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In this paper, we develop a quasielectrostatic theory describing the coupling of plasmon modes and we
discuss its implications for the analysis and the design of the scattering and absorption spectra of complex metal
nanostructures. In particular, we show that the interaction of bright plasmon modes determines the onset of zeros
in the scattering spectra of nanoscale coupled systems. Under well-defined conditions, these zeros give rise to
asymmetric scattering line shapes similar to the spectral signatures described by Ugo Fano in the context of
atomic physics. We provide rigorous conditions in which Fano-like resonances occur, and we introduce a method
for the direct calculation of their spectral position. In addition, we investigate the role of dark and bright modes
in the power absorption near a Fano-like resonance. Our analysis demonstrates the quasielectrostatic origin of
Fano-like resonances in subwavelength plasmonic structures.
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I. INTRODUCTION

In the last few decades, the theory of Ugo Fano1 concerning
a new type of resonant line shape with distinct asymmetry
gradually spread beyond the borders of atomic physics, and
stimulated a renewed interest in coupled electromagnetic res-
onances. Wood’s anomalies are arguably the most famous elec-
tromagnetic phenomena exhibiting the Fano-like asymmetric
line shape, but metamaterials, photonic structures, and plas-
monic systems also display similar resonances.2–4 In particu-
lar, asymmetric scattering profiles have been recently observed
in metal nanostructures excited by an electromagnetic field
at optical frequencies, including dolmen-type arrangement,5,6

ring-disk systems,7 nanoshells,8,9 heterodimers,10 and arti-
ficial plasmonic molecules.11–15 Fano resonances in metal
nanostructures have generated large interest, particularly in
relation to optical sensors which, taking advantage of the
sharp resonant line shape, could potentially offer a significant
improvement in sensitivity.

Although extensive experimental and numerical studies of
subwavelength complex metal structures have been performed,
only few attempts have been done to theoretically describe
such resonances.16–19 Currently, Fano-like resonances are
found experimentally or numerically by probing plasmonic
nanostructures of complex shapes with radiation of various
frequencies and by identifying asymmetric profiles in their
scattering spectra. It is therefore highly desirable to develop
a rigorous technique for the direct calculation of the frequen-
cies of electromagnetic radiation for which such resonances
occur.

In the present work, we derive the theory of coupled
plasmon modes in subwavelength plasmonic structures in
the quasielectrostatic approximation. The quasielectrostatic
approximation is widely used to theoretically investigate
plasmonic systems and it has led to important discoveries
in this field.20,21 Our approach is rooted in the boundary
eigenvalue problem for the plasmon resonances introduced
in Ref. 22 and subsequently extended in Refs. 23–29 and in
the concept of bright and dark modes introduced in Ref. 20.
In the proposed method, we expand the solution of the

nonhomogeneous quasielectrostatic problem in terms of the
plasmon modes of the system, and we study the poles and the
zeros of the resulting rational function. Thus, we demonstrate
how the coupling between at least two bright modes gives
rise to Fano-like resonances in the scattering spectrum and
to the plasmon equivalent of electromagnetically induced
transparency at the Drude damping limit.5,30–32 Moreover, we
provide rigorous conditions in which Fano-like resonances
are allowed, a method for the direct calculation of their
spectral position and asymmetry degree, and we investigate
the dissipation in proximity of a Fano-like resonance. Our
analysis demonstrates the quasielectrostatic origin of Fano-like
resonances in subwavelength plasmonic structures. This is
not surprising given the electrostatic nature of the plasmon
resonance.26,27 Finally, we apply our theory to investigate the
Fano-like response of two canonical plasmonic systems.

II. COUPLING OF PLASMON MODES

Let us consider a homogeneous dielectric body of arbitrary
shape and relative permittivity εr (ω) = ε′

r − jε′′
r , embedded

in free-space. We denote with V the volume occupied by the
body, with S its boundary, and with L its linear dimension. The
outward-pointing normal to the surface S is denoted with n.
Assuming that the investigated system is small enough com-
pared to the wavelengths of interest, i.e., L � λ, we employ the
quasielectrostatic approximation of the Maxwell’s equations.

The source-free electric field that may exist in the presence
of a dielectric body with ε′

r < 0 can be described by an
equivalent free-standing single layer of electric charge density
σ distributed on S. Source-free electric fields exist only when
the following homogeneous boundary integral equation has
nonzero solutions:27

σ = βL{σ }, (1)

where

L{σ }(Q) = 1

2π

∮
S

σ (M)
rMQ · nQ

r3
MQ

dSM. (2)
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Equation (1) defines an eigenvalue problem in β. Analogously,
the source-free electric displacement field that may exist in the
presence of a dielectric body with ε′

r < 0 can be described by
an equivalent density of double layer of electric charge τ in
free space. Source-free electric displacement fields exist only
if the equation below has nonzero solutions:27

τ = βL†{τ }, (3)

where L† is the adjoint of the operator L,defined as

L†{τ }(Q) = 1

2π

∮
S

τ (M)
rQM · nM

r3
QM

dSM. (4)

Since the operators L and L† are compact on L2(S), they
support discrete spectra. Moreover, they share the same
eigenvalues {βk|k ∈ N}, whereas their eigenmodes {σk|k ∈ N}
and {τk|k ∈ N} form biorthogonal sets:27

〈σk,τj 〉 =
∮

S

σk (M) τj (M) dSM = δkj . (5)

It can be also proved that the eigenvalues are real βk ∈ R,
1 is an eigenvalue, while the remaining eigenvalues have
|βk| > 1.33 However, the eigenvalue βk = 1 corresponds to
εr → ∞ and it is not relevant to our study.27 Each eigenmode
σk generates an electric field Ek given by

Ek(Q) = 1

4πε0

∮
S

σk(M)
rMQ

r3
MQ

dSM

+

⎧⎪⎨
⎪⎩

0 if Q /∈ S,

− σk

2ε0
n if Q ∈ Si ,

+ σk

2ε0
n if Q ∈ Se,

(6)

where Si and Se denote the internal and external sides
of the surface S, respectively. It was demonstrated27 that
the vector fields {Ek|k ∈ N} satisfy the strong orthogonality
condition

∫
V

Ek · EhdV = 0 if h 	= k. In addition, since σk is
an eigenmode of the problem (1), we obtain from Eq. (6)

n · Ek = − 1

2ε0

βk − 1

βk

σk on Si. (7)

We associate to each eigenmode σk a dipole moment
pk = (pk,x,pk,y,pk,z),

pk =
∮

S

rσkdS. (8)

Since only the modes exhibiting nonzero dipole moment
contribute to the far field,34 we denote the eigenmode σk as
bright if pk 	= 0, as dark otherwise, following the notation
introduced in Ref. 20. Using Eq. (7) in Eq. (8) in combination
with the divergence theorem, we get

pk = −2ε0
βk

(βk − 1)

∫
V

EkdV . (9)

When the dielectric scatterer is excited by an external field
E(i), the bound charge density distribution induced on S can
be expressed as27

σ (Q) = 2ε0β(ω)
∑

k

βk

βk − β(ω)
ckσk(Q), (10)

where27

β(ω) = εr (ω) − 1

εr (ω) + 1
, (11)

and ck is the coupling coefficient to the field E(i),

ck = 〈n · E(i),τk〉. (12)

It is easy to prove that ck can be also written as

ck = − 1

2ε0

(βk − 1)

βk

∫
V

Ek · E(i)dV∫
V

‖Ek‖2dV
. (13)

We say that the eigenmode σk is excitable by the field E(i)

if ck 	= 0, it is transparent to E(i) if ck = 0. We denote with p
the net dipole moment of the system:

p =
∮

S

rσdS. (14)

Combining Eqs. (10) and (14), we have

p = 2ε0β(ω)
∑

k

βk

βk − β(ω)
ckpk. (15)

We denote the quantity sk = ckpk as the radiative strength
of the kth mode under the excitation E(i) and its component
sk,t along the t axis as t-radiative strength of the kth mode
∀t ∈ {x,y,z}. A similar quantity has already been introduced
in Ref. 20. The t-radiative strength can be expressed as

sk,t = ckpk,t =
∫
V

Ek · E(i)dV∫
V

‖Ek‖2dV

∫
V

Ek · t̂dV. (16)

In the case of a uniform excitation, e.g., E(i) = x̂, it is easy
to prove that the x-radiative strength of the kth mode of the
system sk,x is a non-negative quantity ∀k ∈ N. Once the total
dipole moment is known, the total power scattered by the
structure is given by

Psca = ω4

12πε0c3
|p|2 = ω4

12πε0c3

∑
t∈{x,y,z}

|pt |2, (17)

being c the speed of light in free space.
The total absorbed power is

Pabs = ε0

2
ωε′′

r

∫
V

‖E‖2dV, (18)

where the total electric field E within the interior of the volume
V is given by

E = E(i) + 2ε0β(ω)
∑

k

βk

βk − β(ω)
ckEk, (19)

By substituting Eq. (19) in Eq. (18), using the orthogonality
of Ek and Eq. (13), we obtain

Pabs = ε0

2
ωε′′

r

∑
k

∥∥∥∥βk(1 − β(ω))
βk − β(ω)

∥∥∥∥
2

dk, (20)

where we have defined the dissipative strength of the mode k

under the excitation E(i) as

dk =
∥∥∫

V
Ek · E(i)dV

∥∥2∫
V

‖Ek‖2dV
. (21)
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By comparing Eqs. (13) and (21), we conclude that dk = 0 if
and only if the mode k is transparent to the incident field E(i),
thus we have dk = 0 ⇔ ck = 0 ⇒ sk = 0. Therefore all the
excitable modes make a contribution to the dissipated power,
whereas the modes contributing to the scattered power are
only a subset of the excitable modes. In the particular case of
uniform excitation, i.e., E(i) = x̂, we have dk = sk,x , and we
can conclude that (i) the dark modes play no role in the power
dissipation and (ii) strong (weak) radiative modes correspond
to strong (weak) dissipative modes.

The real resonant frequency ωk corresponding to the mode
k can be obtained by equation

Re{εr (ωk)} = ε′
r,k, (22)

where we have defined the resonant permittivity ε′
r,k ∈ R

associated to the eigenvalue βk as

ε′
r,k = −βk + 1

βk − 1
. (23)

Using Eq. (23) in Eqs. (15) and (20), we obtain, respectively,

p = ε0(1 − εr (ω))
∑

k

ε′
r,k − 1

εr (ω) − ε′
r,k

sk, (24)

Pabs = ε0

2
ωε′′

r (ω)
∑

k

∥∥∥∥ ε′
r,k − 1

ε′
r,k − εr (ω)

∥∥∥∥
2

dk. (25)

Equations (17), (24), and (25) describe the scattering and the
absorption of a plasmonic nanostructure. We notice that in
Eq. (24) any component of each term in the summation can
assume both positive and negative values, and interference phe-
nomena among different modes are allowed. On the contrary,
Pabs is the sum of non-negative quantities and interference
phenomena are absent. This fact has important consequences
on the line shapes of the scattering and absorption spectra, as
we will see in the next sections.

We now assume that the dielectric function of the material
is described by the Drude model:35

εr = 1 − ω2
p

ω(ω − jγ )
, (26)

where ωp is the plasma frequency and γ is the relaxation
frequency. By using Eq. (26) in Eqs. (24) and (25), after some
algebra, we obtain

p = −ε0ω
2
p

∑
k

sk

ω2 − jγω − ω2
k − γ 2

, (27)

Pabs = ε0ω
2
pγ

2
ω2

∑
k

dk(
ω2 − ω2

k − γ 2
)2 + γ 2ω2

, (28)

where ωk is the real resonant frequency associated to the
eigenvalue βk , i.e.,

ωk =
√

ω2
p

βk − 1

2βk

− γ 2. (29)

Equations (17), (27), and (28) describe the scattering and
the absorption of a Drude-metal nanostructure. They show
that, once the resonant frequencies and the radiative and
dissipative strengths of all the plasmon modes of a plasmonic
system are known, the scattering and the absorption spectra
are completely determined. Moreover, they also highlight, in

a very clear fashion, how the contribution of each plasmon
mode to the scattering and absorption processes is weighted
by its radiative and dissipative strengths, respectively.

It is worth noting that, when the dimension of the structure is
comparable to the exciting wavelength, the quasielectrostatic
approximation becomes inaccurate.36–38 In this case, the
radiation correction introduced in Ref. 27 and experimentally
validated in Ref. 39 can be employed to extend its applicability.

A. Scattering in a plasmonic system with two bright and
excitable modes: origin of Fano-like resonances

In this section, we derive the expression of the power
scattered by a plasmonic system exhibiting two bright and
excitable modes. We provide a method for the direct calcula-
tion of the zeros of the scattered power, and we unveil their
role in the origin of Fano-like line shapes in the scattering
spectrum. Thus let us consider a dielectric body excited by the
external field E(i). We assume that the system exhibits only
two bright and excitable eigenmodes, i.e., σh and σk , namely
sh,sk 	= 0. No hypothesis is made about the number of dark
modes excited. We also assume that the bright eigenmodes are
nondegenerate, being associated to two different eigenvalues
βk and βh with βk,βh 	= 1. The resonant permittivities ε′

r,k , ε′
r,h

and the real resonant frequencies ωk , ωh are associated to the
eigenvalues βk , βh through Eqs. (23) and (22), respectively.

For the sake of simplicity, we start by considering a
Drude metal, then we generalize the treatment to an arbitrary
dispersion relation. By using Eq. (27) in the weak relaxation
limit, that is, γ 2 � ω2

h,ω
2
k , we obtain after some algebra the

expression of the t-component of the net dipole moment of the
dielectric body:

pt = −Stε0ω
2
p

(
ω2 − jγω − ω2

F,t

)
(
ω2 − ω2

h − jγω
)(

ω2 − ω2
k − jγω

) , (30)

where St = (sh,t + sk,t ), and we have introduced the Fano
angular frequency ωF,t as

ω2
F,t = χ

(k,h)
t ω2

h + (
1 − χ

(k,h)
t

)
ω2

k (31)

and χ
(k,h)
t is the asymmetry factor:

χ
(k,h)
t = sk,t

sh,t + sk,t

. (32)

Each component of the dipolar moment p is a rational function
exhibiting two zeros at the angular frequencies ±ωF,t +
jγ /2 and four poles at the frequencies ±ωh + jγ /2 and
±ωk + jγ /2. The Fano wavelength ωF,t is real when χ

(k,h)
t �

ω2
k/(ω2

k − ω2
h). In this case, when the driving frequency is equal

to ωF,t , the real part of the numerator of Eq. (30) vanishes.
Provided that no pole-zero cancellation occurs, at the Fano
frequency ωF,t , the total dipolar moment along the t axis
is forced-quenched due to destructive interference between
the two plasmon modes, which represent the two channels
for the Fano-like interference.40 If the excitation is uniform,
e.g., E(i) = x̂, both sx,h and sx,k are positive quantities, χ (k,h)

x

belongs to the interval [0,1], and the existence of a real and
positive Fano frequency such that ωh � ωF,x � ωk is always
guaranteed.
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The total scattered power is obtained substituting Eq. (30)
in Eq. (17):

Psca = ε0ω
4ω4

p

12πc3

∑
t∈{x,y,z} S2

t

∥∥ω2 − jγω − ω2
F,t

∥∥2

∥∥ω2 − ω2
h − jγω

∥∥2∥∥ω2 − ω2
k − jγω

∥∥2 .

(33)

The numerator of Psca is the sum of three non-negative
quantities, and it can approach zero for very small values
of γ in three different cases: (i) when the component of
the dipolar moment p along one axis, e.g., the x axis, is
dominant, that is, Sx � Sy,Sz, and ωF,x ∈ R; (ii) when the
Fano angular frequencies coincide, i.e., ωF,x = ωF,y = ωF,z ∈
R; and (iii) when the dipolar moment along one axis is
negligible compared to the other two, e.g., Sz � Sy,Sx and
at the same time the Fano resonances along the remaining two
axes coincide, e.g., ωF,x = ωF,y ∈ R. In the following, we
investigate in detail only the case (i), assuming Sx � Sy,Sz.
This hypothesis is typically verified when the exciting field is
oriented along x axis, as we will show in Sec. III by an example.
The remaining two scenarios require only minor modifications
of the following treatment. The total scattered power is

Psca ≈ ε0ω
4
pω4S2

x

12πc3

∥∥ω2 − jγω − ω2
F,x

∥∥2∥∥ω2 − ω2
h − jγω

∥∥2∥∥ω2 − ω2
k − jγω

∥∥2 .

(34)

Therefore, at the angular frequency ωF,x , the scattered power
is nonzero only due to the Drude damping, in other words we
observe a plasmonic analog of electromagnetically induced
transparency at the Drude damping limit.5,30–32 Moreover, as
the frequency ωF,x moves towards one of the two plasmonic
resonances, the scattering response becomes highly asymmet-
ric, resembling the Fano line shape.1

With the help of Fig. 1 we now analyze the behavior
of px and of the scattered power Psca using Eqs. (30) and
(34), and assuming ωh = 0.2ωp, ωk = 0.3ωp, γ = 0.01ωp,
and Sx � Sy,Sz. We plot the magnitude [Fig. 1(a)] and the
phase [Fig. 1(b)] of px as a function of the driving (angular)
frequency for several values of χ (k,h)

x . As shown in Fig. 1(a),
if χ (k,h)

x = 0.5, the two peaks assume different amplitudes
whose ratio is ‖px(ωh)‖/‖px(ωk)‖ ≈ (ωk/ωh), while the Fano
wavelength ωF,x lies midway between ωh and ωk . As χ (k,h)

x

decreases, i.e., χ (k,h)
x < 0.5, ‖px(ωh)‖ further increases with

respect to ‖px(ωk)‖, and the Fano frequency moves towards
ωk and the profile of ‖px‖ becomes very asymmetric. This fact
has a simple interpretation in the case of a uniform excitation,
being sh,x and sk,x non-negative quantities: if χ (k,h)

x < 0.5,
the x-radiative strength sh,x of the hth mode overwhelms the
x-radiative strength sk,x of the kth mode and we can say that
the Fano frequency moves towards the weaker bright mode.
However, this interpretation cannot be applied to arbitrary
excitations, as the sign of the radiative strength cannot be
established a priori. When the Fano frequency is in very close
proximity of ωk , i.e., χ (k,h)

x � γωk/(ω2
k − ω2

h), we observe a
pole-zero cancellation in Eq. (30) and the Fano-like shape is
no longer visible (case χ (k,h)

x = 0.01 in Fig. 1).
The phase of px is plotted in Fig. 1(b). Well isolated poles

(zeros) of px determine a -π (π ) shift of the phase for positive
values of the driving frequency. This happens in Fig. 1(b) for

FIG. 1. (Color online) (a) Magnitude and (b) phase of the x com-
ponent of the dipole moment p as a function of ω/ωp in a plasmonic
system with two bright and excitable modes, for different values of
the asymmetry factor χ (k,h)

x , and assuming ωh = 0.2ωp , ωk = 0.3ωp ,
and γ = 0.01. (c) Scattered power spectrum for different values of the
asymmetry factor χ (k,h)

x (semilogarithmic scale). (d) Scattered power
spectrum for χ (k,h)

x = 0.2 and for different values of γ .

χ (k,h)
x = 0.5 where the phase undergoes three almost complete

shifts of −π , π , and −π due to the action of ωh, ωF,x , and
ωk , respectively. If ωF,x is in proximity of ωk when the driving
frequency ω approaches the Fano wavelength ωF,x , ∠px starts
to increase due to the action of the zero ωF,x but cannot undergo
the full π shift since the action of the pole ωk brings ∠px back
to −π . As a result, the action of ωF,x and ωh determines a
spike in the phase of px [e.g., χ (k,h)

x = 0.1].
We now analyze Eq. (34) with the help of Fig. 1(c) where

we plot the scattered power spectrum for our example. When
χ (k,h)

x = 0.5, the scattered power exhibits the largest value at
the resonance ωh, being Psca(ωh)/Psca(ωk) ≈ (ωh/ωk)3. Simi-
larly to the analysis carried out for ‖px‖, as we decrease χ (k,h)

x ,
the Fano wavelength moves towards ωk and the scattered power
spectrum becomes very asymmetric. For very low values of
χ (k,h)

x , i.e., χ (k,h)
x � γωk/(ω2

k − ω2
h), the pole-zero cancella-

tion prevents us to see the resonance ωk and the Fano dip.
In order to understand the role of the damping, in Fig. 1(d)

we vary the relaxation frequency γ , assuming a fixed value of
the asymmetry factor, i.e., χ (k,h)

x = 0.2. Equation (34) indicates
that the ratio between the powers Psca(ωF,x) and Psca(ωk,x)
scales approximately as the fourth power of γ , whereas the
ratio between the scattered powers Psca(ωh) and Psca(ωk) does
not depend on the relaxation frequency, provided that the two
resonant frequencies are well-separated as in the example.
Figure 1(d) confirms the very high sensitivity of the Fano
profile to the relaxation frequency, showing a smoothing of the
Fano profile and an increase of the value of the scattered power
at the Fano resonance, as the relaxation frequency γ increases.

The developed treatment can be easily extended to the
case of an arbitrary dispersion relation, i.e., εr = εr (ω). In

155411-4



THEORY OF COUPLED PLASMON MODES AND FANO-LIKE . . . PHYSICAL REVIEW B 88, 155411 (2013)

this case, the t component of the net dipolar moment of the
plasmonic system investigated in this section can be obtained
from Eq. (24):

pt = −ε0(1 − εr (ω))Zt

εr (ω) − ε′
F,t

(εr (ω) − ε′
r,k)(εr (ω) − ε′

r,h)
, (35)

where we have defined the quantity Zt = [(1 − ε′
r,h)sh,t +

(1 − ε′
r,k)sk,t ] and the Fano permittivity ε′

F,t :

ε′
F,t = 1

Zt

[(1 − ε′
r,h)sh,t ε

′
r,k + (1 − ε′

r,k)sk,t ε
′
r,h]. (36)

In correspondence to the real frequency ωF,t (if exists), at
which

Re{εr (ωF,t )} = ε′
F,t , (37)

the real part of the numerator of Eq. (35) vanishes, and
provided that Im{εr (ωF,t )} � Re{εr (ωF,t )}, the total dipolar
moment along the t axis is negligible. In this case, the value of
Fano frequency ωF,t has to be found numerically by solving
Eq. (37). It is worth noting that the conditions (36) and (37)
are equivalent to Eq. (31) in the case of a Drude metal. The
consequences of the cancellation of the numerator of px on
the scattered spectrum are analogous to the case of the Drude
model.

Eventually, we turn our attention to the power dissipated
in correspondence to the Fano frequency. Regardless of the
dispersion relation, it critically depends on the exciting field.
In particular, in the presence of a uniform excitation, e.g.,
E(i) = x̂, since dk = sk,x , the two bright modes are exclusively
responsible for the system dissipation, thus the absorption
spectrum exhibits two peaks in correspondence to the same
wavelength ωh and ωk . If the excitation is not uniform, the link
between the scattering and the dissipation spectra is broken
and more complex scenarios can be observed. For instance, a
dark mode positioned in proximity of the Fano resonance may
determine an high dissipation, in correspondence to very low
scattering.

B. Scattering in a plasmonic system with n bright
and excitable plasmon modes

It is possible to extend this approach to the general scenario
of a plasmonic system exhibiting n bright and excitable
eigenmodes {σi | si 	= 0 ∀i = 1, . . . ,n} when excited by E(i).
The eigenmodes correspond to n nondegenerate eigenval-
ues {βi |i = 1, . . . n,}. To each eigenvalue we also associate
n resonant permittivities {ε′

r,i |i = 1, . . . ,n} and n resonant
frequencies {ωi |i = 1, . . . ,n}, through Eqs. (23) and (22),
respectively.

Assuming, as in the previous section, the x component
of the net dipolar moment p to be dominant within the
investigated frequency range, we have Psca ≈ ω4

12πε0c3 ‖px‖2.
In this case, Psca approaches zero only when ‖px‖ approaches
zero. The x component of p can be rearranged as a rational
function. The values of the angular frequency ω for which the
real part of the numerator of px vanishes are denoted as Fano
frequencies of the system.

For a Drude metal in the weak relaxation limit, it is easy
to prove by using Eq. (27) that they are the real roots of the

polynomial of degree 2n − 2:
P{ωF,x}

= ω
(2n−2)
F,x

n∑
i=1

si,x − ω
(2n−4)
F,x

n∑
i=1

si,xe1
(
. . . ω2

i−1,ω
2
i+1 . . .

)

+ω
(2n−6)
F,x

n∑
i=1

si,xe2
(
. . . ω2

i−1,ω
2
i+1 . . .

)

−ω
(2n−8)
F,x

n∑
i=1

si,xe3
(
. . . ω2

i−1,ω
2
i+1 . . .

) + · · · , (38)

where ej (. . . xi−1,xi+1 . . .) is an elementary symmet-
ric polynomial of degree j in the n − 1 variables
x1, . . . ,xi−1,xi+1, . . . ,xn, defined as41

e0(. . . xi−1,xi−1 . . .) = 1,

e1(. . . xi−1,xi−1 . . .) =
∑

1 � j � n

j 	= i

xj ,

e2(. . . xi−1,xi−1 . . .) =
∑

1 � j < k � n

j,k 	= i

xj xk, (39)

e3(. . . xi−1,xi−1 . . .) =
∑

1 � j < k < l � n

j,k,l 	= i

xj xkxl,

. . . .

In correspondence to the Fano frequencies, provided that no
pole-zero cancellation occurs, the total dipolar moment along
the x axis approaches zero. In conclusion, Eq. (38) demon-
strates that the Fano frequencies of a Drude-metal structure
are completely determined by the resonant frequencies and
the radiative strengths of the bright and excitable modes
of the system. In the case of uniform excitation, i.e., E(i) = x̂,
the x-radiative strength of each mode is non-negative, namely
si,x � 0 and, by using the theorem,42 we can conclude that the
plasmonic system exhibits n − 1 real Fano frequencies. For
an arbitrary excitation, the number of real Fano frequencies
needs to be assessed case by case.

The presented treatment can be generalized to an arbitrary
dispersion relation, i.e., εr = εr (ω). In this case, the x

component of the net dipolar moment can be rearranged as
a rational function in the variable εr starting from Eq. (24). In
particular, assuming that Im{εr (ω)} � Re{εr (ω)} within the
investigated frequency range, the real part of the numerator of
px vanishes in correspondence to the real roots of the following
polynomial, which are denoted as Fano permittivities:

Q{ε′
F,x} = ε

′(n−1)
F,x

n∑
i=1

(1 − ε′
r,i)si,x

− ε
′(n−2)
F,x

n∑
i=1

(1 − ε′
r,i)si,xe1(. . . ε′

r,i−1,ε
′
r,i+1 . . .)

+ ε
′(n−3)
F,x

n∑
i=1

(1 − ε′
r,i)si,xe2(. . . ε′

r,i−1,ε
′
r,i+1 . . .)

− ε
′(n−4)
F,x

n∑
i=1

(1 − ε′
r,i)si,xe3(. . . ε′

r,i−1,ε
′
r,i+1 . . .)

+ · · · , (40)
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where ej is defined in Eq. (39). Eventually, the Fano frequen-
cies of the system can be determined through the following
equation:

Re{εr (ωF,x)} = ε′
F,x. (41)

In conclusion, in the case of an arbitrary dispersion relation, the
Fano permittivities are completely determined by the resonant
permittivities and the radiative strengths of the bright and
excitable modes of the system. However, in order to determine
the corresponding Fano frequencies of the system an additional
equation, i.e., Eq. (41), has to be solved.

C. Absorption in a plasmonic system

In this section, we derive the expression of the absorbed
power of a plasmonic system with two excitable modes,
demonstrating that each resonance of the absorbed power
spectrum can be always described with a Lorentzian line shape.
We assume only two nondegenerate modes to be excitable,
i.e., ch,ck 	= 0. They exhibit dissipative strength dh and dk ,
respectively.

In the case of a Drude metal, from Eq. (28), in the weak
relaxation limit, we obtain

Pabs(ω)

= γ
ε0ω

2
pω2

2

× (dk + dh)ω4 − 2
(
dkω

2
h + dhω

2
k

)
ω2 + (

dkω
4
h + dhω

2
k

)
∥∥ω2 − ω2

h − jγω
∥∥2∥∥ω2 − ω2

k − jγω
∥∥2 .

(42)

It is easy to prove that for ω > 0, unlike Psca, the rational
function Pabs does not exhibit any zero with small imaginary
part, i.e., proportional to the relaxation frequency of the
metal. As a consequence, the oscillations of the numerator
of Eq. (42) can only weakly perturb the Lorentzian line shape
of the resonances of the absorbed power spectrum, as will
be illustrated in Sec. III by two examples. This fact is a
consequence of the absence of interference phenomena in the
absorbed power. These conclusions can be easily extended to a
plasmonic system, with n nondegenerate and excitable modes
and to a plasmonic system exhibiting an arbitrary dispersion
relation.

III. RESULTS AND DISCUSSION

In this section, we apply our theory to investigate the
Fano-like response of two canonical plasmonic systems,
namely a quadrumer12 and a plasmonic dolmen.5,6 We show
that the coupling of bright electrostatic modes in these
nanostructures leads to strongly asymmetric resonant line
shapes and we determine the positions of the corresponding
Fano-like dips. In order to demonstrate the generality of the
presented approach we described the dielectric function of
the plasmonic quadrumer using the Drude model, while we
modeled the dispersion of the dolmen using the experimental
data measured for Silver.43 Moreover, with the help of
full-wave electromagnetic codes based on the multiparticle
Mie theory44,45 and on a surface integral formulation46,47 we
investigate the limitations of the quasielectrostatic approach.

FIG. 2. (Color online) (a) Resonant wavelengths of the modes of
the investigated plasmonic oligomer. (b) Sketch of the investigated
structure.

We assembled the numerical counterparts of the eigenvalue
problems (1) and (3) using the numerical method described in
Ref. 27, and improving its precision evaluating the integrals
using the techniques described in Ref. 48. The surface of
the nanostructure has been discretized with a triangular mesh
with Nt triangles. The computation of the eigenvalues and the
eigenvectors of two nonsymmetric real matrices of dimensions
Nt × Nt , which are the discrete counterparts of the operatorsL
andL†, constitutes the bottleneck of the algorithm. This critical
calculation has been performed using the LAPACK function
DGEEV.49 The total operation count for both eigenvalues and
eigenvectors is asymptotically ∼25N3

t (see Ref. 50).

A. Plasmonic oligomer

Let us first consider a plasmonic quadrumer made of
four identical nanospheres, placed in correspondence to the
vertices and the center of an equilateral triangle, as sketched in
Fig. 2. Plasmonic quadrumers have been already investigated
experimentally and numerically.12 They belong to the class of
plasmonic oligomer, so named because the spatial arrangement
of the constituent nanoparticles resembles the arrangement of
atoms in a molecule.11–15 We described the dielectric function
of the oligomer using the Drude model with parameters
from Ref. 51 (ωp = 6.79 × 1015 s−1, γ = 0.25 × 1015 s−1).
We used a surface mesh with Nt = 7984 triangles. We denote
with R the radius of each sphere and with d the center-
center distance between two adjacent particles (see inset of
Fig. 2). Since the integral equations (1) and (3) are invariant
with respect to the scaling of the system’s dimension, the
eigenmodes and the eigenvalues only depend on the ratio d/R.
Unless explicitly specified, we consider d = 2.5R. By solving
the eigenvalue problems of Eqs. (1) and (3), we obtain the
eigenvalues set βi and the eigenmodes σi and τi . The real
resonant wavelengths {λi |i = 1, . . . ,n} (sorted in descending
order) are obtained from the eigenvalues using Eq. (29). The
first 100 resonant wavelengths are shown in Fig. 2(a).

1. Uniform excitation

In the first part of this section, we consider a uniform
excitation, that is, an x-polarized electric field E(i). The
symmetry of the structure and the chosen excitation require the
net dipolar moment to be oriented along the x axis. Moreover,
since the excitation is uniform, all the excitable modes are
bright and thus they make a contribution to the scattered power.
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FIG. 3. (Color online) Surface charge density of the bright and
excitable eigenmodes (5,11,13,18,20) of the plasmonic oligomer
with d = 2.5R.

The calculation through Eqs. (8) and (12) of the dipole
moments pi , coupling coefficients ci , and the correspond-
ing x-radiative strength si,x reveals that only the modes
(5,11,13,18,20), shown in Fig. 3, are bright and excitable by
E(i). Their resonant wavelengths λi and x-radiative strengths
si,x (normalized to their maximum) are listed in Table I.
All the remaining modes exhibit a negligible value of |sx |,
below a fixed threshold δ, set to 0.05. It is worth noting that
the dissipative strengths di are equal to the corresponding
x-radiative strengths. The magnitude of the electric field
(defined up to a positive multiplicative factor) of the bright
and excitable eigenmodes is plotted in the equatorial plane of
the array in Fig. 4.

In order to rigorously predict the position of the Fano
wavelengths, we solve Eq. (38) for n = 5 using the values of
λi and si,x given in Table I, obtaining four Fano wavelengths
λF,1, . . . ,λF,4 = {506, 484, 458, and 451 nm}. In Fig. 5(a),
we plot the magnitude of px calculated using Eq. (27) where
the summation index runs over the set {5,11,13,18,20}. We
also show the positions of the five resonant wavelengths
λi |i ∈ {5,11,13,18,20} with vertical dashed black lines and
the first and the third Fano wavelengths λF,1, λF,3 with red
lines. The remaining Fano wavelengths undergo a pole-zero
cancellation with the nearby poles and are not visible. In a
first approximation, the Fano wavelength λF,1 can be seen as
the result of the interaction of the modes {5,11,13}, whereas
the Fano-resonance λF,3 as the result of the coupling between
modes {11,13,18,20}. As expected, we notice that the Fano
resonance λF,1 is closer to the weaker modes 11,13 than to the
stronger mode 5. Similarly, in the coupling between modes

TABLE I. Resonant wavelengths λi and x-radiative strengths si,x

(normalized to their maximum) of the bright and excitable modes of
the investigated plasmonic oligomer with d = 2.5R, illuminated by
E(i) = x̂. The modes with |sk,x | < δ = 0.05 have been disregarded.

Mode index 5 11 13 18 20

λi (nm) 546 488 480 453 450
si,x 1 0.26 0.31 0.15 0.06

FIG. 4. (Color online) Magnitude of the electric field in the
equatorial plane of the array corresponding to the eigenmodes
(5,11,13,18,20) of the plasmonic oligomer with d = 2.5R.

11,13,18,20, the modes 11,13 are the stronger, while 18,20
are the weaker, as a result, the Fano resonance λF,3 is closer
to the latter ones.

In Fig. 5(b), we plot the scattered power spectrum Psca

calculated using Eq. (17). In order to validate the modal
reconstruction approach, we calculate the same quantity
using the multiparticle Mie theory (blue-dots).44,45 We
can appreciate a very good agreement between the two
approaches. We also notice that the dips of the scattered

FIG. 5. (Color online) (a) Magnitude ‖px‖ of the x-component of
the overall dipolar moment of the plasmonic oligomer with d = 2.5R,
uniformly excited. The black dashed lines indicates the positions
of the resonant wavelengths λi |i ∈ {5,11,13,18,20}. The vertical
red lines indicate the position of the Fano wavelengths λF,1, λF,3.
(b) Scattered power Psca by the plasmonic oligomer calculated
with the modal approach and with the multiparticle Mie theory for
d = 2.5R. (c) Psca calculated with the modal approach for several
values of the ratio d/R. (d) Psca calculated with the full-wave
multiparticles Mie theory for different dimensions L of the structures
and for d = 2.5R.
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FIG. 6. (Color online) Absorption spectrum Pabs of the plasmonic
oligomer with d = 2.5R, when it is illuminated by E(i) = x̂.

power correspond to the positions of the Fano wavelengths
λF,1, λF,3, as expected. For the sake of completeness, we
also provide the maximum value of the field enhancement,
defined as maxFE(λ) = maxr∈R3

‖E(r,λ)‖
‖E(i)(r,λ)‖ , in correspondence

to the two main peaks of Psca, i.e., maxFE(546 nm) = 80 and
maxFE(484 nm) = 46, and in correspondence to the Fano
wavelength, i.e., maxFE(λF,1) = 37.

In Fig. 5(c), we perform an analysis of the scattered power
for different values of d/R. When particles are very far apart
(d/R = 5), the electromagnetic coupling is negligible, and
the response of the system resembles the isolated sphere,
where only one (degenerate) eigenvalue is associated to
bright eigenmodes. As the ratio d/R decreases, the plasmonic
oligomer exhibits two or more nondegenerate eigenvalues with
nonzero x-radiative strength and one or more Fano resonances
arise.

At this point, it is important to understand the limits of the
quasielectrostatic approach. If we introduce the retardation,
it is no longer true that the normalized scattering response
is independent of the scaling of the system. In Fig. 5(d), we
investigate the power scattered by the plasmonic oligomer by
scaling its dimension L in the range L ∈ [6,188] nm (see inset
of Fig. 3), by using the full-wave multiparticle Mie theory for
d = 2.5R. The incident plane wave is propagating along the z

axis orthogonally to the array plane. We show that the shape of
the curve is qualitatively preserved for dimensions comparable
to the wavelength, even if the retardation causes a redshift and
a broadening of the resonances.

Eventually, we investigate with the help of Fig. 6 the
absorbed power spectrum Pabs of the plasmonic oligomer with
d = 2.5R, when it is illuminated by E(i) = x̂. The quantity Pabs

has been calculated by using Eq. (28) where the summation
index runs over the set {5,11,13,18,20}. Since sk,x = dk ∀k,
the dissipation spectrum exhibits the same resonances of the
scattering spectrum, while in correspondence to the Fano
wavelength λF,1 the absorbed power is in proximity to a local
minimum. It is important to notice that, unlike the resonances
in the scattered spectrum, the line shapes of the absorbed power
are symmetric, since the rational function Pabs does not exhibit
any zero with imaginary part proportional to the relaxation
frequency of the metal.

TABLE II. Resonant wavelengths λi and x-radiative strengths si,x

(normalized to their maximum) of the bright and excitable modes of
the investigated plasmonic oligomer, illuminated by a dipolar source.
The modes with |sk,x | < δ = 0.05 have been disregarded.

Mode index 5 11 13 16 18 31 33

λi (nm) 546 488 480 455 453 433 431
si,x −1 0.1 −0.05 0.11 −0.09 −0.18 −0.12

2. Dipolar excitation

We now consider the same plasmonic structure when
it is illuminated by a dipolar source. Being the excitation
nonuniform, the dissipative strength dk is no longer equal to the
excitation strength sk,x . Therefore modes with a large radiative
strength can exhibit a small dissipative strength or vice versa,
and the excitation of dark modes is allowed. The exciting
dipole is positioned atop the central particle at a vertical
distance from its center of 2R as sketched in Fig. 3(b). Its
analytical expression is

E(i)(r) = 1

4πε0

[
3

p · (r − r0)

‖r − r0‖5
(r − r0) − p

‖r − r0‖3

]
, (43)

where p = (1,0,0)C m and r0 = (0,0,2R). The bright and
excitable modes are shown in Table II, together with their x-
radiative strength sx , whereas all the remaining modes exhibit
a negligible absolute value of sx , below a fixed threshold δ, set
to 0.05. The number of modes that play a role in the dissipated
power is much larger and are reported in Table III with their
dissipative strength. Also in this case, the modes with dx < δ

have been disregarded.
We compute the Fano wavelengths of the scattering

spectrum, solving Eq. (38) for n = 7, using the values
of wavelengths and x-radiative strengths tabulated in Ta-
ble II, obtaining six Fano wavelengths λF,1, . . . ,λF,6 =
{484,484,455,455,449,431} nm. The Fano wavelengths
λF,1,λF,2 undergo a pole-zero cancellation with the nearby
plasmon resonance λ11,λ13 and neither a peak nor a dip of the
scattered power can be found at these wavelengths. In other
words, the action of these Fano resonances suppresses the
radiated power of the nearby bright resonances. In proximity
of 450 nm, we have three zeros (λF,3,λF,4,λF,5) and two poles
λ16,λ18, thus the overall response resembles the response of
an isolated zero, that is a Fano dip. The Fano wavelength λF,6

undergoes a cancellation with a nearby pole.

TABLE III. Resonant wavelengths λi and dissipative strengths
di (normalized to their maximum) of the modes contributing to the
dissipated power of the investigated plasmonic oligomer, excited
by a dipolar source. The modes with |dk| < δ = 0.05 have been
disregarded.

Mode index 5 10 16 19 31 33 34

λi (nm) 546 488 455 451 433 431 430
di 0.39 0.1 0.66 0.47 0.65 1 0.7

Mode index 41 55 57 58 71 91
λi (nm) 428 422 420 419 417 414
di 0.08 0.57 0.62 0.15 0.06 0.06
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FIG. 7. (Color online) (a) Scattering and (b) absorption spectra
of the plasmonic oligomer with d = 2.5R, when it is illuminated by
a dipolar excitation.

In Fig. 7, we plot the scattered (a) and the absorbed power
(b). The only Fano-like dip of the scattered power is shown with
a red line. We notice that the absolute maxima of the absorption
and scattering occur at different wavelengths. Moreover, in
correspondence to the Fano-dip of the scattering spectrum,
the action of the modes 16 and 19 results in high dissipation
[see Fig. 7(b)]. In particular, the mode 19 exhibits zero dipolar
moment along x and does not contribute to the scattered power,
while the mode 16 is a radiative mode, whose radiation has
been suppressed by the action of a Fano wavelength through a
pole-zero cancellation.

In conclusion, using the developed theory, we have in-
vestigated the Fano resonances of a plasmonic oligomer for
both uniform and nonuniform excitations. In the case of a
uniform excitation, due to fact that the dissipative strengths and
x-radiative strengths coincide, the scattering and absorption
spectra exhibit the same resonances, in addition the Fano
resonance is in proximity of a local minimum of the absorption.
In the case of a dipolar excitation, the symmetry between
the scattering and the dissipation spectra is relaxed and
more complex scenarios can be observed. In our example,
in correspondence to the Fano resonance, we observe a high
dissipation driven by both a bright mode and a mode with zero
dipole moment along x.

B. Plasmonic dolmen

We now apply the developed method to study a plas-
monic system whose building units are nonspherical par-
ticles. We consider a system of three silver nanorods
arranged in the configuration sketched in Fig. 8, which
is usually referred to as plasmonic dolmen.5,6 We have
chosen the geometrical parameters of the dolmen inspired
by Ref. 6: L1 = 2.3W1, L2 = 2.6W1, W2 = 1.15W1, G =
0.35W1, S = 0.5W1, and a height along z equal to h = 0.6W1.
We used a surface mesh with Nt = 7996 triangles. An
experimental measured dielectric function for Silver has been
used.43 The dolmen is uniformly excited by an x-polarized
electric field E(i) = x̂.

Solving the eigenvalue problems (1) and (3), we obtain
the set of eigenvalues βi . The resonant permittivities {ε′

r,i |i =
1, . . . ,n} are obtained from the eigenvalues using Eq. (23).
Then, the resonant wavelengths {λi |i = 1, . . . ,n} (sorted in

FIG. 8. (Color online) Surface charge density of the bright
and excitable eigenmodes (4,5,8,9,11,12,16,17) of the plasmonic
dolmen illuminated by E(i) = x̂.

descending order) are obtained using Eq. (22). The dipolar
moment, the coupling coefficient and the radiative-strength of
each mode are obtained using Eqs. (8) and (12).

Within the frequency range considered in this analysis,
the components of the net dipole moment along y and z

are negligible and the scattered power depends only on
px . Moreover, only the eight modes {4,5,8,9,11,12,16,17}
are bright and excitable by E(i) = x̂. The corresponding
distributions of the charge density and of the magnitude of
the electric field are shown in Figs. 8 and 9. Their resonant
plasmonic wavelengths λi and x-strengths si,x are listed in
Table IV. The remaining modes exhibit a negligible x-radiative
strength, being |sx | below a fixed threshold δ, set to 0.05. In
order to evaluate the position of the Fano wavelengths, we have
to solve Eqs. (40) and (41) for n = 8. However, if we restrict

FIG. 9. (Color online) Magnitude of the electric field in the plane
of the array corresponding to the eigenmodes (4,5,8,9,11,12,16,17)
of the plasmonic dolmen.
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TABLE IV. Resonant wavelengths λi and x-radiative strengths
si,x (normalized to their maximum) of the bright and excitable modes
of the investigated plasmonic dolmen, illuminated by E(i) = x̂. The
modes with |sk,x | < δ = 0.05 have been disregarded.

Mode index 4 5 8 9 11 12 16 17

λi (nm) 545 484 390 383 377 373 364 361
si,x 0.42 0.92 0.27 0.24 0.77 0.48 0.26 1

the study to wavelengths λ > 450 nm, the Fano resonance can
be calculated considering only the interaction of the modes 4
and 5, since the remaining modes play only a minor role in
this part of the spectrum. Thus, using Eqs. (36) and (37), we
obtain the Fano wavelength λF � 523 nm.

In Fig. 10(a), we plot the magnitude of px obtained using
Eq. (24), where the summation is limited to the indices
{4,5,8,9,11,12,16,17}. We also show with vertical dashed-
black lines the positions of the eight resonant frequencies and
with a red line the calculated Fano wavelength. In Fig. 10(b),
we plot the scattered power of the system calculated using
Eq. (17). The dip of the scattered power corresponds to the
position of the Fano wavelength, as expected. Moreover, with
the help of Fig. 10(b) we also validate the modal reconstruc-
tion method for arrays of nonspherical particles calculating
the scattered power using a surface integral formulation

FIG. 10. (Color online) Magnitude ‖px‖ of the x-component of
the overall dipole moment of the plasmonic dolmen. The black
dashed lines indicates the positions of the resonant wavelengths
{4,5,8,9,11,12,16,17}, the red line indicates the position of the Fano
resonance λF . (b) Corresponding scattered power spectrum calculated
with the modal approach and with a surface integral equation method.
(c) Scattered power spectrum calculated with the modal approach
for several values of the ratio G/W1. (d) Scattered power spectrum
calculated with a full-wave surface integral formulation for different
dimensions L of the dolmen.

FIG. 11. (Color online) Absorption spectrum Pabs of the plas-
monic dolmen, when it is illuminated by E(i) = x̂.

(blue-dots).46,47 We notice excellent agreement between the
two approaches. For completeness, we also provide the values
of field enhancement in correspondence to the two peaks of
the scattered power spectrum, namely maxFE(545 nm) = 103,
maxFE(484 nm) = 110, and in correspondence to the Fano
wavelength maxFE(λF ) = 38.

In Fig. 10(c), we conduct an analysis of the scattered power
for different values of the gap G (see inset in Fig. 8). We
observe that when the gap G is very large (G = 1.5W1), the
electromagnetic coupling between the rods oriented along the
y axis and the rod oriented along the x axis is negligible.
Therefore, in this wavelength range, the response of the system
resembles the isolated x-oriented nanorod, and only one
eigenvalue is associated to a bright and excitable eigenmode.
As the value of G decreases, the plasmonic dolmen exhibits
for λ > 450 nm two nondegenerate eigenvalues with nonzero
x strength giving rise to a Fano-like resonance.

Eventually, we investigate the limits of the quasielec-
trostatic approach, introducing the retardation in our anal-
ysis. In Fig. 10(d), we plot the scattered power spectrum
of the plasmonic dolmen with G = 0.35W1 by scaling its
dimension L (defined in the inset of Fig. 8) in the range
L ∈ [3.8,190] nm and using a full-wave surface integral
formulation. The incident plane wave is propagating along
the z axis orthogonally to the array plane. We show that the
shape of the curve is qualitatively preserved for dimensions
comparable to the wavelength, even if the retardation causes
a redshift and a broadening of the resonances, confirming
the quasielectrostatic origin of Fano-like shapes in plasmonic
dolmens.

Eventually, we investigate with the help of Fig. 11 the
absorbed power spectrum of the plasmonic dolmen, when it is
illuminated by E(i) = x̂. The quantity Pabs has been calculated
by using Eq. (25). Since sk,x = dk ∀k, the dissipation spectrum
exhibits the same resonances of the scattering spectrum, while
in correspondence to the Fano wavelength λF,1 the absorbed
power appears in proximity to a local minimum. In conclusion,
unlike the resonances in the scattered spectrum, the line shapes
of the absorbed power are symmetric, since no interference
process is allowed.
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IV. CONCLUSIONS

We derived a quasielectrostatic theory of coupled res-
onances in subwavelength plasmonic nanostructures. We
characterized each plasmon mode by two parameters besides
its natural frequency: the radiative strength and the dissipative
strength, quantifying the participations of the modes to the
scattering and absorption processes, respectively. Then, we
expanded the solution of the nonhomogeneous quasielectro-
static problem in terms of the plasmon modes of the system,
and we studied the poles and the zeros of the resulting rational
function.

We showed that each pole of the scattered power spectrum
corresponds to a bright and excitable plasmon mode, while
each zero stems from the coupling among all the bright and
excitable modes of the system. When a zero exhibits a small
imaginary part, i.e., proportional to the relaxation frequency
of the metal, provided that no pole-zero cancellation occurs, it
gives rise to an asymmetric spectral lineshape in the scattering
spectrum and to electromagnetically induced transparency at
the Drude damping limit. Instead, when the zero is in close
proximity of a plasmon resonance, we observe a pole-zero
cancellation, and a suppression of the power radiated by the
corresponding mode. Our method allows the direct calculation
of the spectral positions of the dips of the scattered power, and
of the asymmetry degree of the Fano-like resonance.

In addition, we showed that the absorption spectrum cannot
exhibit resonances with a line shape of appreciable asymmetry,

because no interference between different modes is allowed
in this case. We also showed that in the case of a uniform
excitation, dissipative and radiative strengths coincide and
strong (weak) dissipative modes correspond to strong (weak)
radiative modes, and dark modes play no role. Instead, when
the excitation is nonuniform, it is possible to have high
absorption at the Fano-dip of the scattering, due to the
simultaneous action of dark and bright modes.

Finally, we have applied our theory to investigate the
Fano-like response in two canonical plasmonic systems. The
approach derived in this paper can be used for the quantitative
analysis and design of Fano-like resonances in subwavelength
complex plasmonic structures, and can impact the engineering
of novel biomedical and chemical nanosensors with enhanced
spectral sensitivity.
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155423 (2009).

155411-11

http://dx.doi.org/10.1007/BF02958288
http://dx.doi.org/10.1038/nmat2810
http://dx.doi.org/10.1103/RevModPhys.82.2257
http://dx.doi.org/10.1103/RevModPhys.82.2257
http://dx.doi.org/10.1002/lpor.201200021
http://dx.doi.org/10.1002/lpor.201200021
http://dx.doi.org/10.1103/PhysRevLett.101.047401
http://dx.doi.org/10.1103/PhysRevLett.101.047401
http://dx.doi.org/10.1021/nl9001876
http://dx.doi.org/10.1021/nl9001876
http://dx.doi.org/10.1021/nn900012r
http://dx.doi.org/10.1021/nl1016392
http://dx.doi.org/10.1021/nl104352j
http://dx.doi.org/10.1021/nn9017312
http://dx.doi.org/10.1126/science.1187949
http://dx.doi.org/10.1126/science.1187949
http://dx.doi.org/10.1021/nl101938p
http://dx.doi.org/10.1021/nn103172t
http://dx.doi.org/10.1021/nn202876k
http://dx.doi.org/10.1021/nn202876k
http://dx.doi.org/10.1038/nnano.2012.249
http://dx.doi.org/10.1021/jp810411q
http://dx.doi.org/10.1021/jp810411q
http://dx.doi.org/10.1021/jp9089722
http://dx.doi.org/10.1021/nl201207n
http://dx.doi.org/10.1103/PhysRevB.83.235427
http://dx.doi.org/10.1103/PhysRevLett.87.167401
http://dx.doi.org/10.1103/PhysRevLett.87.167401
http://dx.doi.org/10.1103/PhysRevLett.91.227402
http://dx.doi.org/10.1103/PhysRevLett.91.227402
http://dx.doi.org/10.1016/0304-3991(89)90332-X
http://dx.doi.org/10.1080/13642818908205921
http://dx.doi.org/10.1103/PhysRevB.56.15873
http://dx.doi.org/10.1103/PhysRevB.56.15873
http://dx.doi.org/10.1103/PhysRevLett.80.5180
http://dx.doi.org/10.1103/PhysRevLett.80.5180
http://dx.doi.org/10.1103/PhysRevLett.91.253902
http://dx.doi.org/10.1103/PhysRevLett.91.253902
http://dx.doi.org/10.1103/PhysRevB.72.155412
http://dx.doi.org/10.1103/PhysRevB.72.155412
http://dx.doi.org/10.1103/PhysRevLett.98.147401
http://dx.doi.org/10.1103/PhysRevLett.98.147401
http://dx.doi.org/10.1103/PhysRevB.79.155423
http://dx.doi.org/10.1103/PhysRevB.79.155423


CARLO FORESTIERE, LUCA DAL NEGRO, AND GIOVANNI MIANO PHYSICAL REVIEW B 88, 155411 (2013)

30C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, Am. J.
Phys. 70, 37 (2002).

31N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau,
and H. Giessen, Nat. Mater. 8, 758 (2009).

32S. I. Bozhevolnyi, A. B. Evlyukhin, A. Pors, M. G. Nielsen,
M. Willatzen, and O. Albrektsen, New J. Phys. 13, 023034
(2011).

33O. D. Kellogg, Foundations of Potential Theory (McGraw-Hill,
New York, 1929).

34J. Jackson, Classical Electrodynamics (Wiley & Sons, New York,
1998).

35C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light
by Small Particles (Wiley & Sons, New York, 1998).

36V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos,
A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J.
Garcia de Abajo, Chem. Soc. Rev. 37, 1792 (2008).

37B. Rolly, B. Stout, and N. Bonod, Phys. Rev. B 84, 125420
(2011).

38C. Gao, J. Vuong, Q. Zhang, Y. Liu, and Y. Yin, Nanoscale 4, 2875
(2012).

39L. Hung, S. Y. Lee, O. McGovern, O. Rabin, and I. Mayergoyz,
Phys. Rev. B 88, 075424 (2013).

40Y. S. Joe, A. M. Satanin, and C. S. Kim, Phys. Scripta 74, 259
(2006).

41P. Borwein and T. Erdelyi, Polynomials and Polynomial Inequalities
(Springer-Verlag, New York, 1995).

42D. C. Kurtz, Am. Math. Mon. 99, 259 (1992).
43P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
44J. Bruning and Y. Lo, IEEE Antennas Propag. 19, 378 (1971).
45Y. lin Xu, Appl. Opt. 34, 4573 (1995).
46R. Harrington, Field Computation by Moment Methods (Macmillan,

New York, 1968).
47C. Forestiere, G. Iadarola, G. Rubinacci, A. Tamburrino, L. Dal

Negro, and G. Miano, J. Opt. Soc. Am. A 29, 2314 (2012).
48R. Graglia, IEEE Antennas Propag. 41, 1448 (1993).
49E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,

J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A.
McKenney, and D. Sorensen, LAPACK Users’ Guide (Society for
Industrial and Applied Mathematics, Philadelphia, 1999).

50W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes 3rd Edition: The Art of Scientific Computing
(Cambridge University Press, New York, 2007).

51S. A. Maier, P. G. Kik, and H. A. Atwater, Phys. Rev. B 67, 205402
(2003).

155411-12

http://dx.doi.org/10.1119/1.1412644
http://dx.doi.org/10.1119/1.1412644
http://dx.doi.org/10.1038/nmat2495
http://dx.doi.org/10.1088/1367-2630/13/2/023034
http://dx.doi.org/10.1088/1367-2630/13/2/023034
http://dx.doi.org/10.1039/b711486a
http://dx.doi.org/10.1103/PhysRevB.84.125420
http://dx.doi.org/10.1103/PhysRevB.84.125420
http://dx.doi.org/10.1039/c2nr30300k
http://dx.doi.org/10.1039/c2nr30300k
http://dx.doi.org/10.1103/PhysRevB.88.075424
http://dx.doi.org/10.1088/0031-8949/74/2/020
http://dx.doi.org/10.1088/0031-8949/74/2/020
http://dx.doi.org/10.2307/2325063
http://dx.doi.org/10.1103/PhysRevB.6.4370
http://dx.doi.org/10.1109/TAP.1971.1139944
http://dx.doi.org/10.1364/AO.34.004573
http://dx.doi.org/10.1364/JOSAA.29.002314
http://dx.doi.org/10.1109/8.247786
http://dx.doi.org/10.1103/PhysRevB.67.205402
http://dx.doi.org/10.1103/PhysRevB.67.205402



