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Casimir interaction between two magnetic metals in comparison with nonmagnetic test bodies
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We present the complete results for the dynamic experiment on measuring the gradient of the Casimir force
between magnetic (Ni-coated) surfaces of a plate and a sphere. Special attention is paid to the description of some
details of the setup, its calibration, error analysis, and background effects. Computations are performed in the
framework of the Lifshitz theory at nonzero temperature with an account of analytic corrections to the proximity
force approximation and of surface roughness using both the Drude and the plasma model approaches. The theory
of magnetic interaction between a sphere and a plate due to domain structure of their surfaces is developed for
both out-of-plane and in-plane magnetizations in the absence and in the presence of spontaneous magnetization.
It is shown that in all cases the magnetic contribution to the measured force gradients is much smaller than the
total experimental error. The comparison between experiment and theory is done using the rigorous statistical
method. It is shown that the theoretical approach taking into account dissipation of free electrons is excluded by
the data at a 95% confidence level. The approach neglecting dissipation is confirmed by the data at more than
90% confidence level. We prove that the results of experiments with Ni-Ni, Ni-Au, and Au-Au surfaces taken
together cannot be reconciled with the approach including free electrons dissipation by the introduction of any
unaccounted background force, either attractive or repulsive.
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I. INTRODUCTION

The Casimir interaction is a version of the van der
Waals interaction1 when the separation distance between the
interacting bodies exceeds a few nanometers, and relativistic
effects make an important contribution. The investigation of
this phenomenon goes back to the seminal paper by Casimir,2

which predicted that there is an attractive force between two
neutral parallel ideal metal plates in vacuum. The Casimir
force originates from the existence of zero-point oscillations
of the electromagnetic field and thermal photons. Lifshitz3

developed the general theory of the van der Waals and
Casimir forces between plates made of different materials
based on the theory of electromagnetic fluctuations. At the
present time the Casimir effect is investigated along with other
quantum phenomena caused by a fluctuating electromagnetic
field.4–6 It has found increasing favor in numerous applications
ranging from condensed matter physics, atomic physics to
elementary particle physics, astrophysics, and cosmology.7–9

Much attention is given to measurements of the Casimir
force between two test bodies made of different materials.
Thanks to modern laboratory techniques using atomic force
microscopes (AFM) and micromachined oscillators it has been
made possible to measure the Casimir interaction to high
precision at submicrometer separation distances (see reviews
in Refs. 10–12). Comparing experiment and theory, some
unexpected features in the interaction of quantum fluctuations
with matter have been found. These features are connected
with the role of conduction electrons and remain poorly
understood (see Secs. VI and VII).

The original version of the Lifshitz theory3 describes
materials of the test bodies by means of a single quantity,
the frequency-dependent dielectric permittivity ε(ω). In so
doing the main physical observables, such as the Casimir free
energy and force, are most conveniently expressed via ε(iξl)

where the Matsubara frequencies are ξl = 2πkBT l/h̄, kB is the
Boltzmann constant, T is the temperature, l = 0, 1, 2, . . . ,

and h̄ is the Planck constant. The magnetic permeability
of materials was assumed to be equal to unity, μ(iξl) = 1.
This is justified for diamagnets whose magnetic properties
are characterized by the relation13–15 |μ(0) − 1| ∼ 10−5.
For paramagnets consisting of paramagnetic magnetizable
microparticles with no intrinsic magnetic moment (the Van
Vleck polarization paramagnetism16) the magnetic properties
are also negligibly small. The same holds for paramagnets
in the narrow sense which consist of microparticles pos-
sessing an intrinsic (permanent) magnetic moments whose
interaction remains negligibly small even with the decrease
of temperature to absolute zero.13–16 This allows one to
conclude17 that in most of cases the contribution of the
magnetic properties to the Casimir interaction is very small.
There is, however, the subset of paramagnets in the broad sense
called ferromagnets whose atoms possess strongly interacting
constituent magnetic moments below the temperature of the
magnetic phase transition (the Curie temperature TC). This
results in large magnetic permeabilities at zero Matsubara
frequency, μ(0) � 1, in the temperature region T < TC .
Richmond and Ninham18 have generalized the Lifshitz theory
for the case of interacting bodies described by the dielectric
permittivity ε(iξl) and magnetic permeability μ(iξl) calculated
at imaginary Matsubara frequencies.

After generalization of the Lifshitz theory for the case of
magnetic plates, much theoretical work has been done. Specifi-
cally, all main equations of the theory were obtained19,20 for an
arbitrary number of plane parallel layers of magnetodielectrics
possessing different ε(iξl) and μ(iξl). Furthermore, the Lif-
shitz theory of van der Waals and Casimir interactions was
formulated for magnetodielectric bodies of arbitrary shape.21

Many papers aimed to use magnetic properties in order to
realize the Casimir repulsion.22–29 It was understood,25,26
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however, that μ(iξl) decreases rapidly with l in accordance
with the Debye formula,15

μ(iξl) = 1 + μ(0) − 1

1 + ξl/ωm

, (1)

where ωm is the characteristic frequency which is much
less than ξ1 ∼ 1014 Hz at room temperature. For ferromag-
netic metals μ(iξ ) becomes equal to unity at ξ > 105 Hz
(see, e.g., Ref. 30). From this it follows that the magnetic
Casimir interaction is determined by only the zero-frequency
Matsubara term (i.e., the term with l = 0 in the Lifshitz
formula). As a result, under some conditions the magnetic
repulsion is now expected only between two test bodies, one
of which is made of ferromagnetic dielectric and another
of a nonmagnetic metal.24–26 In parallel with the magnetic
Casimir interaction between two macroscopic bodies, the case
of polarizable microparticles (atoms) with both electric and
magnetic polarizabilities was considered.29 It was found that
magnetic properies of both atoms and the material of the wall
influence the atom-wall interaction.19,31,32

Recently, Ref. 33 marked the beginning of experimental
research of the magnetic Casimir interaction. In this ex-
periment the dynamic AFM operated in the frequency-shift
mode was used to measure the gradient of the Casimir force
between an Au-coated sphere of 64.1 μm radius oscillating
in perpendicular direction to the plate covered with the
ferromagnetic metal Ni. The dymanic AFM technique with
a sharp tip has been used for mapping surface topography
for many years.34 For measurements of the gradient of the
Casimir force the dynamic AFM was used in the phase-
shift35,36 and in the amplitude-shift37,38 modes. When using
the dynamic AFM in the frequency-shift mode, the gradient
of the Casimir force acting on the cantilever modifies the
resonant frequency and the corresponding frequency shift is
measured by means of a phase-locked loop (PLL). For AFM
with a sharp tip this measurement mode was discussed in
detail in Ref. 39. To measure the Casimir interaction by means
of an AFM, it was originally applied40 in the configuration
of an Au-coated sphere oscillating near an Au-coated plate.
Previously dynamic measurements of the Casimir interaction
in the frequency-shift mode were performed by means of a
micromachined oscillator.41–48 Measurements of the Casimir
interaction between an Au-coated sphere and a Ni-coated
plate33 demonstrated the impact of magnetic properties of Ni,
as predicted by the Lifshitz theory with neglected relaxation
properties of conduction electrons (this theoretical approach
was experimentally confirmed previously by measurements
with two Au test bodies40,43–46; see Secs. VI and VII for a
complete discussion). However, with inclusion of the relax-
ation properties of free charge carriers, the Lifshitz theory does
not predict any impact of magnetic properties on the Casimir
interaction in the Au-Ni configuration. Unfortunately, both
theoretical predictions, by coincidence, numerically almost
overlap over the experimental separation region. This does not
allow us to conclude that Ref. 33 alone contains an independent
confirmation for the impact of magnetic properties on the
Casimir interaction.

The convincing confirmation for the role of magnetic
properties in the Casimir effect was achieved49 by measuring
the gradient of the Casimir force between a Ni-coated sphere

and a Ni-coated plate by means of dynamic AFM operated
in the frequency-shift mode. In this configuration the Lifshitz
theory predicts sufficiently different values of the gradient
of the Casimir force in cases when the relaxation properties
of conduction electrons are either included or neglected, and
in both cases the magnetic properties have a pronounced
effect on the result. Using the same setup, as in Refs. 33
and 40 for Au-Ni and Au-Au configurations, respectively,
it was shown that the magnetic properties of Ni affect the
measured gradient of the Casimir force. The experimental
results were found to be in excellent agreement with the
predictions of the Lifshitz theory with the relaxation properties
of free charge carriers neglected. The theoretical predictions
which take into account relaxation properties of free electrons
were experimentally excluded at a high confidence level.49

Remarkably, for the Ni-Ni configuration, the predictions of two
theoretical approaches change places, as compared to the case
of Au-Au test bodies.49 This leads to important conclusions
concerning the role of some possible background effects (see
Secs. VI and VII).

The present paper contains a full description of the
experiment on measuring the gradient of the Casimir force
between Ni-coated surfaces of a sphere and a plate which was
briefly described in Ref. 49. After a necessary short discussion
about the measurement scheme (note that the setup is common
for the experiments of Refs. 33,40 and 49), we present the mea-
surement results, including those that have not been published
so far. The error analysis is elucidated in more detail, including
the random, systematic, and total experimental errors. The
Casimir interaction between two Ni-coated surfaces used in
this experiment is calculated with the help of the Lifshitz theory
within the two theoretical approaches either neglecting or
taking into account the relaxation properties of free electrons.
In so doing the corrections due to surface roughness and due to
deviations from the proximity force approximation (PFA) are
taken into account. Next, the detailed estimate of the magnetic
interaction, which might act in the experimental setup due to
the domain structure of the films independent of the Casimir
interaction, is given. We demonstrate that the gradient of the
magnetic force is sufficiently small and cannot interfere in
the comparison between experiment and theory for both cases
of magnetization perpendicular or parallel to the plane of the
film. Then the obtained experimental results are compared
with the results of numerical computations using the two
theoretical approaches. This is done with the help of a more
rigorous statistical method which was not used in Refs. 33,40
and 49. We arrive at the conclusion that the Lifshitz theory with
omitted relaxation properties of free electrons is consistent
with the measurement data, whereas the same theory with the
inclusion of relaxation properties is excluded by the data at
a 95% confidence level. At the end of the paper we compare
the experimental results of this experiment with experiments
of Refs. 33 and 40 involving at least one nonmagnetic (Au)
surface.

The structure of the paper is as follows. In Sec. II we briefly
present the measurement scheme using the dynamic AFM
operated in the frequency-shift mode. Section III contains our
measurement results and the analysis of errors. In Sec. IV
the computational results for the gradient of the Casimir
force between two Ni surfaces are presented. The calculation
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for the upper bound of the magnetic interaction in our
setup can be found in Sec. V. In Sec. VI the reader will
find the comparison between experiment and theory for two
magnetic test bodies. Section VII contains the comparison with
previously performed experiments. Section VIII is devoted to
our conclusions and discussion. Appendices A and B contain
some details of mathematical calculations.

II. MEASUREMENT SCHEME USING DYNAMIC AFM

The dynamic AFM operated in the frequency-shift mode,
used in this experiment to measure the gradient of the Casimir
force between Ni-coated surfaces of a hollow glass sphere
of R = 61.71 ± 0.09 μm radius and a Si plate, is already
described in Refs. 33,40 and 49. Here we present only a few
main points necessary for understanding the subsequent text
and dwell only on details which were not discussed previously.
The sphere was attached to the rectangular Si cantilever of an
AFM and the plate was mounted on top of a piezoelectric
tube capable of traveling a separation distance zpiezo of 2.3 μm
between the surfaces of a sphere and a plate. The movement of
the piezo was calibrated by use of a fiber interferometer. Both
test bodies were cleaned using the special multistep cleaning
procedure and placed in the vacuum chamber that was capable
of reaching a pressure of 10−9 Torr by using mechanical,
turbo, and ion pumps [see Figs. 1(a) and 1(b) in Ref. 40
for a layout of the setup]. The piezoelectric tube contained a
small magnet introduced by the piezotube manufacturer which
is not needed in this experiment. The initial magnetic field
was measured to be ≈100 Gs using a Hall probe gaussmeter.
To prevent any effects from this field, we inserted a piece
of mu-metal magnetic shield between the top of the piezo
tube and the Ni-coated plate. The residual magnetic field was
below the detection resolution of 0.1 Gs. Both the initial and
residual fields do not depend on separation in the separation
region considered and do not contribute to the force gradient
measured in our work.

In a dynamic experiment using the frequency-shift mode
the measured quantity is the change of resonant frequency
ω0 of the periodically driven cantilever.34 The change of the
resonant frequency from ω0 to ωr occurs under the influence
of an external force,

Ftot(a,T ) = Fel(a) + F (a,T ), (2)

acting between the sphere and the plate at the laboratory
temperature T = 300 K. Here Fel(a) is the electric force
caused by the voltages Vi applied to the plate, whereas the
sphere remains grounded and F (a,T ) is the Casimir force.
The absolute separation between the sphere and plate surface
is given by

a = zpiezo + z0, (3)

where z0 is the point of the closest approach between the
two surfaces, which is much larger than the separation on
contact in the dynamic experiments. Note that even if Vi = 0
there is some residual potential difference V0 between the
sphere and the plate caused by different connections and
work functions of the polycrystalline surface from patches
and possible adsorbates on their surfaces.

The shift of the resonance frequency of the cantilever was
detected by means of an optical interferometer.50,51 To prevent
any error in the sphere-plate separation a due to cantilever
deflection under the influence of a force Ftot(a,T ), we have
kept the interferometric cavity length constant by means of
an additional piezo, which was controlled by a proportional-
integral-derivative feedback loop. Then the frequency shift,

�ω(a) = ωr (a) − ω0, (4)

was measured by use of the PLL frequency demodulator
system (here and below we omit an argument T in the
frequency shift because T is kept constant). The output of the
feedback loop provided by the PLL was the resonant-frequency
shift ωr (a) − ωd , where ωd is the set-point frequency of the
PLL. We made sure that at large separations above 2.2 μm
the frequency shift ωr (a) − ωd remains constant within the
resolution limit. From this it follows that at separations
above 2.2 μm there is no influence of the external force and
ωr (a) = ω0. Finally, the frequency shift (4) was found from
the two measured quantities by the equation

�ω(a) = [ωr (a) − ωd ] − (ω0 − ωd ). (5)

In the linear regime, which holds for sufficiently small
oscillation amplitudes of the cantilever, the frequency shift
is given by40

�ω(a) = −ω0

2k

∂Ftot(a,T )

∂a
≡ −ω0

2k
F ′

tot(a,T ), (6)

where k is the spring constant of the cantilever (maximum
allowed amplitudes ensuring the applicability of the linear
regime are calculated in Ref. 40).

The electric force contributing to the total force (2) in the
configuration of a metal sphere above a metal plate can be
calculated precisely as9,52

Fel(a) = X(a,R)(Vi − V0)2. (7)

Here the function X(a,R) is given by

X(a,R) = 2πε0

∞∑
n=1

coth α − n coth(nα)

sinh(nα)
,

(8)
cosh α = 1 + a

R
,

where ε0 is the permittivity of the vacuum. When using Eq. (8)
in electrostatic calibrations (see Sec. III), it is convenient to
present X(a,R) as the sum of powers9,53

X(a,R) = −2πε0

[
c−1

R

a
+ c0 + c1

a

R
+ c2

a2

R2
+ . . .

]
, (9)

where c1 = 0.5, c0 = −1.18260, c1 = 22.2375, c2 =
−571.366, and so on. Substituting Eqs. (2) and (7) in Eq. (6),
one can connect the measured frequency shift with the gradient
of the Casimir force,

�ω(a) = −β(Vi − V0)2 − C
∂F (a,T )

∂a
. (10)

Here C ≡ ω0/(2k) and β ≡ β(z0,zpiezo,C,R) =
C∂X(a,R)/∂a. Substituting Eq. (9) in the definition of
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β, one obtains

β = πε0RC

a2

(
1 − 2c1

a2

R2
− 4c2

a3

R3
+ . . .

)
, (11)

where a is expressed according to Eq. (3).

III. MEASUREMENT RESULTS AND ERROR ANALYSIS
FOR TWO MAGNETIC BODIES

To find the gradient of the Casimir force as a function
of separation from the measured frequency shift by using
Eq. (10), one needs sufficiently precise values of the
coefficients C and β, of the residual potential difference
V0, and of the separation at the closest approach z0.
These were found by means of electrostatic calibrations which
were performed using the dependence of the frequency shift on
the applied voltages in Eq. (10). For this purpose 11 different
voltages, −64.5,−54.7,−45.1,−35.3,−25.5,−17.7,−7.8,

2.2, 12.5, 22.3, and 31.6 mV, were sequentially applied to the
plate while the sphere remained grounded. With each applied
voltage the plate was moved towards the sphere starting at the
maximum separation of 2.3 μm and the frequency shift �ω(a)
was recorded at each 0.14 nm. To move the plate towards the
sphere, continuous triangular voltages at 0.01 Hz were applied
to the piezoelectric tube. The small mechanical drift in the
zpiezo was measured to be 0.003 nm/s and corrected using the
procedure described in Refs. 33 and 40. Measurement of the
frequency shift �ω(a) was repeated 3 times with each applied
voltage Vi . This resulted in 33 measurement sets.

To perform the electrostatic calibration, the measured
frequency shift with a step of 1 nm was found by interpolation.
Then, at every 1 nm, �ω was plotted as a function of the
applied voltage Vi and the value of V0 was identified as the
position of the parabola maximum.33,40 The obtained values
of V0 as a function of separation are plotted in Fig. 1 of
Ref. 49 over the separation region from 220 to 1000 nm. As
can be seen in this figure, V0 does not depend on separation,
indicating that the interacting regions of the surfaces are
clean or the adsorbed impurities are randomly distributed
with a submicrometer size scale and make only a negligible
contribution to the total force.40 The mean value of V0 was
found to be V0 = −17.7 ± 1 mV (here and below the errors
are indicated at a 67% confidence level if another value is not
stated explicitly).

Next, we determined the coefficient C and the separation
at the closest approach z0 by fitting the data for the parabola
curvature β to the theoretical expression in Eq. (11). A least
χ2 fitting procedure was used, which was repeated by keeping
the start points fixed at the closest separation z0, while the
end point zend measured from z0 was varied from 150 to
1190 nm. In Fig. 1(a) the obtained values of C are seen
to be almost independent on the end point, indicating the
absence of systematic errors from the calibration of zpiezo,
mechanical drift, and so on. The obtained mean value is
C = 52.4 ± 0.16 kHz m/N. In Fig. 1(b) the respective values
of z0 are presented as a function of zend. They are also
independent of zend in the limits of errors of the fitting
procedure. The mean value is z0 = 221.1 ± 0.4 nm. Then the
absolute separations a between the sphere and the plate are
obtained from Eq. (3). The error in the determination of the
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FIG. 1. (a) The coefficient C in Eq. (10) and (b) the closest sphere-
plate separation z0 as functions of the end point of the fit.

absolute separations, �a, is also equal to 0.4 nm because the
relative separations, zpiezo, are determined to a much higher
precision. We emphasize that our calibration parameters, in-
cluding absolute separations, are determined with significantly
smaller errors than is common for sharp tips. The reason is that
we use a large perfectly shaped sphere made from the liquid
phase instead of rough surfaces where geometry is not known
precisely. Another specific feature of our experiment is that the
theoretical electric force in the sphere-plate geometry is known
exactly and the electric potential can be determined to a high
precision.

We are now in a position to find the gradients of the
Casimir force F ′(a,T ) ≡ ∂F (a,T )/∂a from the measured
frequency shifts by using Eq. (10). They are again found at
each 0.14 nm and then interpolated in order to get 33 values of
the force gradient at each nanometer of the absolute separation
a (starting from 223 nm). We have checked the statistical
properties of the Casimir force gradient data obtained in this
way and made sure that they are characterized by a Gaussian
distribution (see Sec. VI for more details). In Fig. 2 we plot
as dots all 33 data points for F ′(a) with a step of 5 nm,
starting from the first integer separation of 223 nm, where our
measurements were performed. The solid line shows the mean
values of the measured gradients of the Casimir force found
from 33 measurements. In the inset the same information is
presented over a more narrow separation region which gives
the possibility to demonstrate all the data points with a step of
1 nm.

In this experiment the mean gradients of the Casimir
force are burdened by errors of two types, the random and
the systematic. The total experimental error is obtained as a
combination of these two, taking into account their distribution
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FIG. 2. All 33 data points for the gradient of the Casimir force
between Ni surfaces are shown as dots with a step of 5 nm starting
from a separation of 223 nm. The mean values of the measured
gradients are presented as the solid line. In the inset the same
information is given with a step of 1 nm over a more narrow region.

laws (see Refs. 9 and 10 for details). The random error
�rF ′(a) calculated from 33 repetitions at a 67% confidence
level using the Student distribution [the Student coefficient
t(1+0.67)/2(32) = 1] as a function of separation is shown by
the short-dashed line in Fig. 3. As can be seen in the
figure, �rF ′(a) does not depend on separation. The systematic
error is determined by the instrumental noise, including the
background noise level; by the errors in calibration; and by
the errors in the gradient of the subtracted electrostatic force.
Taking into account that all these errors are characterized by
Gaussian distributions, to obtain the total systematic error
�sF ′(a) they were combined in quadrature. The obtained
values of �sF ′(a) at a 67% confidence level, as a function
of separation, are shown in Fig. 3 by the long-dashed line.
The increase of �sF ′(a) at shorter separations is caused by
the errors in the subtracted electrostatic force. As can be
seen in Fig. 3, the systematic error is from a factor of 6
to a factor of 4 larger than the random error, as is typical
for precise experiments of metrological quality. The total
experimental error �tF ′(a) at a 67% confidence level is
obtained in quadrature from the random and systematic errors.
It is shown by the solid line in Fig. 3. One can see that the total
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0.2
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0.8

1

1.2

FIG. 3. (Color online) The random (�rF ′), systematic (�sF ′),
and total (�tF ′) errors in the measured gradient of the Casimir
force determined at a 67% confidence level are shown as functions
of separation by the short-dashed, long-dashed, and solid lines,
respectively.

experimental error at all separations is mostly determined by
the systematic error.

IV. CALCULATION OF THE CASIMIR INTERACTION
BETWEEN TWO Ni BODIES

Here we calculate the gradient of the Casimir force in
the experimental configuration of a Ni-coated sphere and a
Ni-coated plate. Given the thicknesses of Ni coatings (d1 =
250 ± 1 nm and d2 = 210 ± 1 nm on the plate and the sphere,
respectively), one can consider them as a solid Ni ball near
a Ni semispace.9 Using the PFA, the gradient of the Casimir
force is given by

F ′
PFA(a,T ) = 2πRF ′

pp(a,T ), (12)

where Fpp(a,T ) is the free energy of the Casimir interaction
per unit area of two parallel Ni semispaces spaced a nanome-
ters apart in thermal equilibrium at temperature T . According
to the Lifshitz theory,3,18 Fpp(a,T ) can be presented as the
sum from l = 0 to l = ∞ over the Matsubara frequencies ξl

(see Sec. I). Then the gradient of the Casimir force (12) takes
the form40,49

F ′
PFA(a,T ) = 2kBT R

∞∑
l=0

′ ∫ ∞

0
qlk⊥dk⊥

∑
α

r2
α

e2aql − r2
α

.

(13)

Here q2
l = k2

⊥ + ξ 2
l /c2, where k⊥ is the projection of

the wave vector on the plate, and the prime following the
summation sign multiplies the term with l = 0 by 1/2. The
index α takes the two values TM and TE, which denote
the transverse magnetic and transverse electric polarizations of
the electromagnetic field. The respective reflection coefficients
rα calculated along the imaginary frequency axis have the
following explicit form:

rTM ≡ rTM(iξl,k⊥) = ε(iξl)ql − kl

ε(iξl)ql + kl

,

rTE ≡ rTE(iξl,k⊥) = μ(iξl)ql − kl

μ(iξl)ql + kl

, (14)

kl =
[
k2
⊥ + ε(iξl)μ(iξl)

ξ 2
l

c2

]1/2

.

The main properties of the magnetic permeability μ of a
boundary material (Ni) calculated at the imaginary Matsubara
frequencies are discussed in Sec. I.

To apply Eqs. (13) and (14) for the calculation of the
Casimir interaction, one needs to have the values of ε(iξl)
up to sufficiently large values of l and μ(0) (see Sec. I). The
dielectric permittivity at the imaginary Matsubara frequencies
is obtained by means of the Kramers-Kronig relation from
Im ε(ω) = 2n1(ω)n2(ω), where n1(ω) and n2(ω) are the real
and imaginary parts of the complex index of refraction,
respectively, measured and tabulated over a wide frequency
region.54 An application of the Kramers-Kronig relation
requires, however, the optical data at much lower frequencies
than may become available in the foreseeable future. Because
of this, the problem of how to extrapolate the data for Im ε(ω)
to lower frequencies down to zero frequency arises. In Sec. I
two approaches to the resolution of this problem proposed in
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the literature are mentioned. According to the first approach,
which seems to be the most natural and straightforward from
a theoretical point of view, in any extrapolation the properties
of boundary materials should be described as precisely as
possible. Specifically, the relaxation properties of conduction
electrons at low frequencies should be taken into account by
means of the commonly accepted Drude dielectric function,

εD(ω) = 1 − ω2
p

ω[ω + iγ (T )]
, (15)

where ωp is the plasma frequency and γ (T ) is the relaxation
parameter. This approach is called the Drude model approach.
The theoretical predictions for the Casimir interaction obtained
in this way were excluded by several experiments with
metallic test bodies9,10,40,43–46,49 performed by the R. S. Decca
and U. Mohideen groups. At the same time, in two other
experiments55,56 by the S. K. Lamoreaux group, the Drude
model approach was claimed to be in agreement with the data.
This conclusion, however, has been questioned.57–60 Further-
more, several experiments performed by the E. A. Cornell and
U. Mohideen groups with dielectric materials turned out to be
in contradiction with theoretical predictions if the free charge
carriers are included in the Lifshitz theory.9,10,61–66 Moreover,
the inclusion of the relaxation properties of free charge carriers
or taking into account the free charge carriers for dielectrics
in the Lifshitz theory were found to violate the third law
of thermodynamics (the Nernst heat theorem).9,10,67,68 This,
however, happens at zero temperature and is not directly
relevant to any experimental work.

The second proposed approach suggested to extrapolate
the optical data for metals to zero frequency by means of the
plasma model εp(ω). The latter is obtained from Eq. (15)
by putting γ (T ) = 0, i.e., by disregarding the relaxation
properties of free charge carriers (note that for permittivities
having the second-order pole at zero frequency the Kramers-
Kronig relation is modified accordingly69). The plasma model
approach was found to be consistent with the measurement
data of the experiments with metallic test bodies.9,10,40,43–46,49

The Drude and the plasma model approaches are the subject
of continuing discussions in the literature.70–73 Below we
perform computations using both approaches on equal terms
and compare the obtained results between themselves and with
the measurement data.

We obtained the dielectric permittivity ε(iξl) from the
optical data54 for the complex index of refraction of Ni using
the Kramers-Kronig relation. The data were first extrapolated
to zero frequency by using either the Drude or the plasma
models. In so doing we have used the plasma frequency of
Ni ωp = 4.89 eV and the relaxation parameter at T = 300 K
γ = 0.0436 eV according to Refs. 54 and 74. Our Ni-coated
test bodies did not possess a spontaneous magnetization due
to sufficiently thick coatings and weak environment magnetic
fields. The magnetic properties of Ni were described by a
static magnetic permeability μ(0) = 110. For all Matsubara
frequencies with l � 1 at T = 300 K it holds that μ(iξl) = 1
because μ(iξ ) rapidly falls to unity with increasing ξ (see
Sec. I).

Equation (13) was obtained using the PFA and, thus, is
not exact. Recently, the gradient of the Casimir force in a

sphere-plate configuration was calculated exactly and the
corrections to the PFA result were found.75–78 According to
these papers, the exact force gradient between the sphere of
large radius and the plate is equal to

F ′(a,T ) = F ′
PFA(a,T )

[
1 + δPFA

corr (a,T ,R)
]

= F ′
PFA(a,T )

[
1 + θ (a,T )

a

R
+ o

(
a

R

)]
, (16)

where F ′
PFA is given in Eq. (13). In Ref. 77 the coefficient θ , as a

function of separation, was calculated for Au at both T = 0 and
T = 300 K using the Drude model approach. In the separation
region from 220 to 550 nm the obtained results at T =
300 K only slightly differ from those for ideal metal surfaces
considered at T = 300 K in the framework of thermal quantum
field theory. This demonstrates a very weak dependence of θ on
the plasma frequency ωp, relaxation parameter γ , and optical
data within this separation region. Because of this, one can
use the values of θ found in Ref. 77 for Ni as well. It was
also shown78 that at T = 0 the values of θ calculated using
the plasma model are sandwiched between those calculated
using the Drude model and for ideal metal surfaces. This
allows one to approximate the values of θ at T = 300 K in the
plasma model approach by those for ideal metals at the same
temperature. In Fig. 4 we present (upper and lower solid lines)
the correction to PFA δcorr at T = 300 K in percentages for the
Drude and plasma model approaches, respectively (note that
the correction of order a2/R2 ∼ 0.3 × 10−4 can be neglected).
As can be seen in Fig. 4, the error from using the PFA is
substantially smaller than a/R. The latter value for this error
was used previously.9,10,40,43–46,49,61,62,65,66 Thus, the analysis
of previous experiments was highly conservative.

One more correction factor which should be introduced
in Eq. (13) is due to the surface roughness. The root-mean-
square roughness on the sphere and the plate was investigated
by means of an AFM with a sharp tip and found to be
δs = 1.5 nm and δp = 1.4 nm, respectively. For so small
roughness at separations above 200 nm, one can use the
multiplicative approach.9,10 In the framework of this approach
the force gradient with account of surface roughness is

250 300 350 400 450 500 550

0.3

0.2

0.1

0

0.1

FIG. 4. (Color online) Corrections to the gradient of the Casimir
force due to deviations from the PFA (upper and lower solid
lines computed within the Drude and plasma model approaches,
respectively) and due to the surface roughness (dashed line) as
functions of separation.
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FIG. 5. (Color online) Theoretical predictions for the gradient of
the Casimir force between Ni surfaces computed using the Drude
and plasma model approaches (upper and lower lines, respectively),
including corrections to the PFA and due to surface roughness as
functions of separation.

given by9,10

F ′
R(a,T ) = F ′(a,T )

[
1 + δR

corr(a)
]
,

(17)

δR
corr(a) = 10

δ2
s + δ2

p

a2
+ 105

(
δ2
s + δ2

p

)2

a4
.

In Fig. 4 the correction due to surface roughness δR
corr in

a percentage is shown by the dashed line as a function of
separation. As can be seen in Fig. 4, the corrections due to
deviations from the PFA and due to surface roughness are of
opposite signs and give only minor contributions to the force
gradient.

Now we are in a position to calculate the gradient of the
Casimir force F ′(a,T ) between two Ni surfaces at T = 300 K
and accounting for all correction factors. Computations were
performed by Eqs. (13), (14), (16), and (17), using the Drude
[F ′

R,D(a,T )] and plasma [F ′
R,p(a,T )] model approaches. The

computational results are shown in Fig. 5 by the upper
and lower lines, respectively. We emphasize that for two
Ni test bodies F ′

R,D > F ′
R,p at all separations. This is quite

the reverse to the case of two Au test bodies and leads to
important consequences discussed in Sec. VII. To obtain an
understanding of the difference between the predictions of the
two approaches, in Fig. 6(a) we also plot the difference,

F ′
diff(a,T ) ≡ F ′

R,D(a,T ) − F ′
R,p(a,T ), (18)

at T = 300 K as a function of separation. In the same figure
the dashed line reproduces from Fig. 3 the total experimental
error in measurements of force gradients. As can be seen
in Fig. 6(a), F ′

diff is well above the total experimental error
determined at a 67% confidence level up to almost 450 nm.
However, with increasing separation distance, the magnitudes
of F ′

diff fall below the total experimental error. In Fig. 6(b)
we also plot as a function of separation the relative difference
(in percentages) between the predictions of two theoretical
approaches F ′

diff/F
′
R,p. It can be seen that the relative difference

250 300 350 400 450 500 550

1

2

3

4

5

250 300 350 400 450 500 550

2

4

6

8

10

(a)

(b)

FIG. 6. (a) The difference of gradients of the Casimir force
between Ni surfaces predicted within the Drude and plasma model
approaches as a function of separation is shown by the solid line
(the dashed line indicates the total experimental error determined
at a 67% confidence level). (b) The relative difference of force
gradients predicted within the Drude and plasma model approaches
as a function of separation.

for Ni test bodies increases with increasing separation and
achieves 10% at separations above 500 nm (see Sec. VII where
the cases of Ni and Au test bodies are compared).

V. CALCULATION OF MAGNETIC INTERACTION
IN THE EXPERIMENTAL SETUP

Before the measurement data could be compared with the
above computational results for the gradient of the Casimir
force using different theoretical approaches, due attention
should be focused on magnetic interactions. Note that in our
experiment both interacting surfaces are ferromagnetic films
and consist of many domains. Because of this, it is necessary
to calculate the maximum possible contribution of magnetic
forces into the measurement results. First, we calculate the
energy of magnetic interaction per unit area of two plane
parallel films. For this purpose the domain structure of the films
of sizes L(1)

x × L(1)
y and L(2)

x × L(2)
y is periodically continued

for infinite planes. Then, using the PFA, we calculate the
upper bound for the gradient of the magnetic force acting
between a sphere and a plate coated with magnetic films. Note
that PFA in the form of Eq. (12) is applicable not only to
Casimir forces but also, for instance, to the electric forces
which decrease with separation less rapidly.9 It was shown79

that a more general formulation of the PFA (the so-called
Derjaguin method80) is applicable even to volumetric forces
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which do not decrease with separation. In our case of magnetic
forces we have checked that the PFA in both formulations leads
to coincident results.

The magnetic field created by a magnetic body V1 at the
point (x2,y2,z2) is given by the expression15

H(x2,y2,z2) =
∫

V1

dx1dy1dz1
3(nr · M1)nr − M1

|r|3 . (19)

Here the integration is extended over the coordinates
(x1,y1,z1) of the body V1, the unit vector nr is given by

nr = r
|r| , (20)

the vector r is directed from the point (x1,y1,z1) to the point
(x2,y2,z2), and

|r| = [(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2]1/2. (21)

The magnetization distribution M1 ≡ M1(x1,y1,z1) of the
body V1 depends on a point. The energy of the magnetic
interaction between the bodies V1 and V2 is given by15

Em = −
∫

V2

dx2dy2dz2 M2(x2,y2,z2) · H(x2,y2,z2), (22)

where M2 ≡ M2(x2,y2,z2) is the magnetic distribution of the
second body.

The orientation of magnetization of separate domains in the
magnetic films depends on the film thicknesses. Thus, one can
obtain in-plane magnetization only in very thin films. With
increasing film thickness up to 150 nm and more, the easy
direction is out-of-plane perpendicular to it.81–83 Although in
our experiment the film thicknesses satisfy this condition, be-
low we calculate the upper bounds of the magnetic interaction
for both out-of-plane and in-plane magnetizations and show
that in both cases the gradient of magnetic force is negligibly
small. Note that any other alignment of domains (which cannot
occur in thin films but might be possible in thick magnetic
bodies) can be presented as a superposition of these two.
The results obtained below concerning the smallness of the
magnetic interaction are valid for films consisting of many
domains. The numerical estimations use the domain sizes, as
in our experiment. We start from the most realistic case of an
out-of-plane magnetization.

A. Out-of-plane magnetization

For magnetization perpendicular to the plane of first and
second films one has

M1,2 = (
0,0,M (1,2)

z

)
, M (1,2)

z ≡ M (1,2)
z (x1,2,y1,2), (23)

i.e., magnetizations do not vary with film surface distances.
We first assume that the magnetizations M (1,2)

z take the
values Ms and −Ms with equal probability (it is known
that81 Ms = 435 emu/cm3). Here it is assumed that the films
do not possess a spontaneous magnetization as predicted
by experimental conditions (the case of films possessing a
spontaneous magnetization is considered next). The magnetic
interaction between the two parallel films of finite area
consisting of randomly distributed domains can be calculated
using the formalism developed earlier84 to take into account
the impact of surface roughness to the Casimir force. For this

purpose we perform the periodic continuation of the functions
M (1,2)

z (x1,2,y1,2) as odd functions with periods 2L(1,2)
x and

2L(1,2)
y over the whole planes (x1,y1) and (x2,y2), respectively.

The obtained periodic functions can be expanded in the Fourier
series,

M (1,2)
z (x1,2,y1,2) =

∞∑
k,n=1

M
(1,2)
kn sin

kπx1,2

L
(1,2)
x

sin
nπy1,2

L
(1,2)
y

, (24)

where M
(1,2)
kn are the Fourier coefficients.

Now one can use the standard formalism of magnetic force
microscopy85,86 to calculate the magnetic energy (22) between
the two parallel films spaced at a separation a. We emphasize,
however, that when scanning a sharp tip above the boundary of
two neighboring domains in magnetic force microscopy, they
are usually modeled by a periodic structure.85,87 In this case the
quantities L(1,2)

x,y in Eq. (24) are replaced with the characteristic
sizes of the magnetic domains D(1,2)

x,y . For randomly distributed
domains, as in our case, the dominant contribution to the right-
hand side of Eq. (24) is given by the item numbered with
rather large indices k ≈ L(1,2)

x /D(1,2)
x and n ≈ L(1,2)

y /D(1,2)
y .

Thus, taking into account that the size of magnetic domains
is approximately equal to the film thickness, we obtain for
the domains on the first film D(1)

x ≈ D(1)
y ≈ d1 = 250 nm. In

a similar way, D(2)
x ≈ D(2)

y ≈ d2 = 210 nm. Then, using the
sizes of the first film L(1)

x = 0.9 cm and L(1)
y = 1.1 cm, we

arrive at k ≈ 3.6 × 104 and n ≈ 4.4 × 104. After calculations
using Eqs. (19)–(24), for the magnetic energy per unit area of
the first film one arrives at (see Appendix A for details)

Em(a)

L
(1)
x L

(1)
y

= 1

L
(1)
x L

(1)
y

∞∑
k,n=1

∞∑
k′,n′=1

M
(1)
kn M

(1)
k′n′Xkk′Ynn′

×
∫ a+d2

a

dz2[(z2 + d1)�kn(z2 + d1) − z2�kn(z2)].

(25)

Here the functions Xkk′ and Ynn′ are defined as

Xkk′ =
∫ L

(1)
x

0
dx sin

πkx

L
(1)
x

sin
πk′x

L
(2)
x

,

(26)

Ynn′ =
∫ L

(1)
y

0
dy sin

πny

L
(1)
y

sin
πn′y

L
(2)
y

,

and the function �kn(z) is defined by

�kn(z) = 2π

z
e−γknz, γkn = π

[(
k

L
(1)
x

)2

+
(

n

L
(1)
y

)2
]1/2

.

(27)

Using the PFA in Eq. (12), one can obtain the gradient of
the magnetic force acting between a sphere and a plate. For
this purpose we replace Fpp in Eq. (12) with Em/(L(1)

x L(1)
y )

defined in Eq. (25) and perform differentiation with respect to
a. The result is

F ′
m(a) = 4π2R

L
(1)
x L

(1)
y

∞∑
k,n=1

∞∑
k′,n′=1

M
(1)
kn M

(1)
k′n′e

−γkna

× (1 − e−γknd1 )(1 − e−γknd2 )Xkk′Ynn′ . (28)
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Note that the factors Xkk′ and Ynn′ do not average to zero
due to the finitness of L(1)

x , L(1)
y , and L(2)

x ≈ L(2)
y ∼ 2R, i.e.,

due to the boundary effects.
Now we estimate the gradient of the magnetic force (28)

by considering the dominant contribution to Eq. (28). As
discussed above, the dominant contribution is given by k ≈
L(1)

x /D(1)
x and k′ ≈ L(2)

x /D(2)
x and, hence, by

Xkk′ =
∫ L

(1)
x

0
dx sin

πx

D
(1)
x

sin
πx

D
(2)
x

= D(1)
x D(2)

x

2π

{
1

D
(2)
x − D

(1)
x

[
sin

πL(1)
x

D
(1)
x

cos
πL(1)

x

D
(2)
x

− cos
πL(1)

x

D
(1)
x

sin
πL(1)

x

D
(2)
x

]
− 1

D
(1)
x + D

(2)
x

[
sin

πL(1)
x

D
(1)
x

× cos
πL(1)

x

D
(2)
x

+ cos
πL(1)

x

D
(1)
x

sin
πL(1)

x

D
(2)
x

]}
. (29)

Taking into account that L(1)
x /D(1)

x is an integer number, one
obtains

|Xkk′ | � D(1)
x D(2)

x

2π

(
1

D
(1)
x − D

(2)
x

− 1

D
(1)
x + D

(2)
x

)

= D(1)
x

π
[(

D
(1)
x

D
(2)
x

)2
− 1

] ≈ D(1)
x

0.4π
� D(1)

x . (30)

In a similar way for n ≈ L(1)
y /D(1)

y , n′ ≈ L(2)
y /D(2)

y we get

|Ynn′ | � D(1)
y . (31)

Using Eqs. (30) and (31) we calculate the dominant
contribution to the gradient of magnetic force (28) at different
separations. Thus, at a = 223, 250, and 300 nm its magnitude
is equal to 1.4 × 10−3, 8.6 × 10−4, and 3.5 × 10−4 μN/m,
respectively. The gradient of the magnetic force further
decreases in magnitude with increasing separation. Numerical
computations using Eq. (28) show that at all separations the
total magnitude of the gradient of the magnetic forces due
to randomly distributed domains |F ′

m(a)| < 10−2 μN/m, i.e.,
much smaller than the total error in the dynamic measurements
of the Casimir interaction (see Sec. III).

The above calculations were performed under an assump-
tion that there is no spontaneous magnetization in our Ni
films. Now we include the case that there is some excess in
the magnetization of domains in one direction. This can be
described by adding a nonzero term M

(1,2)
00 on the right-hand

side of Eq. (24) for M (1,2)
z . The magnetic energy per unit area

of two parallel disks of L(1)
x /2 radii arising due to such term is

obtained as (see Appendix A for details)

Esm(a) = 4πM
(1)
00 M

(2)
00

∫ a+d2

a

dz2

×
⎡
⎣ z2√(

L
(1)
x

)2 + 4z2
2

− z2 + d1√(
L

(1)
x

)2 + 4(z2 + d1)2

⎤
⎦ .

(32)

Then the gradient of the magnetic force due to the
spontaneous magnetization is found by using the PFA in

Eq. (12) where we replace Fpp with Esm defined in Eq. (32).
The result is

F ′
sm(a) = 8π2RM

(1)
00 M

(2)
00

⎡
⎣ a + d2√(

L
(1)
x

)2 + 4(a + d2)2

− a√(
L

(1)
x

)2 + 4a2
− a + d1 + d2√(

L
(1)
x

)2 + 4(a + d1 + d2)2

+ a + d1√(
L

(1)
x

)2 + 4(a + d1)2

⎤
⎦ . (33)

We calculate the quantity (33) in an extreme case when the
magnetic moments of all domains are directed in one direction.
In this case, |M (1)

00 | = |M (2)
00 | = Ms . Then calculations using

Eq. (33) result in |F ′
sm| ≈ 2.6 × 10−5 μN/m at a = 223 nm

and even smaller values at larger separations. Such small
magnitudes for the gradient of the magnetic force due to
spontaneous magnetization are explained by the fact that in the
considered separation region this force depends on separation
only slightly. Thus, for out-of-plane magnetization of Ni films,
one can neglect any influence of the magnetic interaction when
measuring the gradient of the Casimir force.

B. In-plane magnetization

Now we consider the magnetic interaction between Ni-
coated surfaces of a plate and a sphere under the assumption
that separate domains are characterized by the in-plane
magnetization (as discussed above, this might happen for
sufficiently thin magnetic films).

For the in-plane magnetization, one can choose the coordi-
nate system in such a way that for the first film

M1 = (
M (1)

x ,0,0
)
, M (1)

x ≡ M (1)
x (x1,y1). (34)

We further assume that there is no spontaneous magneti-
zation so M (1)

x = ±Ms with equal probability. The in-plane
magnetization of the second film may make an angle α with
the x axis. Because of this

M2 = (
M (2)

x ,M (2)
y ,0

)
, (35)

where both components depend on the position and take
random values,

M (2)
x = ±Ms cos α, M (2)

y = ±Ms sin α. (36)

Similarly to Sec. V A, we extrapolate the quantities
M (1)

x (x1,y1) and M (2)
x,y(x2,y2) to the entire planes (x1,y1) and

(x2,y2) as odd functions with the periods 2L(1,2)
x and 2L(1,2)

y ,
respectively. The obtained periodic functions can be expanded
in the Fourier series

M (1)
x (x1,y1) =

∞∑
k,n=1

M̃
(1)
kn sin

kπx1

L
(1)
x

sin
nπy1

L
(1)
y

,

(37)

M (2)
x,y(x2,y2) =

∞∑
k,n=1

M̃
(2)
x,y;kn sin

kπx2

L
(2)
x

sin
nπy2

L
(2)
y

.

After calculations using Eqs. (19)–(22) and (34)–(37), one
obtains an expression for the magnetic energy per unit area of
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two parallel films (see Appendix B for details)

Em(a)

L
(1)
x L

(1)
y

= 2π

L
(1)
x L

(1)
y

∞∑
k,n=1

∞∑
k′,n′=1

M̃
(1)
kn

{
M̃

(2)
x;k′n′Xkk′Ynn′

×
∫ a+d2

a

dz2

[
− k2π2(

L
(1)
x

)2
γ 2

kn

e−γknz2 (1 − e−γknd1 )

− Ei(−γknz2) + Ei[−γkn(z2 + d1)]

]

+ M̃
(2)
y;k′n′X̃kk′ Ỹnn′

knπ2

L
(1)
x L

(1)
y γ 2

kn

× (1 − e−γknd1 )
∫ a+d2

a

dz2e
−γknz2

}
. (38)

Here the quantities Xkk′ and Ynn′ are defined in Eq. (26),
γkn is defined in Eq. (27), Ei(t) is the exponential integral, and

X̃kk′ =
∫ L

(1)
x

0
dx sin

πkx

L
(1)
x

cos
πk′x

L
(2)
x

,

(39)

Ỹnn′ =
∫ L

(1)
y

0
dy sin

πny

L
(1)
y

cos
πn′y

L
(2)
y

.

The gradient of the magnetic force between a sphere and a
plate is obtained from the PFA in Eq. (12) by replacing Fpp

with the magnetic energy per unit area defined in Eq. (38).
This leads us to the following result:

F ′
m(a) = 4π2R

L
(1)
x L

(1)
y

∞∑
k,n=1

∞∑
k′,n′=1

M̃
(1)
kn

{
M̃

(2)
x;k′n′Xkk′Ynn′

×
[

k2π2(
L

(1)
x

)2
γ 2

kn

e−γkna(1 − e−γknd1 )(1 − e−γknd2 )

+ Ei(−γkna) − Ei[−γkn(a + d2)]

− Ei[−γkn(a + d1)] + Ei[−γkn(a + d1 + d2)]

]

− M̃
(2)
y;k′n′X̃kk′ Ỹnn′

knπ2

L
(1)
x L

(1)
y γ 2

kn

e−γkna

× (1 − e−γknd1 )(1 − e−γknd2 )

}
. (40)

Similarly to the case of out-of-plane magnetization, the
quantity (40) differs from zero only due to the boundary effects.
The dominant contribution to Eq. (40) can be estimated using
Eqs. (30) and (31) and the same inequalities for X̃kk′ and
Ỹnn′ defined in Eq. (39). As a result, we obtain that at each
separation the largest magnitude of F ′

m is achieved at α =
0, i.e., for the parallel in-plane magnetizations. For example,
when separation increases from 223 to 400 nm the magnitude
of F ′

m decreases from 1.1 × 10−3 to 5.3 × 10−4 μN/m. Thus,
in the case of in-plane magnetization, the role of magnetic
interaction in dynamic measurements of the Casimir force is
even smaller than for the out-of-plane one.

Now we consider the case that there is a spontaneous
magnetization in our Ni films. This can be described by adding
nonzero constant terms M

(1)
00 and M

(2)
x,y;00 on the right-hand side

of Eq. (37). In the same way, as in Sec. V A, for the energy
of magnetic interaction per unit area of two parallel films we
obtain (see Appendix B for details)

Esm(a)

= 4M
(1)
00 M

(2)
x,00

∫ a+d2

a

dz2

⎡
⎣arctan

2z2√(
L

(1)
x

)2 + (
L

(1)
y

)2 + 4z2
2

− arctan
2(z2 + d1)√(

L
(1)
x

)2 + (
L

(1)
y

)2 + 4(z2 + d1)2

⎤
⎦ . (41)

Using the PFA in Eq. (12), the gradient of the magnetic
force due to spontaneous magnetization takes the form

F ′
sm(a) = 8πRM

(1)
00 M

(2)
x,00

×
⎡
⎣arctan

2(a + d2)√(
L

(1)
x

)2 + (
L

(1)
y

)2 + 4(a + d2)2

− arctan
2a√(

L
(1)
x

)2 + (
L

(1)
y

)2 + 4a2

+ arctan
2(a + d1)√(

L
(1)
x

)2 + (
L

(1)
y

)2 + 4(a + d1)2

− arctan
2(a + d1 + d2)√(

L
(1)
x

)2 + (
L

(1)
y

)2 + 4(a + d1 + d2)2

⎤
⎦ .

(42)

Assuming that all magnetic moments are directed in one di-
rection (the saturation magnetization), we obtain from Eq. (42)
that |F ′

sm| increases from 1.0 × 10−5 to 1.7 × 10−5 μN/m
when the separation increases from 223 to 550 nm. This is
a negligibly small effect in dynamic measurements of the
Casimir force.

VI. COMPARISON BETWEEN EXPERIMENT AND
THEORY FOR Ni TEST BODIES

We have now demonstrated that possible magnetic effect
due to the domain structure of Ni films used in our experiment
yields scarcely any contribution to the measured force gradi-
ents. Because of this the measurement results for the gradients
of the Casimir force presented in Sec. III can be reliably
compared with the predictions of the Lifshitz theory, taking
into account nonzero temperature, conductivity properties of
Ni, surface roughness, and inaccuracy of the PFA, as discussed
in Sec. IV.

In Ref. 49 we have used the traditional method of the
comparison between experiment and theory when the mea-
surement data are presented as crosses whose horizontal arms
are equal to 2�a and the vertical arms are equal to 2�tF ′(a).
Here we use another method of comparison9,10,44,53 based
on consideration of the confidence interval for the random
quantity F ′

R(ai) − F̄ ′(ai) equal to the difference between
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FIG. 7. (Color online) The errors in the theoretical gradient of
the Casimir force F ′

R(ai) due to inaccuracy of the optical data of Ni
(�optF ′

R), due to the errors in measured separations ai (�sepF ′
R), and

the total theoretical error (�tF ′
R) are shown as functions of separation

by the long-dashed, short-dashed, and solid lines, respectively.

theoretical and mean experimental force gradients at the
experimental separations ai . This method is advantageous
because it allows us to make quantitative conclusions not only
about the rejection of any theoretical approach but also about
the measure of agreement between experiment and theory as
well.

To calculate the confidence interval for the difference
between theoretical and mean experimental force gradients,
one needs to have the total errors of both quantities. The total
experimental error �tF ′ is already determined in Sec. III (see
Fig. 3). The crucial contribution to the theoretical error is
given by the errors in the optical data of Ni determined by
the number of significant figures in the tables.54 The errors
in the optical data lead to the theoretical error �optF ′

R equal
to approximately 0.5% of F ′

R (it is shown by the long-dashed
line in Fig. 7 as a function of separation). There is, however,
one more source of error88 when the theoretical value of the
force gradient is calculated not over some separation interval
but at the experimental separations ai . The point is that each
experimental separation is determined up to an error �a

and this leads to a respective error in the calculated force
gradients,88

�sepF ′
R(ai) ≈ 4

�a

ai

F ′
R(ai). (43)

In Fig. 7 the theoretical error �sepF ′
R as a function of

separation is shown by the short-dashed line. In the same
figure the solid line shows the total theoretical error �tF ′

R

determined at a 67% confidence level which was combined
in quadrature from the theoretical errors �optF ′

R and �sepF ′
R .

The total theoretical error varies from 0.99 to 0.03 μN/m
when the separation increases from 223 to 500 nm. As can be
seen from the comparison with Fig. 3, at all separations the
total experimental error is in excess of the total theoretical
error. As a result, the confidence interval for the quantity
F ′

R(ai) − F̄ ′(ai) determined at a 67% confidence level is given
by [−�0.67

F ′ (a),�0.67
F ′ (a)], where

�0.67
F ′ (a) = {[�tF ′(a)]2 + [�tF ′

R(a)]2}1/2. (44)

In Fig. 8(a) (solid lines) we show the quantities ±�0.67
F ′ (a)

as functions of separation. In doing so the confidence interval
at each fixed a is the vertical segment between −�0.67

F ′ (a) and
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FIG. 8. Differences between the theoretical and mean experi-
mental gradients of the Casimir force found at the experimental
separations using the plasma and the Drude model approaches are
shown by the black and gray dots, respectively. The solid lines indicate
the borders of the (a) 67% and (b) 95% confidence intervals.

�0.67
F ′ (a). It has the meaning that if the theory is consistent with

the data, then at least 67% data points within each separation
subinterval must belong to this confidence interval. To verify
which of the two theoretical approaches used in Sec. IV is
consistent with the data, in Figs. 8(a) and 8(b) we plot the
differences F ′

R(ai) − F̄ ′(ai) as black and gray dots, where the
plasma model and the Drude model approaches, respectively,
were used to compute the quantity F ′

R(ai) (see the lower and
upper lines in Fig. 5). As can be seen in Fig. 8(a), not only
67% but all black dots belong to the confidence intervals within
the entire separation region from 223 to 550 nm. This means
that the data are consistent with the Lifshitz theory combined
with the plasma model approach with a large safety margin.
As to the gray dots, most of them are outside the confidence
intervals over the separation region from 223 to 420 nm. Thus,
the Drude model approach to the Casimir force is excluded
by the data within this separation region at a 67% confidence
level.

As is seen in Fig. 8(a), even if the confidence intervals
were widened to reach a 95% confidence level, the differences
F ′

R,D(ai) − F̄ ′(ai) computed using the Drude model approach
would still remain outside those intervals within some range
of separations. To make this observation quantitative, we
calculate the half-width of the confidence interval �0.95

F ′ (a)
from the equation

�0.95
F ′ (a)

�0.67
F ′ (a)

= t(1+0.95)/2(32)

t(1+0.67)/2(32)
≈ 2. (45)
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FIG. 9. (Color online) Histogram for the measured gradient of the
Casimir force at the separation a = 250 nm (see text for details). The
theoretical predictions of the plasma and Drude model approaches
are shown by the black and gray vertical lines, respectively.

In Fig. 8(b) we plot the borders of the 95% confidence
intervals ±�0.95

F ′ (a) by the solid lines and reproduce the black
and gray dots from Fig. 8(a). As can be seen in Fig. 8(b),
most of the gray dots are still outside the widened confidence
intervals within the separation interval from 223 to 345 nm.
This allows one to conclude that at these separations the Drude
model approach is excluded by the data at a higher (95%)
confidence level.

To give a better understanding of the character of agreement
(disagreement) between the nonaveraged data and two theo-
retical approaches, in Fig. 9 we provide a histogram plotted
at a = 251 nm. Here f is the fraction of 33 data points
having F ′ in the bin shown by the respective vertical lines.
The data are consistent with the Gaussian distribution with the
standard deviation σF ′ = 0.92 μN/m and the mean gradient
F̄ ′ = 74.17 μN/m shown by the dashed line. The black and
gray vertical lines in Fig. 9 show the theoretical predictions
of the plasma model approach, F ′

R,p = 74.19 μN/m, and the
Drude model approach, F ′

R,D = 77.46 μN/m, respectively.
Note that in Ref. 49 there is a typo in the value of separation
(250 nm instead of 251 nm in the inset to Fig. 2). It is seen that
the plasma model approach is in a very good agreement with
the measurement result as

F ′
R,p − F̄ ′ = 0.02μN/m <

1

52
�tF ′. (46)

At the same time, the theoretical prediction of the Drude
model approach is excluded at high confidence as

F ′
R,D − F̄ ′ = 3.29μN/m > 3�tF ′. (47)

In the end of this section we emphasize that although
Figs. 8(a) and 8(b) allow the exclusion of the Drude model
approach in a quantitative way (at 67% and 95% confidence
levels within respective separation regions), they cannot be
considered as a confirmation of the plasma model approach
at either the 67% or 95% confidence level. The situation
here is just the opposite: The higher the confidence level at
which the Drude model is excluded [for example, 95% in
Fig. 8(b)], the easier it is for the plasma model approach
to accomodate all the points for the gradient differences
within the widened confidence interval. In fact, to obtain the
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FIG. 10. Differences between the theoretical and mean exper-
imental gradients of the Casimir force found at the experimental
separations using the plasma model approach are shown by the black
dots. The solid lines indicate the borders of the 10% confidence
intervals.

quantitative description for the measure of agreement between
some experimentally consistent theoretical approach and the
data one should make the confidence interval as narrow as
possible and determine the respective low confidence level at
which this approach is excluded by the data. Then one can
conclude that the theoretical approach under consideration
is confirmed by the data at a complementary to 100% high
confidence.

To illustrate the above, let us consider the confidence
interval [−�0.1

F ′ (a),�0.1
F ′ (a)] defined at a 10% confidence. This

can be found from the equality

�0.1
F ′ (a)

�0.67
F ′ (a)

= t(1+0.1)/2(32)

t(1+0.67)/2(32)
≈ 0.13. (48)

In Fig. 10 the borders of the 10% confidence intervals are
plotted as the two solid lines and the black dots show the same
differences F ′

R,p(ai) − F̄ ′(ai) as are shown by the black dots in
Fig. 8. As can be seen in Fig. 10, in spite of rather narrow 10%
confidence intervals, much more than 10% of all dots within
any separation subinterval belong to them. This means that the
plasma model approach is not excluded by the data even at
a 10% confidence level or, equivalently, that this approach is
confirmed by the data at a higher than 90% confidence level.

As mentioned in Secs. I and IV, it remains unclear why the
experimental data are in agreement with theory disregarding
really existing relaxation properties of conduction electrons
and exclude the theory taking these properties into account. In
the next section we compare the above experimental results for
two Ni films with respective measurements in configurations
containing one or two Au test bodies. We show that the unique
feature of two Ni test bodies shown in Fig. 5 (F ′

R,D > F ′
R,p)

leads to important conclusions with respect to the role of
possible background effects in measurements of the Casimir
force, such as patch potentials.89

VII. COMPARISON WITH EXPERIMENTS INVOLVING
NONMAGNETIC METALS

Here we compare the experimental results and the measure
of their agreement with theory for two Ni test bodies with the
results of previous measurements using the same setup. One
of them was performed40,90 with an Au-coated plate and an
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FIG. 11. Differences between the theoretical and mean exper-
imental gradients of the Casimir force found at the experimental
separations between a plate and a sphere both coated with Au using
the plasma and the Drude model approaches are shown by the black
and gray dots, respectively. The solid lines indicate the borders of the
(a) 67% and (b) 95% confidence intervals.

Au-coated sphere and the other33 with a Ni-coated plate and
an Au-coated sphere.

We begin from the experiment40,90 using an Au-coated plate
and an Au-coated sphere of R = 41.3 μm radius. First, we
present the results of this experiment in terms of the differences
between the theoretical force gradients computed using either
the Drude model or the plasma model approaches and mean
measured gradients of the Casimir force. These differences
are shown in Figs. 11(a) and 11(b) by the gray and black
dots, respectively. Note that in the framework of the Drude
model approach computations have been made 40,90 using the
tabulated optical data of Au 54 extrapolated to zero frequency
by the Drude model (15) with the parameters ωp = 9.0 eV and
γ = 0.035 eV. Recently it was shown91 that ε(iξl) obtained
in this way is in excellent agreement with the dielectric
permittivity obtained by means of the weighted Kramers-
Kronig relations from the tabulated optical data54 with no
extrapolation. Furthermore, ellipsometry measurements of the
optical properties of Au films were found92 in good agreement
with the results of Ref. 54. The alternative optical data for
Au contained in the literature, which can significantly deviate
from the tabulated data,54 were shown9,10 to lead to much
larger deviations between the predictions of the Drude model
approach and measurements of the Casimir force than the data
of Ref. 54.

The solid lines in Fig. 11 indicate the borders of the
confidence intervals determined at (a) a 67% confidence level

and (b) a 95% confidence level. They are found by using the
total experimental and theoretical errors in the experiment of
Refs. 40,90, as discussed in Sec. VI of the present paper.
As can be seen in Fig. 11, the plasma model approach is
consistent with the data over the entire separation region. As
for the Drude model approach, it is excluded by the data at a
67% confidence level over the separation region from 235 to
420 nm [see Fig. 11(a)] and at a 95% confidence level over the
separation region from 235 to 330 nm [see Fig. 11(b)].

From the comparison of Figs. 8 and 11 one can observe an
important difference between the cases of Ni-Ni and Au-Au
test bodies. Note that for Ni-Ni test bodies F ′

R,D − F̄ ′ > 0 (see
Fig. 8), i.e.., F ′

R,D > F ′
R,p, in contrast to the case of Au-Au test

bodies where F ′
R,D − F̄ ′ < 0 (see Fig. 11) and F ′

R,D < F ′
R,p.

This difference sheds light on the possible role and size of
electrostatic patches in measurements of the Casimir force. It
was hypothesized93 that an additional attractive force due to
the effect of large patches might bring the experimental data
for the two Au test bodies in agreement with the predictions
of the Drude model approach. From Fig. 11 it is seen that
the attractive force with a magnitude equal to the difference
between two sets of dots would really bring the gray dots in
agreement and the black dots in disagreement with the data. It
is not logical, however, to assume that the patch effect plays
this role for Au but does not play the same role for Ni. From
Fig. 8 it follows that any additional attractive force would
only increase the disagreement of the Drude model approach
with the data leading also to a disagreement of the plasma
model approach with the same data. This is in favor of the
statement that surface patches lead to only a negligibly small
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FIG. 12. (Color online) Difference of gradients of the Casimir
force calculated using the Drude and plasma model approaches and
normalized (a) for the respective sphere radii and (b) for the gradients
of the Casimir force calculated using the plasma model approach are
shown by the solid lines from top to bottom for experiments with
Ni-Ni, Ni-Au, and Au-Au test bodies, respectively.
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effect in measurements of the Casimir interaction by means
of AFM and micromachined oscillator,9,10,44 in qualitative
agreement to the model of patches proposed in Ref. 89. This
conclusion was recently confirmed94 by means of Kelvin probe
microscopy.

Futher confirmation for a negligibly small role of the effect
of electrostatic patches in measurements of the Casimir inter-
action by means of an AFM comes from the experiment33 with
a Ni-coated plate and an Au-coated sphere of R = 64.1 μm
radius. In this configuration the predictions of both theoretical
approaches to the Casimir force are almost coincident over
the experimental separations range. To see this in Fig. 12(a)
we show the quantity F ′

diff(a)/R [see Eq. (18)] by use of the
three solid lines from top to bottom for the experiments on
measuring the gradient of the Casimir force between Ni-Ni
(this work), Ni-Au (Ref. 33), and Au-Au test bodies,40,90

respectively (in each case the respective value of the sphere
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FIG. 13. (Color online) The measurement data for the mean
gradients of the Casimir force normalized by sphere radii with the
total experimental errors indicated as crosses and theoretical bands
computed using the plasma model approach are shown from top to
bottom for the experiments with Au-Au, Au-Ni, and Ni-Ni surfaces
over the separation region (a) from 220 to 320 nm and (b) from 320
to 400 nm.

radius is used to make the presented results comparable). To
gain a better understanding of distinctions between the two
theoretical approaches, in Fig. 12(b) we also show the quantity
F ′

diff(a)/F ′
R,p(a) in percentages for the three experiments in

the same succession as in Fig. 12(a). As is seen in Figs. 12(a)
and 12(b), for Ni-Au test bodies (the lines sandwiched between
the top and bottom ones) the quantity F ′

diff/R and F ′
diff/F

′
R,p

cannot be distinguished from zero in the limits of experimental
errors. However, for all three experiments, including that with
Ni-Au test bodies, the measurement results are consistent
with theoretical predictions using the plasma model approach.
This is seen in Figs. 13(a) and 13(b), where, to make the
results of the different experiments comparable, the quantity
F ′

R,p/R is shown by the solid dark bands and the crosses
represent measurement data with their total experimental
errors normalized by the radii (the bands having thicknesses
equal to twice the theoretical error are again plotted from
top to bottom for experiments with Au-Au, Ni-Au, and Ni-Ni

240 260 280 300 320

0.5

0.75

1

1.25

1.5

1.75

2

330 340 350 360 370 380 390 400

0.25

0.3

0.35

0.4

0.45

0.5

0.55

(a)

(b)

FIG. 14. The measurement data for mean gradients of the Casimir
force normalized by sphere radii with total experimental errors
indicated as crosses and the theoretical bands computed using the
Drude model approach are shown from top to bottom for the
experiments with Au-Au and Ni-Ni surfaces over the separation
region (a) from 220 to 320 nm and (b) from 320 to 400 nm.

155410-14



CASIMIR INTERACTION BETWEEN TWO MAGNETIC . . . PHYSICAL REVIEW B 88, 155410 (2013)

test bodies, respectively). Remembering that for Ni-Au test
bodies two alternative theoretical approaches lead to almost
coincident predictions, an introduction of some detectable
additional force originating, for instance, from patch potentials
would inevitably make both approaches inconsistent with the
experimental data.

In Fig. 14 we demonstrate that it is impossible to simultane-
ously reconcile the Drude model approach with the data of two
experiments using Au-Au and Ni-Ni test bodies at the expense
of any unaccounted hypothetical background effect leading to
either an attractive or repulsive force. In this figure the upper
and lower bands show the theoretical results obtained using
the Drude model approach for the quantity F ′

R,D/R for Au-Au
and Ni-Ni test bodies, respectively. As can be seen in Fig. 14,
there is an evident inconsistency between the data of both
experiments and theoretical predictions of the Drude model
approach. The important point is that to remedy the problem
one would need to introduce some hypothetical attractive force
for the experiment with Au-Au test bodies (the upper band
and set of crosses) and a hypothetical repulsive force for the
experiment with Ni-Ni test bodies (the lower band and set
of crosses). Thus, not only an electrostatic attraction due to
patch potentials but any unaccounted hypothetical interaction
preserving its sign (i.e., being either attractive or repulsive) is
incapable of reconciling the predictions of the Drude model
approach with the data. Keeping in mind that in Sec. V we
have carefully examined possible contributions of magnetic
interactions due to the domain structure of Ni films and
found it negligibly small, any alternative interpretation of our
measurement results faces severe difficulties.

VIII. CONCLUSIONS AND DISCUSSION

In the foregoing we have presented complete calibration and
measurement data of the experiment on measuring the gradient
of the Casimir force between a Ni-coated plate and a Ni-coated
sphere by means of dymanic AFM operated in the frequency
shift technique. This is the pioneering experiment which
measured the influence of magnetic properties of the boundary
metals on the Casimir interaction predicted theoretically more
than 40 years ago. Taking into account that the magnitudes of
the force gradients under consideration are about or less than
100 μN/m and the magnetic properties contribute up to 5%
of this quantity, it becomes clear that such experiments call
for extreme care to the vacuum system, surface preparation,
calibration procedures, background effects, error analysis, and
comparison between experiment and theory. In this paper
we have presented exhaustive information on all the above
subjects which has not been already elucidated in the papers
devoted to previous experiments using the same setup with
Au-Au and Au-Ni test bodies33,40,90 and with Ni-Ni test bodies
published only in letter form.49

After a brief description of some details of the setup which
were not described in the literature so far, we have presented
the results of the electrostatic calibrations which allow precise
determination of the calibration constant, closest absolute
separation, and residual potential difference. All the details
of error analysis, including the random, systematic errors and
their combination into the total error, were provided. Both
individual measured gradients of the Casimir force and their

mean values were presented. Computations of the gradients
of the Casimir force in the sphere-plane geometry were
performed using the Lifshitz theory at nonzero temperature,
taking into account the recently calculated correction terms to
the PFA and the surface roughness. The conductivity properties
of Ni were described in succession using the Drude and the
plasma model approaches to the Casimir force presented in
the literature and the obtained results were compared between
themselves and with the total experimental errors.

We have investigated possible magnetic interaction between
the test bodies in our experimental configuration arising due
to the domain structure of Ni films. Both cases, out-of-plane
and in-plane magnetizations, have been studied extensively
(the former has been only briefly considered with respect
to measurements of the Casimir force49 and the latter was
not previously investigated). Although extreme care has been
taken in order to avoid spontaneous magnetization of the Ni
films used, the case of the fully magnetized films was also
considered. It was shown that in all cases the contribution
of magnetic interaction to the measured force gradient is by
several orders of magnitude smaller than the total experimental
error. This allowed a reliable comparison of the measured
gradients of the Casimir force with theoretical predictions.

The comparison of the experimental results with theory
was based on a more rigorous method that differed from
that used in Refs. 33,40,49,90. This method is based on the
consideration of the random quantity equal to the difference
between theoretical and mean experimental force gradients.
Both 67% and 95% confidence intervals for this quantity
were found. The preference of the comparison method under
discussion is that it not only allows one to exclude some
theoretical approach as inconsistent with the data at a given
confidence level but also permits us to quantitatively determine
at what confidence level a theoretical approach is confirmed
by the data. On this basis we have concluded that the Drude
model approach to the Casimir force is excluded by our
measurements with two Ni surfaces at a 95% confidence
level, whereas the plasma model approach is confirmed by
the data at a confidence level higher than 90%. In this work we
have investigated in detail the striking property of the Casimir
interaction between two magnetic test bodies, i.e., that the
force gradients calculated using the Drude model approach are
significantly larger than the measured mean force gradients.
This is just the opposite of the case of two nonmagnetic (Au)
test bodies where the theoretical force gradients, calculated
using the Drude model approach, are significantly smaller
than the measured mean force gradients. By comparing the
measurement results of the three experiments with Au-Au,
Ni-Au, and Ni-Ni test bodies taking the above property into
account, we have arrived at the conclusion of major importance
that no hypothetical unaccounted background force (either
attractive or repulsive) could bring the measurement data into
agreement with theoretical predictions of the Drude model
approach (the attractive force arising due to electrostatic
patches is only one example of possible interactions). This
means that an exclusion of the Drude model approach by
the data assumes a greater significance which awaits for its
fundamental explanation.73

To conclude, we stress that the experiment, on measuring
the gradient of the Casimir force between two Ni surfaces, has
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brought confirmation to the prediction of the Lifshitz theory
that magnetic properties of boundary surfaces influence the
Casimir force. According to our measurement results, the
quantitative description of the Casimir interaction between
both magnetic and nonmagnetic metals is given by the plasma
model approach. At this point it is pertinent to note that
in the configuration of a ferromagnetic dielectric interacting
with a nonmagnetic metal described by the plasma model,
the Lifshitz theory predicts the Casimir repulsion through
a vacuum gap.24–26 This makes possible realization of the
Casimir repulsion on microscales in the near future for
subsequent applications to the problems of lubrication and
friction in nanodevices.
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APPENDIX A

In this Appendix we derive some mathematical results used
in Sec. V A to calculate the magnitude of magnetic interactions
in our experimental setup for out-of-plane magnetized Ni films.

From Eq. (19) we can find the z component of the magnetic
field created by the periodically extended first Ni film at the
points of the second Ni film,

Hz(x2,y2,z2) =
∫ ∞

−∞
dx1

∫ ∞

−∞
dy1

×
∫ 0

−d1

dz1

[
3(z2 − z1)2

|r|5 − 1

|r|3
]
M (1)

z (x1,y1),

(A1)

where the radius-vector r is defined in Eq. (21) and the
magnetization is specified in Eq. (23). Calculating the integral
with respect to z1 in Eq. (A1), we obtain

Hz(x2,y2,z2)

=
∫ ∞

−∞
dx1

∫ ∞

−∞
dy1

{
z2[

z2
2 + (x2 − x1)2 + (y2 − y1)2

]3/2

− z2 + d1

[(z2 + d1)2 + (x2 − x1)2 + (y2 − y1)2]3/2

}
×M (1)

z (x1,y1). (A2)

Now we assume that there is no spontaneous magnetization
and substitute the Fourier series (24) in Eq. (A2). After
introducing the new variables u = x1 − x2 and v = y1 − y2,
transforming the sinus functions and equating to zero the
integrals of odd functions, Eq. (A2) can be brought to the form

Hz(x2,y2,z2) =
∞∑

k,n=1

M
(1)
kn sin

kπx2

L
(1)
x

sin
nπy2

L
(1)
y

× [z2�kn(z2) − (z2 + d1)�kn(z2 + d1)].

(A3)

Here we have introduced the notation

�kn(z) =
∫ ∞

−∞
du

∫ ∞

−∞
dv

cos kπu

L
(1)
x

cos nπv

L
(1)
y

(u2 + v2 + z2)3/2
. (A4)

The double integral in Eq. (A4) can be evaluated explicitly.
For this purpose we set πk/L(1)

x = ak , πn/L(1)
y = bk and

calculate the derivative95

d�kn(z)

dbn

= −2
∫ ∞

−∞
du cos(aku)

∫ ∞

0
dv

v sin(bnv)

(u2 + z2 + v2)3/2

= −4bn

∫ ∞

−∞
du cos(aku)K0(bn

√
z2 + u2)

= −2π
bn

γkn

e−γknz, (A5)

where K0(t) = (πi/2)H (1)
0 (it) is the Bessel function of imag-

inary argument and γkn is defined in Eq. (27). Then, by the
integration of Eq. (A5) with respect to bn, one finds

�kn(z) = 2π

z
e−γknz + G(ak,z), (A6)

where G(ak,z) is the integration constant. The value of this
constant can be found by considering the quantity (A4) with
n = bn = 0,

�k0(z) = 4
∫ ∞

0
du cos(aku)

∫ ∞

0

dv

(u2 + z2 + v2)3/2

= 4
∫ ∞

0
du

cos(aku)

z2 + u2
= 2π

z
e−zak . (A7)

Comparing this with Eq. (A6), we can conclude that G(ak,z) =
0. Thus, from (A6) one arrives at the final expression (27) for
the function �kn(z).

The energy of magnetic interaction between parallel plates
can be now obtained from Eq. (22),

Em(a) = −
∫ L

(1)
x

0
dx2

∫ L
(1)
y

0
dy2

×
∫ a+d2

a

dz2M
(2)
z (x2,y2)Hz(x2,y2,z2). (A8)

Substituting here Eq. (24) for the magnetization of the second
film, Eq. (A3) for the magnetic field, and using notations (26),
one arrives at the expression in Eq. (25).

If the spontaneous magnetizaion is present, Eq. (A2) for
the respective magnetic field created by the first film should
be rewritten in the form

Hz(x2,y2,z2) = M
(1)
00

∫ L
(1)
x /2

−L
(1)
x /2

dx1

∫ L
(1)
y /2

−L
(1)
y /2

dy1

×
{

z2[
z2

2 + (x2 − x1)2 + (y2 − y1)2
]3/2

− z2 + d1

[(z2 + d1)2 + (x2 − x1)2 + (y2 − y1)2]3/2

}
.

(A9)

Now we take into account that the second film is situated
above the center of a large plate, i.e., x2 	 L(1)

x and y2 	
L(1)

y . Thus, with sufficient precision, one can put x2 ≈ y2 ≈ 0.
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Replacing the first film with a disk of L(1)
x /2 = 0.5 cm radius,

we obtain the following estimate:

Hz(z2) ≈ 4πM
(1)
00

⎡
⎣ z2 + d1√(

L
(1)
x

)2 + 4(z2 + d1)2

− z2√(
L

(1)
x

)2 + 4z2
2

⎤
⎦ . (A10)

Then, calculating the magnetic energy arising per unit film
area due to the spontaneous magnetization

Esm(a) = −M
(2)
00

∫ a+d2

a

dz2Hz(z2), (A11)

we arrive at Eq. (32).

APPENDIX B

Here we derive the mathematical expressions used in Sec. V
B to calculate the gradient of magnetic force for the case of
in-plane magnetization of Ni films.

We begin from the calculation of the x and y components of
the magnetic field created by the periodically continued first
Ni film at the points of parallel to it second Ni film. From
Eq. (19) for the in-plane magnetization one obtains

Hx(x2,y2,z2) =
∫ ∞

−∞
dx1

∫ ∞

−∞
dy1

∫ 0

−d1

dz1

×
[

3(x2 − x1)2

|r|5 − 1

|r|3
]
M (1)

x (x1,y1),

Hy(x2,y2,z2) =
∫ ∞

−∞
dx1

∫ ∞

−∞
dy1

∫ 0

−d1

dz1

× 3(x2 − x1)(y2 − y1)

|r|5 M (1)
x (x1,y1), (B1)

where the magnetization is presented in Eq. (37). Let us
calculate the component Hy first. For this purpose we use
the identity

3(x2 − x1)

|r|5

= − ∂

∂x2

1

[(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2]3/2
. (B2)

Substituting Eqs. (B2) and (37) in Eq. (B1) and using the
variables u and v introduced in Appendix A, we find

Hy(x2,y2,z2) = −
∞∑

k,n=1

M̃
(1)
kn

∂

∂x2

∫ ∞

−∞
du

∫ ∞

−∞
dv

∫ 0

−d1

dz1

× v sin[ak(u + x2)] sin[bn(v + y2)]

[u2 + v2 + (z2 − z1)2]3/2
, (B3)

where ak and bn are defined in Appendix A below Eq. (A4).
Now we transform the sinus functions, set the integrals of
odd functions equal to zero, and calculate the derivative with
respect to x2. The result is

Hy(x2,y2,z2) = −
∞∑

k,n=1

M̃
(1)
kn ak cos(akx2) cos(bny2)

∫ 0

−d1

dz1

×
∫ ∞

−∞
du

∫ ∞

−∞
dv

v cos(aku) sin(bnv)

[u2 + v2 + (z2 − z1)2]3/2
.

(B4)

Using the differentiation with respect to bn and the
notation (A4), Eq. (B4) can be identically presented in the
form

Hy(x2,y2,z2) =
∞∑

k,n=1

M̃
(1)
kn ak cos(akx2) cos(bny2)

×
∫ 0

−d1

dz1
∂

∂bn

�kn(z2 − z1). (B5)

Substituting here Eq. (A5), one obtains, after some trans-
formations,

Hy(x2,y2,z2) = −2π

∞∑
k,n=1

M̃
(1)
kn

akbn

γkn

cos(akx2) cos(bny2)

× e−γknz2

∫ 0

−d1

dz1e
γknz1 , (B6)

leading to the final expression,

Hy(x2,y2,z2) = −2π

∞∑
k,n=1

M̃
(1)
kn

akbn

γkn

e−γknz2 (1 − e−γknd1 )

× cos(akx2) cos(bny2). (B7)

In a similar way, the component Hx from Eq. (B1) can be
written in the form

Hx(x2,y2,z2) = −
∞∑

k,n=1

M̃
(1)
kn

∫ ∞

−∞
dx1

∫ ∞

−∞
dy1

∫ 0

−d1

dz1

{
(x2 − x1)

∂

∂x2

sin(akx1) sin(bny1)

[(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2]3/2

+ sin(akx1) sin(bny1)

[(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2]3/2

}
. (B8)

Then we again introduce the new variables u and v, set to zero the integrals of odd functions, calculate the derivative with
respect to x2, and introduce the derivative with respect to ak in order to use Eqs. (A4) and (A5). These allow the following
representation of Eq. (B8):

Hx(x2,y2,z2) = −2π

∞∑
k,n=1

M̃
(1)
kn sin(akx2) sin(bny2)

[
− a2

k

γkn

∫ 0

−d1

dz1e
−γkn(z2−z1) +

∫ 0

−d1

dz1

z2 − z1
e−γkn(z2−z1)

]
. (B9)
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After integration and identical transformations one finally obtains

Hx(x2,y2,z2) = 2π

∞∑
k,n=1

M̃
(1)
kn sin(akx2) sin(bny2)

{
a2

k

γ 2
kn

e−γknz2 (1 − e−γknd1 ) + Ei(−γknz2) − Ei[−γkn(z2 + d1)]

}
. (B10)

The magnetic energy between two parallel plates with in-plane magnetization is obtained from Eq. (22),

Em(a) = −
∫ L

(1)
x

0
dx2

∫ L
(1)
y

0
dy2

∫ a+d2

a

dz2
(
M (2)

x Hx + M (2)
y Hy

)
. (B11)

Substituting Eqs. (37), (B7), and (B10) into Eq. (B11), one arrives at Eq. (38).
In the end we consider the case when the spontaneous magnetization is not equal to zero. We can again assume that the second

film is situated above the center of the first and put x2 ≈ y2 ≈ 0. From symmetry considerations it also follows that Hy ≈ 0.
Then Eq. (19), written for the in-plane magnetization, leads to

Hx(z2) = M̃
(1)
00

∫ L
(1)
x /2

−L
(1)
x /2

dx1

∫ L
(1)
y /2

−L
(1)
y /2

dy1

∫ 0

−d1

dz1

{
3x2

1[
x2

1 + y2
1 + (z2 − z1)2

]5/2
− 1[

x2
1 + y2

1 + (z2 − z1)2
]3/2

}
. (B12)

Using the identity

3x2
1[

x2
1 + y2

1 + (z2 − z1)2
]5/2

= −x1
∂

∂x1

1[
x2

1 + y2
1 + (z2 − z1)2

]3/2 , (B13)

we calculate the integral with respect to x1 and obtain

Hx(z2) = 8M̃
(1)
00 L(1)

x

∫ L
(1)
y /2

−L
(1)
y /2

dy1

∫ 0

−d1

dz1
1[(

L
(1)
x

)2 + 4y2
1 + 4(z2 − z1)2

]3/2 . (B14)

Both integrations in Eq. (B14) can be easily performed with the result

Hx(z2) = 4M̃
(1)
00

⎡
⎣arctan

2(z2 + d1)√(
L

(1)
x

)2 + (
L

(1)
y

)2 + 4(z2 + d1)2
− arctan

2z2√(
L

(1)
x

)2 + (
L

(1)
y

)2 + 4z2
2

⎤
⎦ . (B15)

Substituting Eq. (B15) in the following expression for the magnetic energy per unit area due to the spontaneous magnetization,

Ems(a) = −M̃
(2)
x;00

∫ a+d2

a

dz2Hx(z2), (B16)

one arrives at Eq. (41).
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