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Quantum thermometry using the ac Stark shift within the Rabi model
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A quantum two-level system coupled to a harmonic oscillator represents a ubiquitous physical system. New
experiments in circuit QED and nanoelectromechanical systems (NEMS) achieve unprecedented coupling
strength at large detuning between qubit and oscillator, thus requiring a theoretical treatment beyond the
Jaynes-Cummings model. Here we present a new method for describing the qubit dynamics in this regime,
based on an oscillator correlation function expansion of a non-Markovian master equation in the polaron frame.
Our technique yields a new numerical method as well as a succinct approximate expression for the qubit dynamics.
These expressions are valid in the experimentally interesting regime of strong coupling at low temperature. We
obtain a new expression for the ac Stark shift and show that this enables practical and precise qubit thermometry
of an oscillator.
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I. INTRODUCTION

The qubit-oscillator model has gone by many names in
many fields, owing its tenacity to the breadth of its applica-
bility: It is the simplest nontrivial model of the interaction
between light and matter. At its inception it was used to
describe the interaction of an atom with a magnetic field,1 and it
was referred to thereafter as the Rabi model. In the subsequent
decades it has been extensively studied in quantum optics2 and
cavity QED.3 Physical chemists have used a “vibration-dimer”
model to study the spectra of molecules.4 Applying the
rotating wave approximation (RWA) to the Rabi model yields
the Jaynes-Cummings model (JCM),5 which is valid when
the detuning between the qubit transition frequency � and the
resonator frequency ω is negligible (� ≈ ω) and the coupling
between the qubit and oscillator is weak (g < ω).6 This is
an excellent approximation in the case of cavity QED where
typical coupling strengths are of order g/ω ≈ 10−6. The JCM
can be extended to incorporate tunneling and has provided an
adequate description of experiments for decades, but a new era
of experiments are pushing beyond its boundaries in terms of
both coupling and detuning. Circuit QED experiments couple
superconducting qubits to LC and waveguide resonators,
allowing coupling strengths up to g/ω ≈ 10−1, recently
enabling demonstrations of the breakdown of the JCM.7,8

Superconducting qubits coupled to nanomechanical resonators
(NR) generally have more modest coupling strengths,9,10 but
combined with large detuning they could also operate outside
the validity of the JCM.11

The Hamiltonian for the Rabi model can be decomposed
into three parts:

Ĥ = ĤQ + ĤO + ĤI . (1)

The qubit, atom, or two-level system is described by

ĤQ = ε

2
σz + �

2
σx, (2)

where σz and σx are the Pauli spin operators. They describe a
two-level system with an energy splitting ε and a spontaneous

tunneling between the states at a rate �. In isolation such
a system would undergo Rabi oscillations with a frequency
�r = √

ε2 + �2. The Hamiltonian of the oscillator is

ĤO = ωa†a, (3)

where ω is the frequency of the oscillator and a† and a are
its creation and annihilation operators, respectively. Note we
have neglected the zero-point energy. The Hamiltonian for the
interaction between the two is

ĤI = g(a + a†)σz, (4)

where g is the coupling strength between the qubit and
oscillator.

Recent experimental progress has sparked a renewed
theoretical interest in extending solutions of Eq. (1) beyond
the RWA. For instance, a change of basis prior to applying
the RWA leads to a generalized RWA that should be valid
outside the very weak coupling limit.12 However, this is
limited to the case of ε = 0. As an alternative approach, Van
Vleck perturbation theory13 has been used to investigate the
dynamics in the ultra strong (g/ω > 1) coupling regime.14,15

This approach contains the splitting and tunneling elements,
but it is perturbative in the latter and fails to recover the
JCM in the weak coupling limit. This approach is therefore
more applicable to circuit QED, rather than the more modest
couplings achieved in Cooper pair box (CPB) coupled to NR
systems.

An analytic expression for the eigenspectrum of the full
Rabi model was very recently found by Braak,16 a surprising
and significant result for such a long standing problem.
However, it is too early to tell how much this solution can
reveal about the physical properties and dynamics of the
system. In addition to solving the model, Braak proved that
it is nonintegrable; i.e., the time-dependence of important
properties cannot be found in closed form. There is therefore
still a need for approximate results governing areas of
particular experimental interest.
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II. METHOD

In order to simplify the expression and extend the validity
of the approximations that we will subsequently describe into
the strong coupling regime, we first perform a “polaron”
transformation.17,18 This unitary Hamiltonian transformation
(H ′ = esHe−s) is equivalent to dressing qubit excitations with
the vibrational modes to form quasiparticles called polarons.
With s = α/2(a† − a)σz and α/2 = g/ω, we obtain

H ′ = ε

2
σz + ωa†a + �

2
(D(α)|0〉〈1| + D(−α)|1〉〈0|), (5)

where D(ξ ) = exp(ξa† − ξ ∗a) is the displacement operator.
We have neglected a term proportional to the identity, which
does not influence the dynamics. The first two terms involve
the qubit and oscillator individually and so can be removed
by going to the interaction picture. We insert the resulting
Hamiltonian into the von Neumann equation and then derive
equations of motion for the qubit (see Appendix A and
Refs. 19 and 20):

d

dt
ρ00(t) = −i

�

2
[ρ10(t) − ρ01(t)], (6)

d

dt
ρ11(t) = i

�

2
[ρ10(t) − ρ01(t)], (7)

where ρ00(t) and ρ11(t) are the time-dependant population
elements of the qubit’s reduced density matrix. The coherences
are given by

ρ01(t) = i
�

2

∫ t

0
dt ′e−iετ [ρ00(t ′)C∗(τ ) − ρ11(t ′)C(τ )], (8)

ρ10(t) = −i
�

2

∫ t

0
dt ′eiετ [ρ00(t ′)C(τ ) − ρ11(t ′)C∗(τ )], (9)

where τ = t − t ′ and C(τ ) and C∗(τ ) are the correlation
function of the oscillator and its complex conjugate, respec-
tively. In deriving these equations, we have employed the Born
approximation, i.e., we have assumed that the vibrational mode
and the qubit states can be factored at all times.

Physically, this corresponds to an oscillator that thermalizes
on a timescale faster than that characteristic of the qubit
dynamics.

The equations of motion take the form of a system of
integrodifferential equations involving the bosonic correlation
function and its complex conjugate. Laplace transforming the
equations of motion yields a set of simultaneous equations that
can be solved algebraically:

R00(s) = sρ0 + (
�
2

)2
[C ′

+ + C ′′
−]

s2 + s
(

�
2

)2
[C ′− + C ′′− + C ′+ + C ′′+]

, (10)

R10(s) = −i
�

2

[
(C ′

− + C ′′
−)R00(s) − 1

s
C ′′

−

]
, (11)

where s is our Laplace space variable, R00(s) and R10(s) are
the Laplace transforms of ρ00(t) and ρ10(t), ρ0 is the initial
population of the ground state, and C ′

± = C ′(s ± iε) and C ′′
±

are the Laplace transforms of the correlation function and
its conjugate, respectively. It is sufficient to solve these two
equations alone because from their solutions the behavior of
the other density matrix elements can be trivially derived.

To obtain expressions for the dynamics of Eqs. (10) and (11)
in the time domain, we need to find the Laplace transform of
the bosonic correlation and its conjugate, solve, and then take
the inverse Laplace transform of the equations. The correlation
function is defined as

C(τ ) = 〈Dt (α)D†
t ′(α)〉 = TrB[ρBDt (α)D†

t ′(α)], (12)

which evaluates to (see Appendix B)

C(τ ) = e−|α|2{[1−cos (ωτ )] coth βω

2 +i sin (ωτ )}. (13)

Unfortunately, it is not straightforward to Laplace transform
this expression directly, so we employ the Jacobi-Anger series
expansion:

ez cos θ =
∞∑

n=−∞
In(z)einθ , (14)

where z is an arbitrary complex number and In(z) is the
modified Bessel function of order n and argument z. By
exploiting an angle addition identity we can rewrite Eq. (13)
as

C(τ ) = e−|α|2 coth ( βω

2 )ez cos (ωτ+x), (15)

where x = iβω/2 and z = 2|α|2√N (N + 1). Using Eq. (14),
this gives

C(τ ) = e−|α|2(2N+1)
∞∑

n=−∞
In(z)ein(ωτ+x), (16)

where N = (eβω − 1)−1 is the average oscillator occupation
number. In this form, the correlation function can be Laplace
transformed trivially. The physical interpretation of this series
expansion is that the nth term describes processes, which create
(n > 0) or annihilate (n < 0) n phonons in the oscillator.18 The
n = 0 term describes interactions with no net change in phonon
number; this is called the zero-phonon line. For experimentally
relevant parameters (i.e., low temperatures and moderate to
strong coupling), we would expect this n = 0 term to be the
most significant.21

Retaining only interactions that conserve the total phonon
number in the oscillator complements the underlying Born
approximation, which assumes the oscillator remains in
thermal equilibrium. Including only the dominant zeroth term
in the series allows Eqs. (10) and (11) to be inverse Laplace
transformed:

ρ00(t) = ρ0ε
2 + 1

2e−b�2I0(z)[(2ρ0 − 1) cos(t�) + 1]

�2
, (17)

ρ10(t)

= −e−b�(2ρ0 − 1)I0(z)[ε cos(t�) + i� sin(t�) − ε]

2�2
,

(18)

� =
√

�2e−bI0(z) + ε2, (19)

where b = |α|2(2N + 1). From Eq. (19) we can see that
the presence of the oscillator alters the tunneling rate by a
factor I0(z)e−b, essentially corresponding to a temperature-
dependent ac Stark shift on the qubit due to the presence of
the single oscillator mode.22,23 In contrast to previous work,
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our expression is not confined to the weak coupling or large
detuning limit, rather our results are valid in the experimentally
less restrictive regime of low temperature and strong coupling.
Nonetheless, our expression still takes a surprisingly simple
closed form.

III. RESULTS

Figure 1 shows a comparison of the dynamics predicted
using these expressions and a numerically exact approach. The
latter are obtained by imposing a truncation of the oscillator
Hilbert space at a point where the dynamics have converged
and any higher modes have an extremely low occupation
probability. Our zeroth-order approximation proves to be
unexpectedly powerful, giving accurate dynamics well into
the strong coupling regime (g/ω = 0.25) and even beyond
this it still captures the dominant oscillatory behavior; see
Fig. 1. Stronger coupling increases the numerical weight of
higher frequency terms in the series, causing a modulation
of the dynamics. The approximation starts to break down at
(g/ω = 0.5). Equations (17) and (18) are obviously unable to
capture the higher frequency modulations to the dynamics or
any potential long-time phenomena like collapse and revival,
but these are unlikely to be resolvable in experiments in any
case. Nonetheless, it is worth pointing out that even in this
strong coupling case, the base frequency of the qubit dynamics
is still adequately captured by our single-term approximation.

Our methodology can be used to predict dynamics of
nanomechanical resonators connected to either quantum dots
or superconducting qubits. The criterion for the single-term
approximation to be valid is readily met by current experiments
such as those presented in Refs. 9 and 10, and their parameters
yield near-perfect agreement between numerical and analytic
results. Most experiments operate in a regime where the

0 2 4 6 8 10 12 14 16 18 20

  (GHz)

g = 0.1 GHz

g = 0.25 GHz

g = 0.5 GHz

0

0.05

0.1

0.15

0.2

0.25

0

0.05

0.1

1090

0.05

0.1

1010

1

0.8

0.7

0.6

0.5

0.9

1

0.8

0.7

0.6

0.5

0.9

1

0.8

0.7

0.6

0.5

0.9

Time (ns) ν

FIG. 1. (Color online) Comparison of the single term
approximation (red, dashed) and a numerically exact approach (blue,
solid) for different coupling strengths. Uncoupled Rabi oscillations
are also shown as a reference (green, dotted). Left: the population
ρ00(t) in the time-domain. Right: the same data in the frequency
domain. The full numerical solution was Fourier transformed
using Matlab’s FFT algorithm. Other parameters are ω = 1 GHz,
ε = � = 100 MHz, and T = 10 mK.
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FIG. 2. (Color online) Main panel: comparison of dynamics
calculated from truncating Eq. (16) at NMAX = ±10 (red, dashed)
and a numerically exact approach (blue, solid). Lower left: Fourier
transform of the dynamics. Lower right: the numerical weight of the
nth term in the series expansion of Eq. (16), showing there are still
only two dominant frequencies at n = 0 and n = −1. Parameters:
ω = 0.5 GHz, g = 0.1 GHz, ε = 0, � = 0.5 GHz, T = 1 mK.

qubit dynamics are not greatly perturbed by the presence of
the oscillator, which has a much lower frequency (ε ≈ � ≈
10 GHz, ω = 1 GHz). In Fig. 1, we chose ε ≈ � ≈ 100 MHz,
because this better demonstrates the effect of the oscillator on
the qubit. These parameters can be achieved experimentally
using the same qubit design but with an oscillating voltage
applied to the CPB bias gate.11 However, we stress the accuracy
of our method is not restricted to this regime.

Including extra terms in the series expansion Eq.
(16) makes the time dependence of the qubit dynamics
analytically unwieldy, because the rational function form
of the series leads to a complex interdependence of the
positions of the poles in Eq. (10). However, if the values
of the parameters are known, the series can be truncated at
(±NMAX) to give an efficient numerical method to obtain
more accurate dynamics, extending the applicability of our
approach beyond low temperatures and moderate-to-strong
coupling. This is demonstrated in Fig. 2, where the
dynamics are clearly dominated by two frequencies – an
effect that could obviously never be captured by a single-term
approximation. There is a qualitative agreement between
the many terms expansion and full numerical solution,
particularly at short times. We would not expect a particularly
good agreement in this case because the simulations are of
the dynamics in the high tunneling regime (� = 0.5), and the
polaron transform makes the master equation perturbative in
this parameter. For large tunneling, the traditional numerical
approach of oscillator Hilbert space truncation would be more
suitable. However, for more moderate tunneling, the rapid
convergence of the series is shown in Fig. 2; NMAX = 5 − 10
is sufficient to calculate ρ00(t) and ρ10(t) with an accuracy only
limited by the underlying Born approximation. The asymmetry
of the amplitudes of the terms in the series expansion of Eq.
(16) is due to the exponential functions in the series.
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IV. QUANTUM THERMOMETRY

We now discuss the application of our model system
to the measurement of the temperature of an oscillator by
observing the coupled qubit. We picture a situation in which
the qubit oscillation frequency � is the measured quantity.
The tunneling, coupling strength, and energy splitting are
usually within the control of the experimentalist (or are at
least known constants), and this yields the possibility of using
the measured � to estimate the temperature. A related idea
was recently used in the calibration of a seminal resonator
experiment10 to verify that the oscillator was in its ground
state (a critical part of the work). In that case, the authors used
a comparison of numerical results for different occupation
numbers N with the measured population in the excited state of
the qubit after a certain interaction time. A theoretical study of
the same approach was preformed in Ref. 24, where the system
was described by the JCM without a tunneling term. They
also recently extended their more abstract quantum estimation
theory approach to other forms of coupling.25 In contrast, we
here propose a practical implementation that uses our simple
analytic expressions for the qubit dynamics, which are valid
beyond the weak coupling regime, to directly measure the
temperature and hence N of the oscillator, simply by observing
the effective qubit Rabi frequency �.

Figure 3 demonstrates this idea, showing that by measuring
� and fitting it to our Eq. (19), we can obtain submilli-Kelvin
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FIG. 3. (Color online) Demonstration of qubit thermometry: Tin

is the temperature supplied to the numerical simulation of the
system and Tout is the temperature that would be predicted by fitting
oscillations with frequency Eq. (19) to it. The inner blue line is the
data and outer red lines show the effect of a 10 kHz error in the
frequency measurement; the gray dashed line serves as a guide to
the eye. The lower inset shows the variation of the qubit frequency
� with temperature. The upper inset shows the dependence of the
absolute error in the prediction against the signal length (see text).
Other parameters: ω = 1 GHz, g = 0.01 GHz, ε = 0, � = 100 MHz.

precision in the experimentally relevant regime of 20–55 mK.
At low temperatures, the single-term frequency plateaus,
causing the accuracy to break down. In the higher temperature
limit, we also see a deviation from the diagonal, this is to
be expected, as we leave the regime where we safely assume
the accuracy of the approximation. Naturally accuracy in this
region could be improved by retaining higher order terms
in Eq. (16), but this would become a more numeric than
analytic approach. The upper inset shows the dependence
of the accuracy of the prediction on the number of points
(at a separation of 1 ns) sampled from the dynamics. The
accuracy increases initially as more points improve the fitted
value of �; however, after a certain length the accuracy is
diminished by long-term envelope effects in the dynamics not
captured by the single-term approximation. We note that the
corresponding analysis in the frequency domain would not
be equally affected by the long-time envelope; however, a
large number of points in the FFT is then required in order
to obtain the desired accuracy. The lower inset of Fig. 3
shows the direct dependence of � on the temperature. The
temperature range with steepest gradient and hence greatest
frequency dependence on temperature varies with the coupling
strength; thus, the device could be specifically designed to
have a maximal sensitivity in the temperature range of the
most interest.

V. CONCLUSION

In conclusion, we have developed and explored a new
approach to the Rabi model, which yields succinct expressions
for the qubit dynamics. In contrast to previous theoretical
approaches, our expressions are valid in the stronger coupling
regime that is rapidly gaining experimental relevance. We
have further proposed an application of our model enabling
precise temperature measurements of the oscillator mode. This
could be used either as part of the calibration of an oscillator
experiment or as a tuned, stand-alone device.
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APPENDIX A: DERIVATION OF THE EQUATIONS OF
MOTION

In this Appendix we give the explicit derivation of the
equations of motion [Eqs. (6)–(9)] and the bosonic correlation
function [Eq. (13)]. We note that parts of these derivations can
be found in similar form in the literature (cf. Refs. 18–20),
but we here give an alternate and full account in consistent
notation for the benefit of the reader.

First, we move into the interaction picture:

ρ̃00(t) = ρ00,ρ̃11(t) = ρ11, (A1)

ρ̃01(t) = ρ01e
iεtDt ,ρ̃10(t) = ρ10e

−iεtD
†
t , (A2)
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where Dt and D
†
t are the time-dependent versions of the

displacement operators introduced by the polaron transform:

H̃I (t) = �

2
[(ρ01(t) + ρ10(t)] . (A3)

Starting from the Von Neumann equation,

d

dt
ρ̃(t) = −i[H̃I (t),ρ̃(t)], (A4)

we have

ρ̃(t) = ρ0 − i

∫ t

0
dt ′[H̃I (t ′),ρ̃(t ′)]. (A5)

To study the dynamics we need the time-dependent expec-
tation values of the density matrix elements. These are given
by

〈O〉t = Tr[ρ(t)O] = Tr[ρ̃(t)Õt ]. (A6)

Substituting in Eq. (A5),

〈O〉t − 〈O〉0 = −i

∫ t

0
dt ′Tr[[H̃I (t ′),ρ̃(t ′)]Õt ]. (A7)

Exploiting the cyclic property of traces,

〈O〉t − 〈O〉0 = −i

∫ t

0
dt ′Tr{ρ̃(t ′)[Õt ,H̃I (t ′)]}. (A8)

Substituting O for the relevant operator, e.g., ρ̃00(t),
evaluating the commutator, and tracing over the qubit degrees
of freedom yields

〈ρ00(t)〉 − 〈ρ00(0)〉 = −i
�

2

∫ t

0
dt ′(〈ρ10(t ′)〉 − 〈ρ01(t ′)〉),

(A9)

〈ρ11(t)〉 − 〈ρ11(0)〉 = i
�

2

∫ t

0
dt ′(〈ρ10(t ′)〉 − 〈ρ01(t ′)〉),

(A10)

〈ρ01(t)〉 − 〈ρ01(0)〉 = −i
�

2

∫ t

0
dt ′eiε(t−t ′)(〈ρ00(t ′)DtD

†
t ′ 〉

− 〈ρ11(t ′)D†
t ′Dt 〉), (A11)

〈ρ10(t)〉 − 〈ρ10(0)〉 = i
�

2

∫ t

0
dt ′e−iε(t−t ′)(〈ρ00(t ′)Dt ′D

†
t 〉

− 〈ρ11(t ′)D†
t Dt ′ 〉). (A12)

At this point we make the Born approximation (assuming
the density matrix of system and bath are factorable)

〈ρ00(t ′)Dt (α)Dt ′(α)〉t ′ ≈ 〈ρ00(t ′)〉〈Dt (α)Dt ′(α)〉. (A13)

The bosonic correlation function is defined as C(t − t ′):

C(t − t ′) = 〈Dt (α)D†
t ′(α)〉 = TrB[ρBDt (α)D†

t ′(α)], (A14)

where the subscript B represents the bosonic degrees of
freedom. We substitute this into Eq. (A9) and by assuming
there is no initial coherence in the system, we obtain
Eqs. (6)–(9).

APPENDIX B: BOSONIC CORRELATION FUNCTION

The bosonic correlation function Eq. (12) for an oscillator
with a single mode in a thermal state is defined as

C(t − t ′) = TrB[ρBDt (α)D†
t ′(α)], (B1)

ρB = exp(−βωa†a)

TrB[exp(−βωa†a)
= 1

Z
exp(−βωa†a). (B2)

This can be evaluated in different ways, one of which is
presented below. Starting from the time-dependence of the
displacement operator in the interaction picture,

Dt (ξ ) = eiH0tD(ξ )e−iH0t = eiωa†atD(ξ )e−iωa†at , (B3)

or, alternatively, through the time-dependence of creation and
annihilation operators,

Dt (ξ ) = eξa†eiωt−ξ∗ae−iωt = D(ξeiωt ). (B4)

In order to perform the trace TrB in the number state basis,
we need to know the action of eξa†a and D(ξ ) on a number
state |n〉. The first simply evaluates to eξn and the latter gives
the so-called displaced number state |ξ,n〉.

The displaced number state can be expanded in the number
state basis

|ξ,n〉 =
∞∑

m=0

Cnm|m〉, Cnm = 〈m|D(ξ )|n〉, (B5)

with (see, e.g., Ref. 26 or 27)

Cnm =
√

n!

m!
e− 1

2 |ξ |2ξm−nLm−n
n (|ξ |2), (B6)

where Lm−n
n (|ξ |2) is an associated Laguerre polynomial. This

is only valid for m > n, but for m < n the displacement
operator, or rather its hermitian conjugate, can be made to
act on 〈m| instead of on |n〉.

We use Eq. (B4) for the displacement operator and the
property D(x)D(y) = e

1
2 (xy∗−yx∗)D(x+y) to evaluate Eq. (B2).

This leads to a series of the following form:

C(t − t ′) = 1

Z
e−|α|2[1−e−iω(t−t ′ )]

×
∞∑

n=0

e−βωnLn(2|α|2{1 − cos[ω(t − t ′)]}).

(B7)

By virtue of the property
∑∞

n=0 Ln(y)zn = (1 − z)−1e(yz/(z−1))

and with N = (eβω − 1)−1 and Z = (1 − e−βω)−1, we finally
arrive at the analytical result:

C(t − t ′) = e−i|α|2 sin[ω(t−t ′)]e−2|α|2{1−cos[ω(t−t ′)]}(N+1/2). (B8)

Note that this expression agrees with Mahan’s re-
sult for a single mode (Ref. 18, Sec. 4.3) C(t) =
e−|α|2[(1−cos ωt) coth( βω

2 )+i sin ωt]. Mahan derives this in a similar
fashion but without using Eqs. (B5) and (B6). Instead, he uses
the “Feynman disentanglement of operators” to arrive at an
equivalent infinite series of Laguerre polynomials.

155409-5



HIGGINS, LOVETT, AND GAUGER PHYSICAL REVIEW B 88, 155409 (2013)

*kieran.higgins@materials.ox.ac.uk
†erik.gauger@materials.ox.ac.uk
1I. I. Rabi, Phys. Rev. 49, 324 (1936).
2B. W. Shore and P. L. Knight, J. Mod. Opt. 40, 1195 (1993).
3J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73,
565 (2001).

4R. L. Fulton and M. Gouterman, J. Chem. Phys. 35, 1059 (1961).
5E. Jaynes and F. Cummings, Proc. IEEE 51, 89 (1963).
6P. Kok and B. W. Lovett, Optical Quantum Information Processing
(Cambridge University Press, Cambridge, 2010).

7T. Niemczyk et al., Nat. Phys. 6, 772 (2010).
8P. Forn-Dı́az, J. Lisenfeld, D. Marcos, J. J. Garcı́a-Ripoll, E. Solano,
C. J. P. M. Harmans, and J. E. Mooij, Phys. Rev. Lett. 105, 237001
(2010).

9M. D. LaHaye, J. Suh, P. M. Echternach, K. C. Schwab, and M. L.
Roukes, Nature (London) 459, 960 (2009).

10A. D. O’Connell et al., Nature (London) 464, 697 (2010).
11E. K. Irish, J. Gea-Banacloche, I. Martin, and K. C. Schwab, Phys.

Rev. B 72, 195410 (2005).
12E. K. Irish, Phys. Rev. Lett. 99, 173601 (2007).
13J. H. Van Vleck, Phys. Rev. 33, 467 (1929).

14J. Hausinger and M. Grifoni, Phys. Rev. A 82, 062320 (2010).
15J. Hausinger and M. Grifoni, Phys. Rev. A 83, 030301 (2011).
16D. Braak, Phys. Rev. Lett. 107, 100401 (2011).
17M. Wagner, Unitary Transforms in Solid State Physics, 1st ed.

(North-Holland, Amsterdam, 1986).
18G. D. Mahan, Many Particle Physics: Physics of Solids and Liquids,

3rd ed. (Springer, Berlin, 2000).
19T. Brandes and N. Lambert, Phys. Rev. B 67, 125323 (2003).
20T. Brandes, Phys. Rep. 408, 315 (2005).
21I. I. Abram and R. Silbey, J. Chem. Phys. 63, 2317 (1975).
22E. K. Irish and K. Schwab, Phys. Rev. B 68, 155311 (2003).
23D. I. Schuster, A. Wallraff, A. Blais, L. Frunzio, R.-S. Huang,

J. Majer, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. Lett. 94,
123602 (2005).

24M. Brunelli, S. Olivares, and M. G. A. Paris (2011),
arXiv:1103.2875.

25M. Brunelli, S. Olivares, M. Paternostro, and M. G. A. Paris (2012),
arXiv:1205.3465.

26G. C. de Oliveira, A. R. de Almeida, I. P. de Queiros, A. M. Moraes,
and C. M. A. Dantas, Physica A 351, 251 (2005).

27M. D. Crisp, Phys. Rev. A 46, 4138 (1992).

155409-6

http://dx.doi.org/10.1103/PhysRev.49.324
http://dx.doi.org/10.1080/09500349314551321
http://dx.doi.org/10.1103/RevModPhys.73.565
http://dx.doi.org/10.1103/RevModPhys.73.565
http://dx.doi.org/10.1063/1.1701181
http://dx.doi.org/10.1109/PROC.1963.1664
http://dx.doi.org/10.1038/nphys1730
http://dx.doi.org/10.1103/PhysRevLett.105.237001
http://dx.doi.org/10.1103/PhysRevLett.105.237001
http://dx.doi.org/10.1038/nature08093
http://dx.doi.org/10.1038/nature08967
http://dx.doi.org/10.1103/PhysRevB.72.195410
http://dx.doi.org/10.1103/PhysRevB.72.195410
http://dx.doi.org/10.1103/PhysRevLett.99.173601
http://dx.doi.org/10.1103/PhysRev.33.467
http://dx.doi.org/10.1103/PhysRevA.82.062320
http://dx.doi.org/10.1103/PhysRevA.83.030301
http://dx.doi.org/10.1103/PhysRevLett.107.100401
http://dx.doi.org/10.1103/PhysRevB.67.125323
http://dx.doi.org/10.1016/j.physrep.2004.12.002
http://dx.doi.org/10.1063/1.431683
http://dx.doi.org/10.1103/PhysRevB.68.155311
http://dx.doi.org/10.1103/PhysRevLett.94.123602
http://dx.doi.org/10.1103/PhysRevLett.94.123602
http://arXiv.org/abs/1103.2875
http://arXiv.org/abs/1205.3465
http://dx.doi.org/10.1016/j.physa.2004.11.066
http://dx.doi.org/10.1103/PhysRevA.46.4138



