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Effect of dielectric response on the quantum capacitance of graphene
in a strong magnetic field
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The quantum capacitance of graphene can be negative when the graphene is placed in a strong magnetic field,
which is a clear experimental signature of positional correlations between electrons. Here we show that the
quantum capacitance of graphene is also strongly affected by its dielectric polarizability, which in a magnetic
field is wave-vector dependent. We study this effect both theoretically and experimentally. We develop a theory
and numerical procedure for accounting for the graphene dielectric response, and we present measurements of
the quantum capacitance of high-quality graphene capacitors on boron nitride. Theory and experiment are found
to be in good agreement.
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I. INTRODUCTION

Capacitance measurements provide a powerful experimen-
tal tool for probing correlated and quantum behavior of
electron gases. In particular, capacitance measurements reveal
the electron density of states, which is affected both by
single-particle and many-body interaction effects. Capacitance
measurements are especially instructive for two-dimensional
electron gases (2DEGs), where the global electron density can
be modulated widely and reversibly by electrostatic gating,
permitting one to map out the density of states as a function of
the electron density. The study of graphene, in particular, has
seen tremendous recent advancements from this technique,
with recent experiments using capacitance measurements to
observe such phenomena as Fermi velocity renormalization,1

fractional quantum Hall phase transitions,2 and Hofstadter’s
butterfly.3

In the typical experimental setup, a graphene layer is
separated by a distance d from a parallel, metallic gate by an
insulating spacer with dielectric constant κ . A voltage source
maintains a fixed (but tunable) electrochemical potential
difference V between the graphene and the gate electrode. The
resulting differential capacitance per unit area, C = edn/dV ,
where e is the electron charge and n is the two-dimensional
(2D) electron density, can be written generically as

C =
(

C−1
g + 1

e2

dμ

dn

)−1

. (1)

Here, Cg = κ/4πd is the standard “geometric” capacitance of
a plane capacitor with thickness d (in Gaussian units) and μ is
the electron chemical potential, which we define relative to the
Dirac point. The quantity dn/dμ is the thermodynamic density
of states (TDOS), and e2dn/dμ is commonly referred to as the
“quantum capacitance,” which effectively adds in series with
the normal, geometric value. For the purposes of this paper, it
is convenient to define the effective capacitor thickness d∗ =
κ/4πC, so that Eq. (1) can be written as d∗ = d + dQ, where
dQ is a “quantum capacitance length” given by

dQ = κ

4πe2

dμ

dn
= d

(
Cg

C
− 1

)
. (2)

This length is related to the Debye screening radius4 rD by
dQ = rD/2; for the purposes of this paper, dQ can be thought
of as a renormalization of the capacitor thickness arising from
the finite density of states. When the TDOS is positive, the
capacitance is reduced and the effective thickness d∗ of the
capacitor is larger than the physical thickness d.

On the other hand, in the strongly interacting regime
a 2DEG can have negative TDOS,5–24 which arises as
a consequence of strong positional correlations between
electrons. Such negative TDOS implies a negative dQ, and
therefore a capacitance that is enhanced above the geometric
value, as was first measured experimentally over two decades
ago in Si metal-oxide-semiconductor field-effect transistors
(MOSFETs) and GaAs heterostructures.7,9–13 Generally
speaking, the strong positional correlations that give rise to
this “negative compressibility” arise when the electron gas has
a large ratio of interaction energy to kinetic energy. For electron
gases with parabolic dispersion (as in semiconductor quantum
wells), this corresponds to a large value of the parameter
rs = 1/

√
πna2

B , where aB is the effective Bohr radius.
In graphene, however, the linear dispersion relation implies

a ratio of Coulomb to kinetic energy that is independent of
the electron density and is characterized by the effective fine-
structure constant

α = e2

κh̄v
≈ 2.2

κ
. (3)

It is therefore not possible to reach the strongly interacting
regime just by reducing the electron density. Instead, a
strongly correlated phase can be reached by applying a strong
perpendicular magnetic field B, which effectively quenches
the electron kinetic energy by Landau quantization. In such a
magnetic field the strongly correlated regime corresponds25 to
small nl2

B , where lB = √
h̄c/eB is the magnetic length (h̄ is

the reduced Planck constant and c is the speed of light), or in
other words to small overall filling factor νtot = 2πnl2

B .
In a recent work,1 Yu et al. (including three of the present

authors) studied experimentally the quantum capacitance of
graphene in a strong magnetic field, where the lowest (N = 0)
Landau level (LL) is split into four nondegenerate sublevels
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by the exchange interaction.26 It was shown that at such large
magnetic fields the quantum capacitance length dQ is indeed
negative in the middle of each of these lowest Landau-level
sublevels (LLLSs). Below we show that further improvements
in the quality of our samples result in significantly lower
disorder, which allows us to resolve additional features in
the quantum capacitance at large field that can be explained
quantitatively with a zero-disorder theory.

In a separate theoretical work,27 two of us studied the
dependence of the quantum capacitance on the capacitor
thickness d and the filling factor ν of one of the LLLSs. Our
focus in Ref. 27 was largely on the case where the capacitor
is thin enough that d/lB � 1. In this case the screening
of electron interactions via image charges in the metal
gate becomes important,4,28 and at d/lB → 0 the quantum
capacitance length dQ approaches −d, so that the capacitance
becomes greatly enhanced above the geometric value. (For
low-frequency capacitance measurements, dQ < −d is not
possible, since it would imply a negative capacitance, which
is forbidden by thermodynamic stability arguments.29)

In this paper we focus our attention primarily on the case
of d/lB > 1, where the image charge screening effect is
relatively weak and |dQ| is small compared to d, and we
consider an effect that was largely unexplored in previous
works: the screening of electron interactions by the dielectric
response of the graphene itself. We develop a simple theory to
describe this effect and support our theory with experimental
measurements of dQ in clean, gated graphene on boron nitride.
Our primary message in this paper is that, in the case d/lB > 1,
quantum capacitance measurements in graphene cannot be
described quantitatively without accounting for this dielectric
response.

Unlike in conventional semiconductor 2DEGs, in graphene
the in-plane dielectric response is significant even in the limit
of vanishing carrier density. This robust response arises as a
consequence of graphene’s gapless spectrum, which implies
an easily polarizable “Dirac sea.” Generally speaking, the
dielectric response tends to work against Coulomb-driven
quantum capacitance effects, since it weakens the interaction
between electrons by effectively spreading part of their charge
across the plane of the 2DEG. The strength of this response
is described by the zero-frequency dielectric function ε(q),
where q is the wave vector. In the absence of a magnetic field,
ε(q) acquires a constant value30 ε = 1 + πα/2. In the presence
of a strong quantizing field, on the other hand, ε(q) − 1
vanishes at small qlB due to the finite energy gap between
adjacent LLs, so that the interaction between electrons at long
distances is unscreened. A quantitative description of the effect
of ε(q) on the quantum capacitance of graphene is the primary
aim of this paper.

The remainder of this paper is organized as follows. In
Sec. II we present our theoretical method for calculating the
capacitance including the effect of the dielectric response, and
we present general formulas for dQ as a function of ν in the
LLLS. Sec. III briefly describes our devices and experimental
setup and presents our raw data. In Sec. IV we analyze our
experimental results and show that they compare well with
theory. Section V discusses the implications of our results for
devices made from double-layer graphene and for devices that
are thin enough that image charge effects become important.

We conclude in Sec. VI with a summary and some further
discussion.

II. GENERAL THEORY AND NUMERICAL PROCEDURE

If one ignores the possible effect of image charges, as
mentioned in the Introduction, then the TDOS of the 2DEG
in graphene is identical to that of an electron gas with a
coplanar neutralizing background. (In reality, this neutralizing
background is displaced by a distance d from the plane of the
2DEG, and this is what gives rise to the constant geometric
capacitance Cg that adds in series with the “quantum” part.) If
the energy per electron of this 2DEG is E(ν), then Eq. (2) can
be written

dQ = lB

2

d2

dν2

[
νE(ν)

e2/κlB

]
. (4)

Thus, an accurate calculation of E(ν) provides an estimate of
the quantum capacitance. Throughout this paper we focus on
a model that neglects finite temperature.

Generally speaking, E(ν) in the LLLS can be written in
the form of a power-law expansion that obeys the requisite
electron-hole symmetry of the LLLS. In particular, Fano and
Ortolani (FO) proposed the formula31

νE(ν) = E(1)ν2 + e2

κlB

∞∑
k=3

ak [ν(1 − ν)]k/2 , (5)

where ak are numerical coefficients. The first three coefficients
a3, a4, and a5 were estimated by FO (Ref. 31) for a 2DEG
without any dielectric response. In particular, the coefficient
a3 = −0.782 can be found by calculating the energy of a
classical Wigner crystal with density n = ν/2πl2

B , which gives
the leading-order contribution to the energy at vanishingly
small ν. The other coefficients were originally determined in
Ref. 31 by fitting Eq. (5) to Monte Carlo calculations of E(ν)
at different values of ν.

In this section we modify the FO formula to include
the effects of the dielectric response of the graphene, ε(q).
In other words, we calculate revised values of E(1) and
the coefficients ak that properly account for the graphene’s
dielectric polarizability. Following Ref. 27, our approach to
this calculation is to first calculate E(1) using known properties
of the ν = 1 state, then calculate E(ν) at small ν by treating the
system as a Wigner cyrstal. Finally, we fit the resulting energies
at small ν to the form of Eq. (5) to find the coefficients ak . Once
these coefficients are known, one can insert Eq. (5) into Eq. (4)
to get dQ, and therefore the total capacitance.

It is important to note that the FO formula [Eq. (5)] is
essentially a phenomenological description that assumes a
smooth energy function E(ν). This assumption, of course,
is not valid for a system with strictly zero disorder, since
in such a clean system the fractional quantum Hall (FQH)
effect produces cusps in the energy centered at FQH fractions.
Equation (5), on the other hand, captures only the smooth
“backbone” energy for the LLLS, and in the absence of
disorder this backbone is punctuated by short, sharp cusps
located at FQH fractions. Nonetheless, in the presence of finite
disorder, many of these cusps are smeared out (the FQH states
are underdeveloped), and one can approximately describe the
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total energy as a smooth function with the form of Eq. (5).
In the vicinity of more prominent fractions, “bumps” appear
in the quantum capacitance that are not captured by the FO
approach.9,10 We discuss these FQH features further in the
following section.

We note also that in our theoretical treatment we neglect
the possibility of LL mixing, which can in principle arise
in graphene even for large fields since the typical electron-
electron interaction energy scales with the same power of
magnetic field as the LL spacing, ∼√

B. However, previous
numerical studies have shown that such LL mixing is negligi-
ble for α ∼ 1 even if one ignores the role of dielectric response,
and is at the level of a few tenths of a percent.32,33 Accounting
for the dielectric response only reduces the electron-electron
interaction energy, so that we can safely ignore the effects of
LL mixing here.

The dielectric function ε(q) that we use throughout this
paper is that of pristine graphene, which was calculated for the
LLLS within the random-phase approximation in Ref. 34. The
full analytic form for ε(q) is not reproduced here, but within
the LLLS it can be viewed as a smooth crossover between its
small- and large-q asymptotic limits:

ε(q) � 1 + 1.74αqlB, qlB 	 1, (6)

ε(q) � 1 + πα/2, qlB 
 1. (7)

We note that within the LLLS, the dielectric function is
independent of ν. This independence can be viewed as
a consequence of the symmetry of positive and negative
LL energies about the N = 0 LL.34 In principle, electron
interactions provide additional corrections to ε(q) that go
beyond the random-phase approximation. These have been
considered in Ref. 35, but are relatively small and are not
considered here.

The energy of the filled LLLS, E(1), can be calculated using
the general expression for the energy E(ν):

E(ν) = n

2

∫
d2rV (r) [g(r) − 1] . (8)

Here, V (r) is the electron-electron interaction law, g(r) is the
electron pair distribution function, and the −1 in the brackets
comes from the interaction of the electrons with the uniform
background. For ν = 1, where electrons occupy the ν = 1
Laughlin liquid state, the pair distribution function g(r) =
g1(r) is known:36

g1(r) = 1 − exp
[−r2/2l2

B

]
. (9)

Inserting this expression for g(r) into Eq. (8), setting n =
1/(2πl2

B), and writing V (r) in terms of its Fourier transform
Ṽ (q) = 2πe2/[κε(q)q] gives

E(1) = −1

2

e2

κlB

∫ ∞

0

exp
[−q2l2

B

/
2
]

ε(q)
lBdq. (10)

This integral can be done numerically for a given value of α.
In Appendix A we give an approximate formula for its value
at arbitrary values of α.

Given the energy E(1), one can arrive at values for the
coefficients ak in the FO expression by calculating E(ν) over
some finite range of ν and then performing a polynomial

regression. In our case, we use the range corresponding to small
filling factors, 0 < ν < νc, where νc 	 1, at which positional
correlations are strong and one can closely approximate the
energy E(ν) by calculating the energy of the Wigner crystal
state. The calculations presented here use νc = 0.2, which
corresponds approximately to the liquid-solid transition point
in the unscreened 2DEG.37 We verified, however, that our
calculations are not substantially changed if νc is made as
small as 0.1.

As mentioned above, at the small filling factors ν < νc,
the energy per electron is closely approximated by the
energy EWC(ν) of the Wigner crystal state. We calculate this
energy using a semiclassical (Hartree) approximation. This
calculation is straightforward, and is presented in Appendix B.

Finally, we arrive at estimates for the coefficients a3, a4, and
a5 in Eq. (5) by setting E(ν) = EWC(ν) for 0 < ν < νc and
making a second-order polynomial fit of the quantity [νE(ν) −
E(1)ν2]/[ν(1 − ν)]3/2 against

√
ν(1 − ν). Our result for these

coefficients is parametrized as a function of α in Appendix A.
We note here only that our fitting produces a value of a3

that is within 5% of the value originally used by FO, a3 =
−0.782. This is as expected, since the leading-order term of
the expansion comes from the energy of a classical Wigner
crystal with vanishingly small density, where the dielectric
response plays no role (all relevant wave vectors q satisfy
qlB 	 1).

As an additional check of our result, we verified that in the
limit α → 0, where ε(q) = 1 uniformly, our result for E(ν)
is identical to the one originally proposed by FO (Ref. 31) to
within 3% at all ν. We also checked that our result reproduces
the energy of the FQH states at ν = 1/5 and ν = 1/3 to within
a few percent at all values of α. The calculation of these
energies is presented in Appendix C.

Shown in Fig. 1 is an example of our result for E(ν),
calculated at α = 0.68, which corresponds to the experimental
data for graphene on boron nitride discussed in the following
section. As one can see, the graphene dielectric response
provides a large reduction in the energy (in absolute value)
at ν close to 1, where the dominant contribution to the energy
comes from interactions at distances r ∼ lB (or q ∼ 1/lB).
In the limit of small ν, on the other hand, the energy is
largely unchanged from its unscreened value. As expected,
the energies of the ν = 1/5 and ν = 1/3 states, which are
calculated independently of the fitting, lie very close to the
E(ν) curve (and slightly below it).

Using our results for E(ν) one can calculate dQ (and
therefore the quantum capacitance) at arbitrary values of α

and ν using Eqs. (2) and (5). In principle, these equations can
be combined into one algebraic formula, although it is too
cumbersome to reproduce here.

Below we focus largely on the value of dQ at ν = 1/2 and
its dependence on magnetic field. Using the procedure outlined
in this section gives for the value of α mentioned above:

dQ(ν = 1/2) ≈ −0.10lB (α = 0.68). (11)

As we show below, Eq. (11) provides a good description of
our measured values of dQ at sufficiently large magnetic field.

Of course, our calculations in this section have ignored
the possible effects of disorder, which at sufficiently small
electron concentration overwhelm the electron-electron
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FIG. 1. (Color online) The energy per electron of a 2DEG in
monolayer graphene in the LLLS at α = 0.68. The thin (black) line
includes the effect of the graphene dielectric response, while the
dashed (red) line uses ε(q) = 1. The thick (blue) line shown for
0 < ν < 0.2 is the result of the calculation of the Hartree energy of
the WC state. The (blue) circle at ν = 1 is the calculation of Eq. (10).
The (magenta) triangle and square show calculations of the energy of
the ν = 1/5 and ν = 1/3 FQH state energies, which are calculated
independently of the fitting and are used as checks of the interpolation
formula.

interactions and produce a rapid drop in the
capacitance.10,19,20,27 While the disorder-dominated regime is
not a major focus of this paper, in the following section we
provide some discussion of disorder effects in the context of
experimental measurements.

III. EXPERIMENTAL SETUP AND RAW DATA

In order to measure dQ experimentally, we constructed
thin, gated graphene devices on boron nitride. Our devices
consisted of a bottom graphene electrode separated from a
Cr (5 nm)/Au(50 nm) electrode by a thin dielectric layer—
typically 20–30 nm—of hexagonal boron nitride (hBN). The
whole sandwich rests on a thick layer of hBN (typically 50 nm)
placed on a quartz substrate (see the inset of Fig. 2 for a
schematic of the device). Special care was undertaken in order
to utilize only the flat and clean areas of the graphene/hBN
sandwich for our capacitors, avoiding bubbles and contamina-
tion. Such selectivity allowed for a significant increase in the
homogeneity of our devices. For more information on device
fabrication see Ref. 1.

The differential capacitance was measured by a capacitance
bridge at the frequencies 1–20 kHz. The excitation voltage
was in the range 1–20 mV, and was carefully chosen for each
device in such a way that the modulation of the chemical
potential does not exceed the broadening of the LL energies by
inhomogeneities. Measurements were taken at a temperature
of 2 K over the range of magnetic fields 0 � B � 17.75 T.

Below we present results corresponding to one particular
device, chosen for its low apparent disorder. The thickness
of this device, as measured by atomic force microscopy, was
d = 27.3 nm, so that at all B > 1 T we indeed deal with the
situation d/lB > 1. Our raw capacitance data for this device
are presented in Fig. 2. A small parasitic capacitance with

FIG. 2. (Color online) Differential capacitance as a function of
electron density for one of our samples at B = 0 T (black curve), 5 T
(red), 10 T (blue), and 15 T (green). Each curve at finite magnetic
field is offset by 0.1 pF from the one below it. The magnitude of the
geometrical capacitance for each curve is marked by a dashed line.
The inset shows a schematic of the device.

magnitude ∼41 fF, arising from the wiring, has been subtracted
from the data. The capacitor area was 155 μm2.

The effective dielectric constant of the capacitor was
determined by looking at the voltage periodicity �V of the
deep minima in C at finite field, assuming these minima
correspond to filled LLs (νtot = ±2,±6,±10, etc.). From this
periodicity one can estimate d/κ by equating Cg = κ/4πd

with edn/dV � e(4/2πl2
B )/�V . This process gives d/κ ≈

8.4 nm, so that κ ≈ 3.3, which is consistent with known values
of the dielectric constant of hBN. The corresponding value
of α is α ≈ 0.68. The values of the geometric and parasitic
capacitances were determined by fitting the B = 0 data to their
known analytical form,1,38 which is discussed in the following
section.

IV. ANALYSIS OF EXPERIMENTAL RESULTS

In the previous sections we explained our procedures for
calculating the quantum capacitance theoretically and for
measuring it experimentally. In this section we discuss our
measured results and compare them with the theory.

In the absence of a magnetic field, dQ is positive and is
given by

dQ = |n|−1/2

8α
√

π
, (12)

as dictated by the finite (positive) TDOS of graphene resulting
from the linear spectrum.38 From our data at B = 0, we
find that dQ indeed remains linear in |n|−1/2 for all electron
densities |n| � 5 × 1010 cm−2, with a slope that is consis-
tent with our above estimate α = 0.68. At smaller |n|, dQ
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FIG. 3. (Color online) The quantum capacitance length dQ, in
units of magnetic length, as a function of filling factor of one of
the LLLSs at B = 17 T. The solid (blue) curve contains no free
parameters.

saturates, presumably due to the formation of disorder-induced
electron/hole puddles.38

On the other hand, when a large magnetic field is applied,
dQ becomes negative, signaling the onset of strong positional
correlations. As an example, Fig. 3 shows experimental
measurements corresponding to B = 17 T, where the magnetic
length lB = 6.2 nm. At such large fields the lowest Landau
level (LLL) is split into four LLLSs, and in each of them
dQ is negative throughout most of the LLLS. Figure 3 shows
data corresponding to one of these LLLSs, which has total
filling factor 0 < νtot < 1. As one can see, dQ acquires a value
of dQ ∼ −0.1lB at ν = 1/2, and at ν ∼ 0.2,0.8 it becomes
as large as dQ ∼ −0.25lB . On the other hand, at very small
values of ν or 1 − ν, dQ becomes positive. This reversal in
the sign of dQ is related to disorder, which in the limit where
either the electron or hole concentration is very small becomes
larger than the interaction energy between electrons/holes. As
a result, pores open up in the 2DEG and electric-field lines
originating at the gate electrode leak through the 2DEG, and
consequently dQ grows sharply.15,20 Similar behavior was also
observed in semiconductor quantum wells9,10 and in more
recent experiments with graphene.1–3,39

One can also notice that the curve dQ(ν) shows bumps cen-
tered around ν = 1/3 and ν = 2/3. These bumps presumably
arise from the cusps in the energy E(ν) associated with FQH
states, as mentioned in the previous section, and are again
consistent with previous observations.1–3,9,10,39

In the center of the LLLS, where the sample disorder plays a
relatively small role, the observed quantum capacitance length
is close to the predicted theoretical curve, as derived in Sec. II.
For comparison, we also plot the value of dQ that arises if
one ignores the dielectric response of the graphene [setting
ε(q) = 1 in the calculations of Sec. II, as was done in Ref. 27].
As one can see, this curve overestimates the magnitude of the
quantum capacitance effect in the middle of the LLLS by more
than two times.

It is worth noting that, in general, the correct result for
the quantum capacitance cannot be arrived at simply by
replacing the substrate dielectric constant κ in the expression
for E(ν) by a constant value κ(1 + πα/2) ≈ κ + 3.5 [as in
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FIG. 4. (Color online) The quantum capacitance length dQ at
ν = 1/2 as a function of lB ∝ B−1/2. Experimental data are plotted
only for the LLLS with ν = νtot = 1/2; the value of dQ for all four
LLLSs is shown in Fig. 5. The solid (blue) line [Eq. (11)] contains
no free parameters.

Eq. (7)]. Indeed, the dielectric function becomes constant
only in the limit q 
 1/lB (short-distance interactions), while
the typical distance between interacting electrons becomes
of order lB only in the middle of the LLLS. As a result,
the quantum capacitance is sensitive to the changing role of
dielectric screening as a function of ν, with the reduction
of dQ relative to the unscreened state being largest at the
middle of the LLLS. As one approaches either ν = 0 or ν = 1,
where the compressibility is related to the repulsion between
distant electrons or holes, the role of dielectric response
disappears. Indeed, the solid (blue) curve in Fig. 3 reproduces
the calculation without dielectric response (dashed, red curve)
in the limit of asymptotically small ν or 1 − ν.

We can also examine how the quantum capacitance at a
given filling factor depends on the magnetic field. For this
analysis we focus primarily on the point ν = 1/2, which
represents the most natural test of our analytical description.
In Fig. 4 we plot the value of dQ at ν = 1/2 for the LLLS
with ν = νtot. Our theoretical prediction, Eq. (11), suggests
that dQ should decline linearly with lB according to dQ ≈
−0.10lB at ν = 1/2. And indeed, the experimental value
of dQ seems to decline linearly with lB until lB ≈ 12 nm
(B ≈ 4.5 T), at which point the magnetic field (and, corre-
spondingly, the electron density) becomes small enough that
electron correlations are washed out by disorder, and dQ rises
abruptly.

Experimentally, lB ≈ 12 nm coincides approximately with
the collapse of spin-valley splitting of the LLL. As a conse-
quence, at lB � 12 nm the TDOS is essentially uniform across
the LLL (−2 < νtot < 2). Nonetheless, there is a wide range
of magnetic field, 0.25 T < B < 4.5 T, in which the TDOS
remains much larger than its B = 0 value, and correspondingly
the N = 0 LL remains well separated from the adjacent
N = ±1 levels. As B is decreased (lB increased) within this
range, the TDOS decreases until it saturates at its B = 0
value, which corresponds to dQ ≈ 17 nm and is determined
by disorder-induced electron hole puddles,38 as mentioned
above. Experimentally, this saturation occurs at lB ≈ 50 nm
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FIG. 5. (Color online) The quantum capacitance length dQ at
ν = 1/2 as a function of lB for all four LLLSs. The straight (blue)
line is the theoretical curve [Eq. (11)], and lines with points are
experimental data. These lines are labeled by their corresponding
value of the total filling factor νtot. The inset shows the same data
over a much wider range of lB (lower magnetic fields).

(B ≈ 0.25 T), and indeed coincides approximately with the
collapse of Landau quantization.

The solid (blue) line in Fig. 4 shows the theoretical result
of Eq. (11), which is in close agreement with the experimental
data in the regime lB � 12 nm. As in Fig. 3, failing to account
for the graphene dielectric response (red dashed line) leads
to an overestimate of the quantum capacitance effect by more
than two times.

Figures 3 and 4 show data from one of the four LLLSs,
but one can also examine the quantum capacitance length for
each of the other three. As expected, we find that at large
magnetic field dQ is essentially identical in all four LLLSs.
This equivalence is demonstrated in Fig. 5, where dQ is plotted
as a function of lB for total filling factors νtot = ±1/2,±3/2.
One can see from this plot that at lB � 10 nm data from
all four values of νtot collapse onto the same line as in
Fig. 4.

On the other hand, at larger lB (smaller magnetic field),
where spin-valley splitting collapses and a single N = 0 LL
emerges, one can see a big difference between νtot = ±3/2
and νtot = ±1/2. In particular, at 10 nm < lB < 20 nm the
data corresponding to νtot = ±3/2 show a much faster growth
of dQ than the data for νtot = ±1/2. This difference can be
understood qualitatively by thinking that once spin and valley
splitting have collapsed, all four values of νtot correspond to the
same LL, and that this LL has a bell-shaped density of states
(DOS) as a function of energy. Then at νtot = ±1/2 the Fermi
level is close to the LL center, thereby having larger DOS and
smaller dQ, while at νtot = ±3/2 the Fermi level is in the tails
of the DOS, and therefore has a smaller DOS and a larger dQ.
When the magnetic field is made even smaller (lB < 20 nm),
the N = 0 LL begins to merge with the adjacent N = ±1 LLs.
Eventually (at lB ∼ 50 nm) this merging leads to a constant
DOS, so that the curves for dQ(lB) at νtot = ±1/2 and ±3/2
merge.

V. DISCUSSION: VERY THIN AND
DOUBLE-LAYER DEVICES

In the preceding sections we presented results for dQ as a
function of magnetic field and filling factor. We reiterate here
that our focus has been on the case of d/lB > 1, and that the
theory of Sec. II loses its validity if its results are pushed
to a regime where the typical distance between electrons,
n−1/2, is much larger than the distance d to the metal gate.
In such a regime, the metal gate provides significant screening
of the electron-electron interaction through the formation of
image charges in the electrode surface.4,27,28 As a result of this
screening, the value of dQ in the LLLS saturates in the limit
lB/d 
 1, so that d + dQ ∝ (d2/lB) throughout the LLLS.27

The effect of the graphene dielectric response in the “image
charge regime” d/lB < 1 remains to be explored, but in
general its role should be weaker than for devices with large d.
Indeed, at d/lB 	 1 the extreme proximity of the metal gate
means that the Coulomb interaction takes the form ∼e2d2/r3

at all distances r 
 d, and this weakened interaction should
reduce the value of ε(q) at all q � 1/d, bringing it close to
unity. As a result, in the limit d/lB 	 1 the graphene dielectric
response in the LLLS is essentially eliminated, and the results
derived in Ref. 27 should be valid.

One can also consider how our results apply to capacitor
devices made from two parallel graphene sheets with a voltage
applied between them, rather than from a single graphene
sheet with a metal gate electrode. In the case where both
graphenes are undoped (both have filling factor ν = 0 in the
absence of an applied voltage) and the distance d between
them is large enough that lB/d 	 1, one can effectively treat
the two graphenes as independent 2DEGs. In this case both
layers contribute equally to the quantum capacitance, and one
can arrive at the correct value of the quantum capacitance
by simply doubling the value of dQ derived in Sec. II. For
example, for a double-layer graphene device on hBN, Eq. (11)
suggests that dQ(ν = 1/2) ≈ −0.20lB . Of course, if one of
the two graphenes is heavily doped (has a much larger carrier
concentration than the other), then its TDOS becomes large
and it essentially acts like a metal electrode, so that dQ is
identical to that of a graphene-metal capacitor.

On the other hand, if lB/d is made large, then the system
undergoes a phase transition to an exciton condensate state,
in which electrons in one layer couple with holes in the
opposite layer to form indirect excitons.40–44 In this case,
the interaction between neighboring excitons also becomes
dipolelike, leading to an enhanced quantum capacitance (larger
negative dQ). The critical value of lB/d for which exciton
condensation first appears has been estimated to be slightly
smaller than unity.41,43,45–47 Using a naive description of the
two phases, one can expect an abrupt change in dQ at the
transition point, as illustrated schematically in Fig. 6. As of
our writing, the details of this transition remain incompletely
understood. At very large lB/d, the quantum capacitance
length approaches −d such that dQ + d � 0.6d2/lB , similar
to the case of thin graphene-metal devices discussed above.27

As for single-layer graphene devices, the dielectric response
can be expected to play a significantly weaker role in this limit.

Of course, experimental exploration of the small d/lB limit
and the exciton condensate phase imposes a more stringent
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?

uncoupled 2DEGs

FIG. 6. (Color online) Schematic dependence of the quantum
capacitance length dQ on the magnetic length lB for a capacitor made
from two parallel graphene layers, plotted at fixed filling factor ν (for
example, at ν = 1/2). At small lB/d (large magnetic field and thick
devices), electrons in the two graphenes are essentially uncoupled,
and their quantum capacitance can be captured by doubling the
result for dQ given in Sec. II. At large lB/d (small magnetic field
and thin devices) electrons and holes on opposite layers couple to
each other, forming an exciton condensate. This leads to stronger
mutual screening and therefore (Ref. 27) to a larger negative dQ.
The transition between these two regimes (shown by the dotted line
with a question mark) is expected to be abrupt, but not necessarily
discontinuous (Refs. 47 and 48).

condition on the sample disorder. For such thin devices
the disorder competes not with the unscreened Coulomb
interaction, of order e2/lB , but with the much weaker dipole
interaction, ∼e2d2/l3

B . Still, the exciton condensate phase
may be first achieved already at d/lB ∼ 1. In this regime,
observation of enhanced negative dQ may be an early sign
of the appearance of the exciton condensate phase. (For hBN
substrates, this is dQ < −0.20lB at ν = 1/2.)

VI. CONCLUSION

In this paper we have shown that the graphene dielectric
response plays a prominent role in determining the quantum
capacitance in a magnetic field. In Sec. II we suggested a
simple, approximate method for taking this dielectric response
into account, and in Secs. III and IV we presented experimental
measurements of the quantum capacitance of graphene on
boron nitride that support our theoretical results.

In the future, it would be worthwhile to study the quantum
capacitance of graphene with different substrates, or in other
words for a range of α. The role of dielectric response
should be particularly large for suspended graphene, where
α ≈ 2.2. Data presented in Refs. 2 and 39 suggest that for
such experiments the value of dQ is indeed much closer to zero
than would be predicted by a naive calculation of the energy
neglecting dielectric response. Still, a more careful analysis of
this situation is warranted. We caution that our interpolation
procedure will likely have a larger numerical uncertainty for
such large α, since in such cases the dielectric response plays
a larger role at intermediate ν, which are described only
indirectly.

Finally, we close with a comment on the possible effect
of the dielectric response for the energy gap of the FQH
states, focusing our discussion on the ν = 1/3 state. The-

oretical predictions49–51 generally estimate this energy gap
to be in the range �1/3 = (0.03–0.1)(e2/κlB). On the other
hand, experimental measurements of �1/3 for suspended
graphene (where κ = 1) have reported39,52–54 a significantly
smaller value �1/3 = (0.008–0.02)(e2/lB). (For a summary
of the comparison between theory and experiment, see the
supplemental material of Ref. 39.) One potential source of
this discrepancy is the graphene dielectric response, which
reduces the strength of interactions at short distances r � lB ,
and therefore tends to reduce �1/3. While we have not
made an attempt to calculate the value of �1/3, one can
obtain a speculative estimate by conjecturing that �1/3 should
be proportional to the total energy E(ν = 1/3). Using the
methods of Sec. II, we find that for suspended graphene the
dielectric response reduces the value of E(1/3) by a factor of
∼2.2 (from −0.41e2/lB to −0.19e2/lB). Thus, one can arrive
at a crude estimate for �1/3 by dividing the above theoretical
prediction range by 2.2, which gives

�1/3 = (0.015–0.045)e2/lB. (13)

This revised estimate is closer in line with experiment. We
emphasize again that this factor 2.2 is different from what one
would get by replacing the vacuum dielectric constant κ = 1
with the constant factor 1 + πα/2 ≈ 4.5. The true effect of the
dielectric response in a magnetic field is somewhat smaller, as
resulting from a weighted integration of ε(q) over all wave
vectors.
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APPENDIX A: PARAMETRIZED VALUES OF THE
COEFFICIENTS OF THE FANO-ORTOLANI EXPRESSION

In Sec. II we explained our numerical procedure for calcu-
lating the energy E(ν) for a 2DEG in the LLLS. Here we list our
calculated numerical values of the coefficients that enter the FO
expression, Eq. (5). The formulas presented below correspond
to parametrizations of numerical calculations performed over
the range 0 � α � 2.2.

The energy of the ν = 1 state, calculated according to
Eq. (10), is given approximately by

E(1)

e2/κlB
≈ −

√
π

8
exp[−0.927α + 0.379α2 − 0.0751α3].

(A1)

The coefficients a3, a4, and a5 can be parametrized as

a3 = −0.773 − (2.01 × 10−3)α + (4.74 × 10−3)α2

+ (6.60 × 10−4)α3, (A2)
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a4 = 0.460 + 0.412α + 0.173α2 − 0.0687α3, (A3)

a5 = −0.198 + 0.193α − 0.742α2 + 0.195α3. (A4)

Using the equations above one can accurately reproduce our
numerically calculated values of the energy E(ν) to within 1%
for all ν and all α � 2.2.

APPENDIX B: ENERGY OF THE WIGNER
CRYSTAL STATE

We are interested in describing the energy of the Wigner
crystal state at small filling factors, ν < νc = 0.2. At such
small ν, the exchange interaction Eex is exponentially small
[in the absence of dielectric screening, Eex/(e2/κlB) =
−1.4 exp[−2.07/ν]],37 and can therefore safely be ig-
nored. The total energy EWC can thus be approximated
to high accuracy using just the semiclassical (Hartree)
approximation.

In the Wigner crystal state, the electron wave func-
tions ϕR(r) can be described as Gaussian wave pack-
ets centered at the points of the (triangular) Wigner
lattice:

ϕR(r) = 1√
2πl2

B

exp

[
−|r − R|2

4l2
B

]
. (B1)

Here, R is a vector indicating one of the lattice points. The
Hartree energy can be written as

EWC = 1

2

∫
d2rd2r′V (r − r′) |ϕ0(r)|2

∑
R
=0

|ϕR(r′)|2, (B2)

where ϕ0(r) denotes the wave function of the electron at the
origin.

Writing V (r) in terms of its Fourier transform and evaluat-
ing the sum gives

EWC = n

2

∑
q∈G

Ṽ (q)e−q2l2
B − 1

2

∫ ∞

0

kṼ (k)

2π
e−k2l2

B dk, (B3)

where G denotes the set of all nonzero reciprocal-lattice
vectors of the triangular Wigner lattice. The second term on
the right-hand side of Eq. (B3) comes from removing the
self-interaction term from the Hartree energy (R = 0). Substi-
tuting Ṽ (q) = 2πe2/[κε(q)q] and n = ν/2πl2

B into Eq. (B3)

gives

EWC(ν)

e2/κlB
= ν

2

∑
q∈G

exp[−(qlB)2]

qlBε(q)
− 1

2

∫ ∞

0

exp[−(klB)2]

ε(k)
lBdk.

(B4)

The reciprocal-lattice vectors q ∈ G can be labeled with
integer indices i,j such that the wave vectors qij in the sum
are

qij = 1

lB

√
4πν√

3
(i2 + ij + j 2), (B5)

so that the sum in Eq. (B4) is over all {i,j} 
= {0,0}.
Equation (B4) is evaluated numerically for a range of

ν corresponding to 0 < ν < νc, as discussed in Sec. II. An
example calculation is shown as the thick (blue) line in Fig. 1.

APPENDIX C: CALCULATION OF THE ENERGY
OF THE ν = 1/5 AND ν = 1/3 FRACTIONAL

QUANTUM HALL STATES

The general expression for the interaction energy per
electron is given in Eq. (8), which can be rewritten as

E(ν) = ν

4πl2
B

∫
d2rV (r)[gν(r) − 1], (C1)

where gν(r) is the pair distribution function for a given filling
factor. Writing the interaction law V (r) in terms of its Fourier
transform gives

V (r) =
∫

d2q

(2π )2
Ṽ (q) exp[iq · r] = e2

κ

∫ ∞

0
dq

J0(qr)

ε(q)
, (C2)

where J0(x) is the zeroth-order Bessel function of the first
kind. Inserting this expression into Eq. (C1), one arrives at a
general expression for the energy:

E(ν) = νe2

2κl2
B

∫ ∞

0
dq

∫ ∞

0
dr

r[gν(r) − 1]J0(qr)

ε(q)
. (C3)

For the FQH states at ν = 1/5 and ν = 1/3, the pair
distribution functions, g1/5(r) and g1/3(r), respectively, have
been parametrized from Monte Carlo data.55 Using this
parametrized result allows us to evaluate Eq. (C3) numerically.
As shown in Fig. 1, the resulting energies align fairly
closely with the result of our interpolation method. A similar
calculation was performed in Ref. 56, where the effect of
ε(q) was incorporated into calculations of the energy of
conventional semiconductor 2DEGs.
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