in direct comparison of rBCF
results with the experimental observations in Sec. II B. Most
significantly, island decay is highly stochastic for smaller
islands at 190 K (cf. Sec. II), so experimentally observed
behavior may not be typical. Indeed, the experimental decay
rate Kexpt,1 (of perhaps 0.005 nm2/s initially, increasing
to ≈0.007 nm2/s) matches the group of faster decaying
trajectories in our KMC simulation study but not the average
behavior. Also, the actual shapes of islands neighboring
decaying island 1 are not perfect rectangles or even rectangles
with rounded corners. Deviations from straight 〈1̄10〉 sides
imply many more traps for diffusing adatoms than for more
perfect islands such as those in our rBCF analysis. This feature
might boost decay.

Thus, we instead compare the rBCF results with those
from KMC simulation of our msLG model in Sec. II C for
the experimental island configuration, thereby gaining two
major advantages. First, by repeating the simulation many
times for the same initial configuration of island 1 and its
local environment, we can obtain precise results for the
mean decay rate, i.e., the quantity assessed by rBCF. Second,
we can choose the initial shapes of the islands to match
the perfect rectangular rBCF shapes rather than including
the experimental imperfections. Comparing the initial decay
rate for island 1 from our msLG model averaging over 99 trials

(see Sec. II C) with the rBCF result yields good agreement:

KmsLG,1 = 0.0026 nm2/s versus KrBCF,1 = 0.00219 nm2/s,

(see also Fig. 3). Thus, we conclude that the rBCF approach
captures the key features of the 1D decay of island 1.
Furthermore, it elucidates the details of mass flow between
islands in a way that is not possible from experiment and
difficult even in KMC simulation.

For BCF-type modeling of island evolution, it is generally
necessary to incrementally evolve the island configuration
using the initial growth or decay rates, re-solve the BVP,
and incrementally evolve islands again, etc. However, for this
system, one expects that the island decay rate is roughly
constant, so linear decay of the island area is completely
determined by initial decay rate (and the initial size). This
picture is suggested by either the experimental or KMC
data and from the structure of our rBCF theory (decay with
fixed island width implies fixed partial chemical potential
differences that drive evolution). However, to confirm this
expectation, we re-solve the BVP at a later time, where island
1 has decayed to half its initial area, and re-evaluate its decay
rate. In the evolved configuration, the right (left) end of island
1 has receded by 1.8 (0.9) nm, so its length has decreased from
5.4 to 2.7 nm. However, the right (left) end of island 2 (island
5) has advanced by 1.2 (1.1) nm so the end-to-end separations
between island 1 and its neighbors (which impact the decay
rate) do not change much. Also, island 4 has disappeared in
the evolved configuration, but this has negligible effect on
the decay of island 1. Indeed, the recalculated decay rate
KrBCF,1 = 0.00220 nm2/s is very close to the initial value
of 0.00219 nm2/s.

E. Further discussion of the rBCF analysis

Our rBCF analysis has effectively characterized the depen-
dence of the island decay rate on geometry. An additional
observation further elucidates this behavior: expanding the
y axis by a (large) factor of r ≡ ε−1/2 ≡ (D‖/D⊥)1/2 =
(b/a)eβ(E⊥

d −E
‖
d )/2 converts the BVP into one with isotropic

diffusion. Since r = e0.05β/
√

2 ≈ 15.0 (here and later, β

is always in eV−1) is large for Ag/Ag(110) at 190 K,
our benchmark geometry with two aligned islands in the
simulation cell transforms into a geometry with two closely
spaced wide islands with long parallel nearby edges. Thus,
one naturally expects quasi-1D behavior. To obtain the island
decay rate, KrBCF, for misaligned islands, one solves for rate,
Kiso, in the rescaled isotropic problem, and then multiplies by
1/r , accounting for expanded 〈001〉 island edge lengths. For
the marginally misaligned case, clearly Kiso achieves a finite-
limiting value as r → ∞, and thus KrBCF ∼ Kiso/r ∼ ε1/2,
as ε → ∞. For the completely misaligned case, one finds
that Kiso ∼ 1/r , so that KrBCF ∼ 1/r2 ∼ ε, as ε → 0. This
explains the behavior described in Sec. III C.

The rBCF formalism also elucidates basic dependencies of
the decay rate, KrBCF, on time and temperature. The form
of K1D indicates that KrBCF should be roughly constant,
so that the island area, A, should decay linearly, consistent
with experiment and simulation in Sec. II. However, previous
studies proposed that A ∼ (t0 − t)p, where t0 is the time of
island disappearance, disagreeing on whether p = 2/3 (Ref. 9)
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or 1/2 (Ref. 23). In either case, since p < 1, it follows that
K ∼ A−(1−p)/p diverges as A → 0. However, these fits were
applied to both to the 1D decay regime and a subsequent 2D
late-stage regime which occurs for R < Rmin ∼ 1 (Ref. 11).
The 2D regime has p = 2/3 for terrace-diffusion-limited
coarsening in isotropic systems.11 Thus, their analysis was
skewed by also fitting the latter regime.

Finally, we consider the effective Arrhenius energy EOR =
− d

dβ
lnK for 1D island decay at lower T versus conventional

2D decay at higher T . We assign an Arrhenius dependence,
Lsep ∼ e−βEsep , for the typical distance between 〈001〉 island
ends with measured Esep ≈ 0.20 eV,11 and write Eform =
−μint > 0 for the energy cost to form a 2D gas adatom
by extraction of an adatom from a large 2D island. Since,
roughly speaking, K1D ∼ D‖n∞/Lsep for 1D decay versus
K2D ∼ (D‖D⊥)1/2n∞/lnLsep for 2D decay,11,23 it then follows
that

EOR,1D = E
‖
d + Eform − Esep = 0.31 eV versus

EOR,2D = (E‖
d + E⊥

d

)
/2 + Eform = 0.56 eV.

This low EOR,1D matches experiment Eexpt ≈ 0.32 eV (Ref. 11)
in marked contrast to EOR,2D.

IV. MULTIDENSITY FIELD AND SPATIALLY DISCRETE
ANALYTIC FORMALISMS

A more detailed analytic treatment of 1D island decay
might incorporate a description of edge-diffusion kinetics
into the modeling. In Sec. IV A, we suggest formalism still
within a continuum BCF-type framework but which includes
an additional diffusion field for edge adatoms. However, in
any system with nanoscale island dimensions of O(101) lattice
constants, one could argue that it is also appropriate to retain
spatial discreteness. Then, BCF-type diffusion equations are
replaced by so-called lattice differential (diffusion) equations.
In fact, such a discrete framework is extremely versatile being
amenable to including details of edge-diffusion kinetics as well
as other features of nanoscale geometry.13 This approach is
developed in Sec. IV B, and results are presented in Sec. IV C.

A. Analytic continuum formalism

To account for the lack of equilibration of edge adatoms
at 〈1̄10〉 step edges and to capture the details of edge
diffusion kinetics, we introduce a separate diffusion field,
nedge, to describe the density per site of edge adatoms at
the 〈1̄10〉 edges (in addition to the adatom density, n, on
terraces). See Refs. 28–30 for somewhat related formalisms.
The terrace adatom density, n, satisfies the BCF diffusion
equation [Eq. (4)] together with a Dirichlet BC, n = n001,
at 〈001〉 islands ends (as in Sec. III) and now another Dirichlet
BC, n = eβE⊥

b nedge, on 〈1̄10〉 island edges. The latter condition
reflects the feature that nedge is enhanced relative to the nearby
adatom density on terraces due to bonding to the step edge
with strength determined by E⊥

b < 0.
Let Jy(x) = ±a−1D⊥ ∂

∂y
n denote the net flux of terrace

adatoms per unit length attaching at position x along the 〈1̄10〉
edge of an island, where the +(−) sign applies for the lower

(upper) 〈1̄10〉 edge. Then, it follows that

∂

∂t
nedge = D‖

e
∂2

∂x2
nedge + Jy(x) ≈ 0, (8)

where D
‖
e ≡ b2h

‖
e is the edge-diffusion coefficient with h

‖
e ≡

νe−βE
‖
e . To specify BCs at the corners of the island, we

introduce an effective rate, hcr ≡ νe−βEcr (see Fig. 1) for
corner rounding from 〈1̄10〉 to 〈001〉 edges. The effective rate
for corner rounding in the reverse direction is determined by
detailed balance. Then, by matching edge-diffusion flux and
the net corner-rounding flux, Jcr, from 〈1̄10〉 to 〈001〉 edges,
this BC becomes

D‖
e

∂

∂x
nedge = ±Jcr = ±bhcr

(
nedge − e−βE⊥

b n001
)
, (9)

where the +(−) sign applies for left (right) island corners. The
first (second) term on the right-hand side corresponds to corner
rounding from 〈1̄10〉 to 〈001〉 edges (from 〈001〉 to 〈1̄10〉
edges). The extra factor of e−βE⊥

b in the negative contribution
to Jcr ensures that for a single island, the equilibrated 〈1̄10〉
edge density satisfies nedge = e−βE⊥

b n001, i.e., nedge is enhanced
relative to n001, which also corresponds to the local adatom
density on terraces consistent with the above Dirichlet BC for
n at 〈1̄10〉 step edges. Further detailed analysis is possible,31

but here we instead focus on an alternative discrete formalism.

B. DDE formalism

To develop and illustrate the DDE formalism, we first
consider the benchmark geometry of two aligned islands in
a simulation cell with periodic BCs as in Sec. III C. This
geometry and the labeling of a spatially discrete grid of
adsorption sites (i,j ) is shown in Fig. 6(a). The adatom density
at site (i,j ) is denoted by ni,j . The generic equation for the
adatom densities, ni,j , has the form

d

dt
ni,j = h<

i+1,j ni+1,j + h>
i−1,j ni−1,j + h∨

i,j+1ni,j+1

+h∧
i,j−1ni,j−1 − (h<

i,j + h>
i,j + h∨

i,j + h∧
i,j )ni,j ,

(10)

where h<
i,j , h>

i,j , h∨
i,j , and h∧

i,j denote the rates to hop left, right,
down, or up from site (i,j ), respectively. The specific form of
these rates and the BCs differs for various classes of adsorption
sites as enumerated below. Figures 6(a) and 6(b) illustrate these
six classes (corner, 〈1̄10〉 edge, 〈001〉 edge, boundary, kink, and
terrace sites) using six different symbols (diamonds, triangles,
dots, squares, stars, and crosses, respectively).

First, we discuss the rates. For the terrace sites not adjacent
to 〈1̄10〉 edge sites, one has that h<

i,j = h>
i,j = h‖ ≡ νe−βE

‖
d and

h∨
i,j = h∧

i,j = h⊥ ≡ νe−βE⊥
d . For 〈1̄10〉 edge sites, a distinct

edge-diffusion rate is applied, i.e., h<
i,j = h>

i,j = h
‖
e ≡ νe−βE

‖
e

(Ref. 19). Also, the rate to hop from such sites to near-edge
terrace sites is reduced by a factor of eβE⊥

b relative to h⊥,
e.g., for upper 〈1̄10〉 edges, one has that h∧

i,j = eβE⊥
b h⊥ and

h∨
i,j = 0. For the corner sites just above or below the 〈001〉

edges, the rate to hop to the 〈1̄10〉 edge site is h
‖
e . Rates to

hop from such sites to near-edge terrace sites are reduced by a
factor of eβE⊥

b . To capture corner-rounding diffusion kinetics,
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the rate to hop from corner to 〈001〉 edge sites is taken as
hcr ≡ νe−βEcr , where Ecr = 0.39 eV (see Fig. 1) consistent
with Sec. II A. Thus, for the upper right corner site, one has
h<

i,j = h
‖
e , h∧

i,j = eβE⊥
b h⊥, h>

i,j = eβE⊥
b h‖, and h∨

i,j = hcr. For
sites at 〈001〉 island edges, we impose a Dirichlet BC, ni,j =
n001, where n001 is determined for the appropriate island width
and thus is higher for the left island than the right island.32

Consistently, the rate to hop left or right to an adjacent terrace
site is taken as h‖. The rate to hop from the top or bottom
of the 〈001〉 edges to the corner sites is taken as cre

−βE⊥
b hcr.

Choosing cr = 1 satisfies detailed balance and ensures that
the equilibrium 〈1̄10〉 edge density is enhanced by a factor
of e−βE⊥

b relative to the equilibrium terrace density. (Setting
cr = 0 artificially enforces one-way corner rounding.) For sites
adjacent to boundaries across which there is no diffusion flux
(e.g., outer boundaries of the simulation cell), we set to zero
the rates for hops which would cross those boundaries.

For all sites in the middle of terraces, Eq. (10) has a generic
form. Of course, the form of Eq. (10) differs for edge and corner
sites. However, the form of Eq. (10) also differs for near-edge
sites adjacent to those at 〈1̄10〉 edges due to the modified form
of gain terms associated with detachment from 〈1̄10〉 edges.
This feature and the desire to elucidate the solutions of Eq. (10)
motivates a natural rescaling, where we set n∗

i,j = ni,j for all

terrace sites and n∗
i,j = eβE⊥

b ni,j for 〈1̄10〉 edge sites. Then, for
all terrace sites including those adjacent to 〈1̄10〉 edges (but
not for 〈1̄10〉 edge sites), Eq. (10) adopts the generic form

d

dt
n∗

i,j = h‖(n∗
i+1,j − 2n∗

i,j + n∗
i−1,j )

+h⊥(n∗
i,j+1 − 2n∗

i,j + n∗
i,j−1). (11)

For the edge of the simulation cell, terms corresponding to
crossing the boundary are removed. For most 〈1̄10〉 edge sites,
one has that

d

dt
n∗

i,j = h‖
e(n∗

i+1,j − 2n∗
i,j + n∗

i−1,j )

+ eβE⊥
b h⊥(n∗

i,j±1 − n∗
i,j ), (12)

where the +(−) applies for the upper (lower) 〈1̄10〉 edge. For
the corner sites just above the right 〈001〉 island end, one has
the special equation

d

dt
n∗

i,j = h‖
e(n∗

i−1,j − n∗
i,j ) + eβE⊥

b h‖(n∗
i+1,j − n∗

i,j )

+ eβE⊥
b h⊥(n∗

i,j+1 − n∗
i,j ) + h⊥

cr(crn
∗
i,j−1 − n∗

i,j ).

(13)

An analogous equation applies for edge sites just below the
right 〈001〉 island end, as well as just above and below the left
〈001〉 end.

Each term in Eqs. (11)–(13) with cr = 1 just involves a
difference between rescaled densities at adjacent sites. Thus,
if both islands have the same width (and n001), one clearly
recovers the correct equilibrium solution n∗

i,j = n001, for all

sites. Below we use the further rescaled density n
†
i,j ≡ n∗

i,j /n∞
(cf. Sec. III E). Then, the BC at the end of an island of
width L⊥ = δja is simply n

†
001 = eβa|E⊥

b |/L⊥ ≈ e2.748/δj for
Ag/Ag(110) at 190 K with E⊥

b = −0.045 eV.

FIG. 6. (Color online) (a) Benchmark-aligned island geometry
for the DDE formalism. The region shown corresponds to the central
part of Fig. 4 (top) or all of Fig. 4 (bottom). Different types of
sites described in the text are indicated by different symbols. (b)
Refined geometry for the wider island including kinks. Most results
are presented for the choice of geometric parameters: iM = 73, jM =
18 (simulation cell); iL = 13, jL1 = 6, jL2 = 13 (narrow island); iR =
54, jR1 = 4, jR2 = 15 (wide island); iK = 59.

C. DDE results for benchmark and refined island configurations

We first assess 1D decay for the aligned island con-
figuration shown in Fig. 6 with energetic parameters for
Ag/Ag(110) at 190 K (and cr = 1) and geometric parameters
L⊥

narrow ≈ 2.5 nm, L
‖
narrow ≈ 6.9 nm for the narrow island

(δj = 6 so n
†
001,narrow = 1.581), L⊥

wide ≈ 4.1 nm and L
‖
wide ≈

11.0 nm for the wide island (δj = 10 so n
†
001,wide = 1.316),

and Lsep ≈ 12.1 nm. Of particular interest is the diffusion
flux between islands, KDDE = −h‖n∞(

∑
j n

†
i+1,j − n

†
i,j ) =

0.0504 h‖n∞, and the net corner-rounding flux is from 〈1̄10〉
to 〈001〉 edges, Jcr = hcrn∞e−βE⊥

b (n†
corner,narrow − n

†
001,narrow).

The rescaled adatom density n
†
corner,narrow = 1.441 at corner

sites is below n
†
001,narrow = 1.581, so Jcr < 0. Thus, our key

observation is that there is a small net corner-rounding flux
actually from 〈001〉 to 〈1̄10〉 edges with Jcr/KDDE = −0.052.
As an aside, Jcr is positive for the wider island.

This result presents a fundamentally different picture from
that suggested previously (Ref. 9) of effective one-way corner
rounding from 〈1̄10〉 to 〈001〉 edges with a significant positive
corner-rounding flux, Jcr > 0, for the narrow decaying island.
It was argued that such a flux could inhibit the overall 1D
decay of the island by feeding detached adatoms back to the
〈001〉 end.33 However, examination of the BVP for our rescaled
equations for the physical choice of cr = 1 makes it clear that
the rescaled densities at all sites on the surface, including those
at corners, n

†
corner,narrow, cannot exceed the maximum value of

n
†
001,narrow for the narrower island. Thus, one must always have

Jcr < 0 for the narrower island during coarsening. In an equilib-
rium situation corresponding to two equal width islands, there
is a balance in the corner-rounding flux in both directions so
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Jcr = 0. In contrast, deposition can create a net flux from 〈1̄10〉
to 〈001〉 edges in narrow islands, Jcr > 0. In fact, such a flux
is responsible for highly elongated growth shapes.34

Another key comparison follows from adjusting the model
parameters to mimic the rBCF treatment, which does not in-
corporate binding to 〈1̄10〉 edges and which does not explicitly
treat corner rounding. To this end, we simply set E⊥

b = 0, h‖ =
h

‖
e and also set hcr = 0 to capture the feature of no direct corner

rounding.35 We find that KDDE = 0.0466 h‖n∞ is somewhat
reduced by a factor of 0.92 relative to our above model with
realistic treatment of edge diffusion for Ag/Ag(110) at 190
K. This reduction is consistent with the observation in Sec. III
that the rBCF prediction for the rate of decay of the island
in Fig. 2(a) is slightly below the value obtained from KMC
simulation. A more realistic treatment of edge diffusion would
improve the agreement with KMC results.

Finally, we further highlight the versatility of the DDE
formalism in capturing various features of nanoscale island
geometry. Naturally, we can treat marginally or completely
misaligned islands, and find the expected decrease in KDDE

relative to aligned islands.36 More significantly, we can add
kinks on the 〈1̄10〉 edges of the wider island [see Fig. 6(b)]
to assess the influence of these strong localized trap sites on
enhancing the decay of the narrow island. Strong trapping
is reflected in the assignment n

†
kink ≡ nkink/n∞ = 1, which is

below the value of n
†
001 = eβ|E⊥

b |/δj at the 〈001〉 end of either
island. Our analysis retains the geometric parameters used
above for aligned islands but adds a single kink at iK = 59
on each 〈1̄10〉 edge of the wide island. Again with parameters
for Ag/Ag(110) at 190 K and cr = 1, we find that KDDE =
0.0554 h‖n∞ has increased somewhat above the value of that
KDDE = 0.0504 h‖n∞ for the corresponding geometry without
kink sites. This is also consistent with the slight discrepancy
between rBCF and KMC results in Sec. III, noting that kinks at
island edges can form spontaneously in the KMC simulations.

V. CONCLUSIONS

Our rBCF modeling in Sec. III accounts for unequilibrated
island shapes in contrast to traditional BCF-based theory of
coarsening by OR. Importantly, it also accounts for inhibited
incorporation of adatoms at almost-faceted 〈1̄10〉 island
edges through the introduction of (small) effective kinetic
coefficients, which are relevant for the treatment of nanoscale
(versus macroscale) evolution. The rBCF theory provides
a predictive modeling tool that captures and elucidates the
basic features of 1D decay of islands in strongly anisotropic
fcc (110) homoepitaxial systems. This includes description
of the unusual dependence of island decay rate on both
island geometry and temperature. In particular, rBCF modeling
obtains good agreement with precise results for the decay rates
obtained from KMC simulations of experimentally observed
1D decay of Ag islands on Ag(110) homoepitaxial at 190 K.
It further provides a complete picture of mass flow across
the surface during coarsening, e.g., quantifying the relative
magnitude of the flux between aligned versus misaligned
islands in the experimental system.

However, rBCF theory assumes equilibration of edge
adatoms and does not explicitly incorporate edge-diffusion

kinetics, the details of which have some influence on the
decay rate. Our DDE treatment in Sec. IV accounts for these
features and produces a slight enhancement of the island
decay rates relative to rBCF theory. The DDE formalism
also has the flexibility to allow incorporation of kinks on
the 〈1̄10〉 island edges (contrasting the perfect rectangular
islands in the rBCF treatment). Incorporating kinks on the
wider islands also slightly enhances the island-decay rate
of narrower islands. Both effects improve the already good
agreement of the predictions of analytic theory with KMC
simulation. A significant feature of the DDE formalism is that
it provides a precise characterization of the adatom density
along 〈1̄10〉 edges and associated mass flow around the island
periphery. This is not viable in KMC simulations due to
fluctuations in low edge densities. We find significant two-way
mass flow around corners contrasting the previous picture of
flow primarily from 〈1̄10〉 to 〈001〉 edges.9–11

Finally, we remark that 1D island decay phenomenon
and the type of formalisms developed here should have
more general applicability. They apply to other fcc (110)
homoepitaxial systems but also to heteroepitaxial systems with
strong anisotropy producing elongated islands with almost-
faceted long edges (e.g., Ag on NiAl(110)).37
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APPENDIX: rBCF ANALYSIS FOR
BENCHMARK-ALIGNED ISLAND GEOMETRY

Here, we assess the dependence of KrBCF on various
other model parameters. First, recall the feature that the
thermodynamic driving force for island decay derives from the
differences in island width. Thus, it is natural to analyze the
change in KrBCF upon varying L⊥

wide. For the geometry in Fig. 4
but varying L⊥

wide (setting L⊥
cell = L⊥

wide + L⊥
narrow), we find that

KrBCF ≈ cδn001 with δn001 ≡ nnarrow
001 − nwide

001 and where the
prefactor c only varies by a few percent. Thus, the enhanced
decay rate for wider neighboring islands primarily results
from the increased thermodynamic driving force. Second,
consistent with the quasi-1D estimate, we find a negligible
dependence of KrBCF on the length, L

‖
wide. Third, we explore

how the dependence of KrBCF on Lsep varies with the degree of
anisotropy ε in terrace diffusion. For the benchmark geometry
in Fig. 4, we find that the dependence, KrBCF ∼ 1/Lsep, does
not degrade upon increasing ε from 0.00445 to 0.0102 [i.e.,
increasing T from 190 K to 220 K for Ag/Ag(110)] to ε = 1
(isotropic diffusion). The key point is that quasi-1D behavior
is induced not just by small ε, but also by the “quasi-1D
channel” geometry in which we solve BVP for the diffusion
equation. This feature of our benchmark geometry for larger
Lsep reflects experimental geometries given the presence of
highly elongated large islands formed during deposition which
form quasi-1D channels11 (see Fig. 2).
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