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Universal conductance statistics in a backscattering model: Solving the
Dorokhov-Mello-Pereyra-Kumar equation with β = 1, 2, and 4
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It is shown that universal transport statistics in the ensembles of scattering matrices with the symmetry index
β ∈ {1,2,4} can be found from a simple microscopic model. A stochastic Riccati equation for the reflection matrix
in this model is mapped exactly to the Dorokhov-Mello-Pereyra-Kumar equation for all βs. The map is used to
obtain transport statistics in a quasi-one-dimensional disordered conductor in a wide range of its parameters from
ballistic to localizations regime. The conductance statistics, shot noise suppression, and transmission channel
density are calculated and compared with available analytical results. Deviation from the universal statistics is
also discussed.
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I. INTRODUCTION

Quantum transport in mesoscopic disordered conductors
has been intensively studied both theoretically and experi-
mentally over decades. The mesoscopic regime is defined
by the condition that the inelastic scattering length exceeds
the system size so that electrons move coherently across the
entire sample. A remarkable feature of such phase coherent
conductors is universality in their transport characteristics.
The most well known example is the universal conductance
fluctuations (UCF) which are only weakly dependent on the
sample geometry and independent on the sample size or the
mean free path. The UCF was initially discovered theoretically
in the framework of the diagrammatic perturbation theory.1,2

A more fundamental explanation was proposed in terms of
the repulsion of the transmission eigenvalues determined by
statistical properties of an ensemble of random transmission
matrices.3,4 In this approach one considers a system with N

conducting channels and calculates the N × N transmission
matrix t based on the flux conservation and symmetry of
the system with respect to time reversal. The ensemble is
characterized by the symmetry index β = 1,2, or 4 which
counts the number of degrees of freedom in the matrix elements
and corresponds to unitary symmetric (β = 1), unitary (β =
2), or unitary self-dual (β = 4) scattering matrix. All the
physical characteristics can be evaluated once the eigenvalues
T1,T2, . . . ,TN of the product t t† are known. For example, the
conductance (in units of G0 = 2e2/h) is given by transmission
coefficient g = Tr(t t†) =∑N

n=1 Tn. A particularly attractive
feature of the random matrix theory (RMT) is its generality.
It allows one to go beyond the perturbation approach and
obtain a unified description of both the diffusion and the
localization regimes. In the former case, the RMT predicts
the variance of the conductance fluctuations var(g) = 2/155

for a quasi-one-dimensional conductor with time-reversal
and spin-rotation symmetries. If time-reversal (spin-rotation)
symmetry is broken, var(g) is reduced by a factor of 2 (4).6,7

Further interest in the quasi-one-dimensional quantum
transport has been stimulated by recent progress in nanofab-
rication technology and development of new one-dimensional
nanomaterials such as carbon nanotubes or semiconductor
nanowires (NW),8–15 which have been considered as promising

building blocks for future nanoelectronics and integrated
circuits. One of the key issues for these practical applications
in sample-to-sample variability caused by structural disorder
at the wire interface and atomic scale variation in the dopant
distribution.16 A number of theoretical works have been
performed to study quantum transport in these systems.17–24

Different microscopic simulation models display many similar
features, suggesting that the atomistic details of a disordered
NW are likely to be smeared out to some extend. For example,
the DFT simulations24 in doped SiNWs have shown that
the conductance fluctuations at different dopant concentration
can be characterized by a single length parameter and their
amplitude is close to the universal value. Similar behavior has
been observed in transport simulations using the effective mass
approximation17 and the tight binding model with bulk20,21

and surface19 disorder. Yet in many cases the conductance
fluctuations in short NMs display strong dependence on the
Fermi energy and the length of the wire which disagrees with
the RMT predictions in the universal regime.17 Apart from
theoretical interest a detailed understanding of this statistical
behavior can support the experimental research and help in
addressing the practical issues related to the development of
electron devices with ultrashort channels.25

Standard description of quantum transport in a N -channels
quasi-one-dimensional system is based on the well known
Dorokhov-Mello-Pereyra-Kumar (DMPK) equation7,26,27

∂P

∂L
= 2

ξ

N∑
i=1

∂

∂λi

λi(1 + λi)J
∂

∂λi

P

J
(1)

for the probability distribution P (λ,L) as a function of length
L of the disordered region. The variables λ1,λ2, . . . λN are
defined by λn = 1−Tn

Tn
in terms of the transmission eigenvalues

Tn and J = �i<j |λi − λj |β is the coupling factor which is the
Jacobian from the space of scattering matrices to the space of
transmission eigenvalues.

A large body of work has been devoted to studying the
DMPK equation and the present understanding of the transport
statistics in quasi-one-dimensional regime is rather advanced.
The DMPK equation for the unitary symmetry class (β
= 2) has been solved exactly by means of a Sutherland

155406-11098-0121/2013/88(15)/155406(12) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.155406


GENNADY MIL’NIKOV AND NOBUYA MORI PHYSICAL REVIEW B 88, 155406 (2013)

transformation.28 The exact probability distribution can be
expressed in terms of appropriate biorthogonal functions
which makes it possible to calculate analytically the average
conductance 〈g〉 and its variance var(g)29 as well as the
conductance length correlation function30 for any length and
number of channels. The transport statistics in the diffusion
and localization regimes is well known for all symmetry cases
(see, e.g., Ref. 31 and references therein). In the localization
regime L � ξ , the system is characterized by a uniform
distribution of the Lyapunov exponents.7 In the diffusion
regime ξ/N � L � ξ , a perturbation expansion can be used
to evaluate the universal conductance fluctuations and weak
localization corrections.5,7,32 Asymptotic analytical form of
P (λ,L) for arbitrary N has been found in Ref. 33 for both
regimes. The conductance probability distribution at small N

can also be calculated by a Monte Carlo technique.34

In the large-N limit, the DMPK equation has been shown to
become identical to the supersymmetric theoretical approach
which leads to the nonlinear σ model.35,36 Development of
the super-Fourier analysis on the matrix space of the σ

model allows the average conductance and its variance to be
calculated exactly for all symmetry classes in the large-N
limit.37,38 The first calculations have revealed an unexpected
result that the conductance in the case β = 4 remains finite
at L → ∞ which disagrees with the DMPK theory. Later, the
absence of localization in the σ model has been shown to
be incorrect and modified expressions for β = 4 have been
presented.36

In spite of this progress, a complete solution in all symmetry
cases and/or boundary conditions is missing and the transport
statistics in some practically interesting regimes is still not
fully understood. We have shown recently that the DMPK
equation in a spinless system with time-reversal symmetry
(β = 1) can be solved very easily by mapping to an ordinary
Riccati-type differential equation.39 Such a random evolution
approach allows any desired transport statistics to be calculated
in a wide range of parameters from the ballistic to localization
regime. A Riccati equation can be generally associated with
the reflection matrix in a certain scattering problem.41 In this
paper, we present a backscattering model which leads to the
Riccati equation for the random evolution and thus provides
the simplest underlying Hamiltonian for the DMPK equation.
The random scattering term in this Hamiltonian can be adjusted
to the time-reversal and spin-rotational symmetries which
enables one to extend the random evolution approach to all
symmetry cases.

A number of stochastic microscopic models for the DMPK
equation has been formulated previously. Dorokhov in his
pioneering work introduced a model of N coupled one-
dimensional chains with randomly distributed scatterers and
derived a Fokker-Planck equation for the marginal distribution
of the transmission eigenvalues.26 Similar models were also
studied by other techniques.40 The tridiagonal block Hamil-
tonian of the nonlinear σ model with independent Gaussian
random matrices provides another example of a microscopic
description. The models becomes physically equivalent in
the limit of weak scattering, where the evolution of the
transmission amplitudes is separated from the fast phase
oscillations and the transport statistics can be described by
the DMPK equation. By contrast, the equivalence between

the present model and the DMPK equation is mathematically
exact, which makes it possible to develop the random evolution
approach to solving the DMPK equation for all β,N,L and
arbitrary initial conditions.

In the next section, we obtain the Riccati equation for the
reflection matrix and discuss the symmetry limitations in the
backscattering model. In Sec. III we show that the Fokker-
Planck equation for the probability distribution in this model
is equivalent to the DMPK equation with the corresponding
symmetry index. The random evolution approach is presented
in Sec. IV and then used to calculate various statistical
characteristics: average conductance and its variance, shot-
noise power, transmission channel density, and conductance
probability distribution. The obtained statistics for different
βs is compared with available analytical results. Nonuniversal
transport statistics in the backscattering model is also discussed
in this section. Conclusions are presented in Sec. V.

II. BACKSCATTERING MODEL

We consider a quasi-one-dimensional conductor with N

open channels at energy ε. The free Bloch states are assumed
in the form |ν〉 exp(±ikν)x, where x is the current direction
and |ν〉 describe other degrees of freedom. The wave numbers
kν are found from the dispersion relation εν(kν) = ε and
ν = 1,2, . . . ,N numerates subbands in the band structure
of the corresponding ideal conductor. We assume that the
essential states of electrons are in the vicinities of ±kν and
approximate their energies by ε ± vν(k ∓ kν). Introducing the
amplitudes

−→

 ν (

←−

 ν) for the right (left) propagating solution

with positive (negative) group velocities vν (−vν), we can
write the corresponding free particle Hamiltonian (in a.u.) as
ε1̂ + [ −iv∂x 0

0 iv∂x
], where v is the diagonal matrix vνδνμ. We

now introduce a random backscattering term Hνμ(x) which
transfers the electron from the left propagating state ν to the
right propagating state μ. Then, the scattering problem in N

interacting channels at energy ε reads

(−iv∂x H

H † iv∂x

)(−→


←−



)
= 0. (2)

Note that the elements Hνμ of the off-diagonal blocks also
contain extra phases e±i(kν+kμ)x . These oscillatory factors
mutually cancel in all the averaged equations and thus can be
omitted. Eq. (2) is a multi-channel version of the random model
used previously to study one-dimensional metals42, in which
case the Green’s function for the matrix operator in Eq. (2) can
be calculated exactly. Here we employ the scattering matrix
formalism and obtain a closed set of equations which describe
the average dynamics in this model. In particular, in the case of
N equivalent channels with vν = v0 we reestablish the DMPK
equation with β = 1,2, or 4, depending on the choice of the
backscattering term.

We consider a disordered sample (H �= 0) of length L

sandwiched between two perfect leads (H = 0) and impose
the scattering boundary conditions

[
it ir ′

0 1

]
=
[√

v 0

0
√

v

]
Ô(L)

[
1√
v

0

0 1√
v

][
1 0

ir it ′

]
, (3)
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where Ô ≡ ( O11 O12
O21 O22

) is the 2N × 2N transfer matrix defined

through the relation (
−→

←−



)x=L = Ô(L)(
−→

←−



)x=0 and t (r), t ′

(r ′) have their usual meaning of the transmission (reflection)
matrices for a free particle coming from the left and right,
respectively. We use the evident notations

√
v, 1√

v
for the

corresponding diagonal matrices and introduce extra i factors
for convenience.

From Eqs. (2) and (3) one can find evolution equations for
the reflection and transmission matrices as a function of length
L of the disordered region. Equation (2) gives

i
dO11

dL
= 1

v
HO21; i

dO21

dL
= −1

v
H †O11 (4)

and a similar pair of equations for O21(L) and O22(L). The
relation between the elements of the transfer and scattering
matrices follows from Eq. (3). In particular, we have

r ′ = −i
√

vO12O
−1
22

1√
v

(5)

t = −i
√

vO11
1√
v

+ i
√

vO12O
−1
22 O21

1√
v
. (6)

Differentiating these relations with respect to L we obtain the
desired dynamical equations

dr ′

dL
= r ′H̃ †r ′ − H̃ , (7)

dt

dL
= r ′H̃ †t, (8)

where H̃ ≡ 1√
v
H 1√

v
. One can check that Eqs. (7) and (8)

(together with complementary equations for r and t ′) are
consistent with unitarity of the S-matrix S ≡ ( r t ′

t r ′ ). This can
also be seen directly from the linear equation Eq. (2) for
the transfer matrix which, together with the initial conditions
Ô(L = 0) = ( 1 0

0 1 ), give

Ô†
[

v 0

0 −v

]
Ô =

[
v 0

0 −v

]
. (9)

From Eqs. (3) and (9) we obtain the relation[
it ir ′

0 1

]† [
it ir ′

0 −1

]
=
[

1 0

ir it ′

]† [ 1 0

−ir −it ′

]
, (10)

which is equivalent to SS† = [ 1 0
0 1 ]. Another important con-

dition follows from the symmetry of the system with respect
to time reversal. Arbitrary scattering state under time reversal
transforms as(−→



←−



)
→
(−→



←−



)R

=
(

0 Z

Z 0

)(−→


←−



)∗
, (11)

where Z is a constant unitary matrix which satisfies ZT = ±Z

depending on spin rotational symmetry.43 In the absence of
magnetic field, the invariance with respect to the transforma-
tion Eq. (11) gives the condition S = ( Z 0

0 Z )ST ( Z 0
0 Z )−1. The

backscattering term must be consistent with this symmetry
condition which imposes limitations on the number of inde-
pendent matrix elements in H .

The three symmetry cases are treated separately. In a
spinless system with time reversal symmetry (the symmetry
index β = 1) the matrix Z is symmetric and one can use a state
representation where Z = 1 and S = ST . Equation (7) shows
that the backscattering term in this case must be symmetric
H = HT and we impose the following rules of averaging39

〈H 〉 = 0; 〈Hνμ(x)Hν ′μ′(x ′)〉 = 0, (12)

〈Hνμ(x)H ∗
ν ′μ′(x ′)〉 = D

(
δνν ′δμμ′ + δνμ′δμν ′

)
δ(x − x ′).

(13)

Antisymmetric matrix ZT = −Z corresponds to odd-spin
systems with broken spin rotational symmetry (symmetry
index β = 4). In this case Z can be reduced to the standard
canonical form

Z =

⎡
⎢⎢⎢⎢⎢⎣

0 −1 0 0 . . .

1 0 0 0 . . .

0 0 0 −1 . . .

0 0 1 0 . . .

. . . . . . .. . . .

⎤
⎥⎥⎥⎥⎥⎦ , (14)

which contains (2 × 2) blocks [ 0 −1
1 0 ] along the principal

diagonal.43 The dimension of all matrices is now even and
denoted by 2N . The backscattering term must be taken as a
general complex self-dual matrix HR ≡ ZHT ZT = H . The
algebra of such matrices is most conveniently expressed in
terms of quaternions.7 A general self-dual complex (2N ×
2N ) matrix H is written as a N × N quaternion matrix (see
Appendix A)

hkl = 1̂h
(0)
kl +

3∑
i=1

eih
(i)
kl ≡ 1̂h

(0)
kl + ehkl (15)

with the constraint

h
(0)
kl = h

(0)
lk ; hkl = −hlk. (16)

The corresponding rules of averaging are

〈h(0)〉 = 〈h〉 = 〈h(0)h(0)〉 = 〈hh〉 = 0, (17)

〈h(0)h〉 = 〈h(0)h∗〉 = 0, (18)〈
h

(0)
kl (x)h(0)∗

k′l′ (x
′)
〉 = D(δkk′δll′ + δkl′δlk′)δ(x − x ′) (19)〈

h
(i)
kl (x)h(j )∗

k′l′ (x
′)
〉 = D(δkk′δll′ − δkl′δlk′)δij δ(x − x ′). (20)

Finally, in a system without time reversal symmetry (β =
2) the backscattering term is a generic N × N matrix with
N2 statistically independent complex elements. The rules of
averaging in this case read

〈H 〉 = 0; 〈Hij (x)Hkl(x
′)〉 = 0, (21)

〈Hij (x)H ∗
kl(x

′)〉 = 2Dδikδjlδ(x − x ′). (22)

In the next section we show that the backscattering models
with group velocities vν = v0 generate universal transport

statistics with the same localization lenght ξ = v2
0

D
for all βs.

On the other hand, the retarded self-energy (
←−
�

R

νμ or
−→
�

R

νμ) in
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the lowest order is given by

− i

2v0

∑
κ

〈Hκν(x)H ∗
κμ(x ′)〉 = − i

2τ
δνμδ(x − x ′), (23)

where we have introduced the scattering time τ . Counting
nonzero contributions to |Hκν |2 we obtain the mean free

path l = v0τ = v2
0

D(Nβ+2−β) . Thus, the localization length in
the backscattering models with different types of symmetry
satisfies the usual RMT relation31

ξ = l(Nβ + 2 − β). (24)

III. STATISTICAL DESCRIPTION. EQUIVALENCE WITH
THE DMPK EQUATION

We first note that the Ricatti equation [Eq. (7)] alone is
sufficient to calculate the hermitian matrix T ≡ t t† = 1 −
r ′r ′† and obtain evolution equations for any quantities related
to conductance. In this section we consider the backscattering
model with constant group velocities vν = v0. In this case
one can separate the transmission eigenvalues Tn from other
degrees of freedom and reestablish the DMPK equation for the
probability density function. Some of these results for β = 1
were presented earlier in Ref. 39. Here we provide more details
of the derivations and include two other symmetry cases.

Let F (t1,t2, . . .) ≡ F (t) be an arbitrary real-valued function
of tn ≡ Tr T n. From Eq. (7) we obtain

d

dL
〈F 〉 =

∑
n

n

〈
∂F

∂tn
Tr(T nr ′H̃ †)

〉
+ c.c. (25)

The averaging is now performed as usual by (i) substituting
all the functions of r ′ in the right hand side by the correspond-
ing formal integral solutions

∫ L
. . . H̃ (x)dx and (ii) taking

advantage of the δ correlators to eliminate the integrals (see
Appendix B). The first step gives

d

dL
〈F 〉 = 2

∫ L
〈∑

nm

nm
∂2F

∂tn∂tm
Tr(T nr ′H̃ †)Tr(T mH̃ r ′†)

+
∑

n

n
∂F

∂tn

(
n−1∑
m=1

Tr(T mH̃ r ′†T n−mr ′H̃ †)

− Tr(T nH̃T ′H̃ †)
) 〉

dx, (26)

where we have introduced T ′ ≡ 1 − r ′†r ′. In Eq. (26) one
can take L as the argument value in all terms except for
H̃ (x). At the second step, we can decouple all the functions
of the “dynamical variables” T and r ′ from the correlators
〈H̃ †

ij (L)H̃lm(x)〉 evaluated according to the averaging rules
in Sec. II. In the first line we meet terms in the form
Tr(AH̃ †)Tr(BH̃ ) with A = T nr ′, B = r ′†T m. After suitable
manipulations we arrive at

2
∫ L

〈. . . Tr(AH̃ †)Tr(BH̃ (x))〉dx = D

v2
0

×〈. . . [Tr(AB) + Tr(ABT )]〉 for β = 1, (27)

2〈. . . Tr(AB)〉 for β = 2, (28)

2〈. . . [Tr(AB) + Tr(ABR)]〉 for β = 4, (29)

where . . . stands for the partial derivatives of F . Next we
note that in a system with time reversal symmetry (β = 1,4)
BT = B (or BR = B). Thus, in all three cases the right
hand side ∼ 〈. . . Tr(AB)〉 = 〈. . . (tn+m − tn+m+1)〉 reduces to
a function of {tn}. In the second line in Eq. (26) we meet terms
∼ Tr(AH̃ †BH̃ ) with A = r ′†T n−mr ′, B = T m. In this case we
obtain

2
∫ L

〈. . . Tr(AH̃ †BH̃ (x))〉dx = D

v2
0

×〈. . . [TrA TrB + Tr(ABT )]〉 for β = 1, (30)

2〈. . . TrA TrB〉 for β = 2, (31)

2〈. . . [TrA TrB − Tr(ABR)]〉 for β = 4. (32)

Again, both terms in the right hand side can be reduced to
a function of {tn}. The first one gives ∼ TrA TrB = (tn−m −
tn−m+1)tn. In the second term (for β = 1 and 4) we use the fact
that the reflection matrix is symmetric (or self-dual). Therefore
r ′T mT (R) = T mr ′ which gives T rABT (R) = tn − tn+1. Finally,
we note that for β = 1(4) the matrix T ′ in the last term in
Eq. (26) is transport (dual) to T and Eqs. (30) and (32) can be
used again.

Accumulating all the above terms we arrive at an evolution
equation for averaged dynamics. The result for β = 1,2 reads

d

dL
〈F 〉 = D

v2
0

〈
(2 − β)

∑
n

(n(n − 1)tn − n2tn+1)
∂F

∂tn

+ 2
∑
nm

nm(tn+m − tn+m+1)
∂2F

∂tn∂tm

+ β
∑

n

n
∂F

∂tn

[
n−1∑
m=1

tmtn−m −
n∑

m=1

tmtn−m+1

]
.

〉
,

(33)

but for β = 4 we obtain the equation with different coefficients

d

dL
〈F 〉 = D

v2
0

〈
−2
∑

n

(n(n − 1)tn − n2tn+1)
∂F

∂tn

× 4
∑
nm

nm(tn+m − tn+m+1)
∂2F

∂tn∂tm

+ 2
∑

n

n
∂F

∂tn

[
n−1∑
m=1

tmtn−m −
n∑

m=1

tmtn−m+1

]〉
.

(34)

In this case, however, we note that 2N eigenvalues of the
2N × 2N matrix T come in N pairs of degenerate eigenvalues
(twofold Kramers’ degeneracy). Indeed, any complex self-dual
matrix Q = QR can be represented in the form

Q = UR�U, (35)

where U is unitary and � is diagonal, real and self-dual
(see Appendix C). Thus, the diagonal eigenvalue matrix �2

of QQ† is self-dual, i.e., it consists of N blocks ∼ [ 1 0
0 1 ].

Eliminating half of the degenerate eigenvalues is equivalent to
the transformation tn → 1

2 tn which gives the same evolution
equation [Eq. (33)] with β = 4.

155406-4



UNIVERSAL CONDUCTANCE STATISTICS IN A . . . PHYSICAL REVIEW B 88, 155406 (2013)

Equation (33) is equivalent to a Fokker-Planck equation for
the dynamical variables {tn} which can be parameterized in a
usual way tn(λ) =∑N

i=1(1 + λi)−n in terms of N arguments λi

of the probability distribution function P (λ,L) in the DMPK
equation. In Appendix D we show that the solution of Eq. (33)
is given by

〈F (t)〉L =
∫

dλF (t(λ))P
(
λ,DξL/v2

0

)
, (36)

which establishes an exact mapping of the DMPK equation
[Eq. (1)] to the stochastic Riccati equation [Eq. (7)]. Thus,
any statistics of the transmission eigenvalues in the DMPK
equation can be calculated by averaging the corresponding
function of the eigenvalues of r ′r ′† in Eq. (7) over realizations
of H .

IV. RANDOM EVOLUTION APPROACH AND
UNIVERSAL STATISTICS

The random evolution approach to universal conductance
statistics for β = 1 has been formulated in Ref. 39. The method
is based on using the stochastic Riccati equation [Eq. (7)]
with a discrete analog of the δ-correlated random term to
generate independent realizations of the transmission channel
eigenvalues. In this connection, we should mention another
random propagation scheme which utilizes the fact that the
DMPK equation is mathematically equivalent to a Fokker-
Planck equation for the classical one-dimensional diffusion of
N particles. The time evolution of this system is described
by a stochastic vector Langevin equation with a real-valued
white noise source and repulsive interparticle forces. Thus,
the probability distribution in the DMPK equation can also be
calculated as the particle density by taking average over a large
number of realization in the vector Langevin equation44. Such
an approach, however, has severe limitations caused by the fast
growth ∼LN of the size of the dynamical system and strong
interparticle repulsion which requires a very small step of
propagation. Sensible choice of the initial particle distribution
presents another serious obstacle in applying such a scheme.

The present approach does not have such problems.
Numerical solution of the Riccati equation is very robust and
all the physical solutions remain uniformly bounded |r ′|2 < 1
over long propagating distances. As a result, one can easily
compute various statistics or accumulate desired distributions
at eventually any number of channels and initial conditions.
The results of the previous section enable us to extend the
method to all symmetry cases. For completeness sake we
outline here the numerical procedure for β = 1 and indicate
necessary modifications for β = 2,4.

The simulations for β = 1 proceed as follows. (i) Set
N × N complex matrix u = 0. (ii) Generate N (N + 1) in-
dependent random numbers {xνμ,yνμ}, ν � μ from N (0,�)
and construct a symmetric N × N matrix H : Hνν = xνν +
iyνν ; Hνμ = Hμν = 1√

2
(xνμ + iyνμ), ν < μ. (iii) Propagate

the matrix Riccati equation du
dx

= uH †u − H over the unit
x interval. (iv) Repeat (ii) and (iii) M times and obtain from
T ≡ 1 − uu† a realization of the transmission eigenvalues {Ti}
and conductance g =∑N

i=1 Ti = TrT in a disordered wire

of length L = M�ξ . Repeat (i)–(iv) Ns times to accumulate
distributions and calculate necessary statistics.

The only difference for β = 2 comes from step (ii). Since
the backscattering term is no longer symmetric, we need
to generate at each step 2N2 independent random numbers
{xνμ,yνμ}, ν,μ = 1,2, . . . ,N from N (0,�) and construct the
corresponding N × N matrix H : Hνμ = (xνμ + iyνμ).

For β = 4 the size of all the matrices doubles.
Now at step (ii) we generate 4N2 − 2N independent
random numbers {x(0)

νμ,y(0)
νμ}, ν � μ, {x(i)

νμ,y(i)
νμ}, ν < μ, i =

1,2,3 from N (0,�) and construct one symmetric N ×
N matrix h(0) : h(0)

νν = (x(0)
νν + iy(0)

νν ); h(0)
νμ = h(0)

μν = 1√
2
(x(0)

νμ +
iy(0)

νμ), ν < μ and three antisymmetric N × N matrices h(i) :
h(i)

νμ = −h(i)
μν = 1√

2
(x(i)

νμ + iy(i)
νμ) ν < μ. 2N × 2N complex H

is now defined as a N × N quaternion matrix h : hkl =
1̂h

(0)
kl + ehkl . The rest of the procedure remains the same except

that one should use half of twice degenerate spectrum of T
and define the conductance as g = 1

2 TrT .
Two independent parameters in our simulations are the

discretization parameter � and the number of realizations
Ns . The number of propagation steps M ∼ �−1 is fixed by
the system size. Ns only effects smoothness of the calculated
statistical curves. The discretization parameter � = 0.01 is
found to be small enough to obtain converged results for L/ξ <

1. For longer wires one might need smaller � depending on
the desired statistics and symmetry index. In most of our
calculations below we used � ∼ 10−2 − 10−3. The initial
conditions u(x = 0) = 0 in the above procedure correspond
to the probability distribution P (λ,L = 0) =∏n δ(λn) in the
DMPK equation. Other choices are also possible as long as
u(0) is consistent with the symmetry of the problem and
unitarity of the S-matrix.

In the rest of the section, we apply the random evolution ap-
proach to calculating the most important transport characteris-
tics. All the results are presented in terms of the dimensionless
length s = 2L/ξ . Figure 1 shows the average conductance
and its variance as a function of s for different numbers of
propagated channels N � 30. 〈g〉 in the upper panels presents
a smooth transition from the metallic to insulation regime. The
∼ β−1 scale difference between different symmetry cases is
caused by stronger repulsion of the transmission eigenvalues
for larger β and can also be seen directly from Eq. (33) for
F (t) = t1. The red lines represent analytical results obtained
from four leading terms in the g−1 perturbation expansion.32

As the number of channels grows, the average conductance
for β = 1,2 closely follow this universal behavior in both
diffusion and weak localization regimes. The perturbation
expansion is less accurate for β = 2 and 4, as can be seen more
clearly from the s dependence of var(g) in the lower panels.
We also present in this panel analytical results (only for N =
2,3) obtained from the asymptotic probability distribution in
the metallic regime.33 For β = 1 both approximate theories
work rather well, giving quantitatively correct behavior up
to s ∼ 4. At β = 2,4 the asymptotic results start to deviate
from the accurate numerical data at s ∼ 2, where the variance
reaches its maximum value. The deviation is much faster for
β = 4 and it increases with N . Note the important qualitative
difference between the symmetry cases β = 1 and β = 2,4. In
the latter case, the maximum variance of the conductance does
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FIG. 1. (Color online) The average conductance 〈g〉 and its
variance var(g) for N � 30 propagating channels. The thicker (red)
lines represent the results calculated from the perturbation expansion
(Ref. 32). The black squares show var(g) for N = 2,3 calculated
from the asymptotic probability distribution (Ref. 33).

not approach the universal value 2
15β

and at any N remains
close to the one-channel result (the same N = 1 curve in all
three panels).

Figure 2 presents a comparison between the computed data
for β = 2 and the exact results given by Frahm.29 The figure
clearly demonstrates high accuracy of the present scheme:
For N = 30 the deviation from the exact data at largest s

does not exceed 4% and it is much smaller for N < 20.
These results correspond to � = 5 · 10−4. The accuracy can
be further improved by taking smaller �.

Figures 1 and 2 also suggest a universal s dependence
beyond the diffusion regime which correlates with the uniform
distribution of the Lyapunov exponents in the system. At

FIG. 2. The average conductance 〈g〉 and its variance var(g) for
the unitary ensemble β = 2. The open triangles represent the exact
results of Frahm (Ref. 29).

FIG. 3. The product s ′〈g〉 (left panel) and the conductance
variance var(g) (right panel) as a function of s ′ ≡ βs

2 + 1
N

. Solid
lines represent the numerical results for N = 2,3,5,10, and 30. The
open squares show the exact results for N = ∞ from the nonlinear
σ model (Ref. 38) for β = 1,2 and Ref. 36 for β = 4. The results for
the unitary class β = 2 on the left panel are shown only for N = 2
and 3.

s > 2, the transport properties are well described by the
largest transmission eigenvalues and become independent
on the number of channels apart from a shift ∼ 1

N
along

the s axis. To illustrate this behavior, we plot in Fig. 3
the correction to the metallic conductance s ′〈g〉 and the
conductance variance var(g) as a function of s ′ ≡ βs

2 + 1
N

.
Solid lines represent the numerical results for N = 2,3,5,10,
and 30. The open squares show the exact results for N = ∞
from the nonlinear σ model38 for β = 1,2 and36 for β = 4.
Note that the dimensional conductance g in the notations of
Ref. 38 is twice larger than ours and the definition of ξ also
differs by a factor of β/2. The weak localization is absent for
β = 2 and the conductance correction s ′〈g〉 is only shown for
N = 2,3. The results for larger N look very similar except for
the fact that each curve starts at different s ′

min = 1
N

.
The shot-noise power reduction contains new information

on the quantum transport which is not given by the conductance
and can be directly measured in the experiments. In the absence
of correlation among the carriers, the charge transfer can be
considered to be a Poisson process with the shot-noise power
PPoisson = 2eI proportional to the time-averaged current. In
a phase-coherent conductor, the quantum theory predicts
the noise reduction P/PPoisson = 1

〈g〉 〈
∑

n Tn(1 − Tn)〉 which

is sensitive to the carrier statistics45,46. Figure 4 presents
our results for three symmetry cases. The insets also show
P/PPoisson in the crossover regime as a function of the average
conductance 〈g〉. At large N , the ratio P/PPoisson agrees
well with the universal behavior ∼ 1/3 + 2(2−β)

45 s + O(s2)
predicted by the perturbation theory (red line). For β = 1, the
perturbation expansion gives quantitatively correct behavior
far beyond the diffusion regime but the applicability region is
much more narrow for two other symmetry cases. In particular,
for β = 4 P/PPoisson starts to increase at s ∼ 0.5 and at
larger s shows essentially one-channel behavior with weak
N dependence.

The above features correlate with computed statistical
distributions. Figure 5 presents the conductance probability
distribution P (g) for four values of the average conductance
〈g〉 = 1,4/5,1/2,1/3. At larger 〈g〉 P (g) is close to a normal
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FIG. 4. (Color online) Suppression of the Poisson shot noise in a
wire with N = 2–30 propagating channels. Insets show P/PPoisson as
a function of the average conductance. The arrows show the direction
of increasing N . The thicker (red) line represents the g−1 perturbation
expansion (Ref. 32).

distribution in all symmetry cases and strongly depends on N

and β. In the crossover regime, the conductance statistics is
governed by the lowest two transmission eigenvalues47,48 and
P (g) (at given 〈g〉) becomes nearly independent of N . Figure 5
shows the probability distributions in a wire with N = 10
propagating channels. The calculations for N = 4 and N = 20
reproduce these results within a few percents. At 〈g〉 < 1/3,
the transport becomes one dimensional (Ti ≈ 0,i � 2) and the
probability distributions for all βs are identical.

The transmission channel density ρ(T ) ≡ 〈∑i δ(T − Ti)〉
carries more detailed information and allows any linear
statistics

∑N
i=1 f (Ti) on the transmission eigenvalues {Ti}

to be evaluated. In the universal regime 1 � g � N , RMT
predicts the bimodal distribution (with an appropriate cutoff at
small T )

ρ(T ) = 〈g〉
2T

√
1 − T

, (37)

which gives the 1/3-shot-noise suppression45. Figure 6 shows
evolution of the normalized density ρ̃ ≡ ρ/〈g〉 in the crossover
regime for N = 2,5, and 20. Small digits next to each curve
show the corresponding values of the dimensionless length

FIG. 5. (Color online) The probability distribution P (g) in a wire
with N = 10 propagating channels for β = 1,2, and 4 at four selected
〈g〉 values in the crossover regime.

FIG. 6. (Color online) The normalized transmission channels
density ρ̃(T ) = 1

〈g〉 〈
∑

n δ(T − Tn)〉 in a wire with N = 2,5 and 20
propagating channels. Small digits next to each probability curve
show the corresponding value of the dimensionless length s = 2L/ξ .
The thicker (red) line represents the bimodal distribution density
Eq. (37).

s. The channel density for β = 1 approaches the bimodal
distribution (red thicker line in Fig. 6) at s ≈ smax where the
variance of the conductance in Fig. 1 reaches a maximum
value (“close-to-universal” regime) and remains close to the
universal distribution for s ∼ [smax,1]. The channel density for
β = 2,4 approaches the bimodal distribution at smaller s and
exhibits clear oscillatory behavior caused by stronger repulsion
among the channels eigenvalues. The oscillations are more
pronounced for β = 4 and the number of these oscillations is
precisely the number of channels N . At larger s, the channel
repulsion pushes the oscillations left towards developing the
localization peak around T = 0. The transport in this regime
becomes essentially one dimensional for all βs.

We conclude this section by a brief discussion of possible
deviations from the universal transport statistics in quantum
wires with a small number of channels. As shown in Sec. III,
the universal statistics appears naturally in the backscattering
model with equivalent channels. One can generalize the model
by either assuming nonequivalent channels with different
group velocities or allowing for nonzero correlations between
different components of the backscattering term. Here we only
consider the first possibility. The problem of backscattering
with a general correlation matrix requires a very different
approach and will be considered in a separate paper.

The model with arbitrary vν cannot be solved exactly
because the correlators of H̃ (x) have now different amplitudes
and Eqs. (27)–(32) are no longer valid. In this case, one can
obtain the diffusion approximation by separating the “slow”
evolution of tn from other degrees of freedom under the
assumption that the distribution over channels for all the
averaged quantities of interest is established on a much shorted
scale and can be found from the stationary solutions. This
program has been carried out in Ref. 49. Here we outline the
main steps of the derivations and skip further details.

Consider, for example, the average in Eq. (27) for β = 1.
Because of the velocity factors we now need to deal with the
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FIG. 7. (Color online) The variance of the conductance (upper
panels) and the shot-noise power reduction (low panels) in the
backscattering model of N = 3 open channels. v is the group velocity
in a “slow” channel and v0 is the group velocity in all the other
channels. The scale factor γ = ξ/ξ0 is calculated from Eq. (41) (see
the text). The smallest γ ∼ 0.07 is in the model with v/v0 = 0.02.
The black lines (v = v0) correspond to the universal conductance
statistics from the DMPK equation.

expression ∼ Tr 1
vA 1

vB =∑νμ
1
vν

Aνμ
1

vμ
Bμν . From Eqs. (7)

and (8) we can obtain a differential equation for the average
of Oνμ ≡ AνμBμν . Under above assumptions we find the
“stationary” solution

Oνμ = αθνθμ, (38)

where α depends on slow dynamical variables and θν ≡
vν

∑
μ

|r ′
νμ|2
vμ

. In deriving this result, we omit all the oscillating
terms with nonzero phase factors coming from unmatched
components of t and r ′. Equation (38) can be also written as

Oνμ = θνθμ(∑
θν

)2 ∑
νμ

Oνμ = θνθμ(∑
θν

)2 TrAB, (39)

which shows that in the diffusion approximation we obtain
the same average equations as before with v−2

0 substituted by
(
∑

θν

vν
)2/(
∑

θν)2. The same analysis can be done for other
terms in Eq. (26). The channel distribution can be calculated
from the “stationary” solution for the reflection matrix. Within
the same approximation

|r ′
νμ|2 = v̄

vν + vμ

(1 + θνθμ), (40)

where we have introduced v̄−1 ≡∑ν v−1
ν . From Eqs. (38)

and (40) and the definition of θν we can calculate the factors∑
θν

vν
,
∑

θν and obtain the localization length

ξ = v̄2

D

(
2
∑
νμ

vν

vμ

− N2

)
. (41)

Note the inequality ξ � N2v̄2

D
which becomes an equality ξ =

ξ0 = v2
0

D
in the model with vν = v0.

As an example, we have calculated the variance of the
conductance and the shot-noise reduction in the symmetric

FIG. 8. (Color online) The same as in Fig. 7 for N = 5. The scale
factor γ ∼ 0.14 in the model with v/v0 = 0.02.

backscattering model (β = 1) with group velocities v1 =
v,vν>1 = v0. For a weak disorder, this model mimics the
effect of a new open channel near the corresponding threshold
(v < v0) which is expected to lead to stronger localization.
Our purpose is to verify the diffusion approximation and check
the estimate Eq. (41) which at small v predicts the localization
length reduction 2(N − 1)v/v0. Figures 7–9 present out results
for N = 3,5, and 10. The dimensionless length s in these
figures is defined as before. It corresponds to the localization
length ξ0 in the exactly solvable model with v = v0. The
reduction factor γ = ξ/ξ0 has been calculated from Eq. (41).
The left panels in these figures demonstrate that the scaling
factor in the diffusion approximation agrees remarkably well
with the numerical solution. The right panels shows the same
data as a function of the average conductance, which confirms
that the transport statistics at g < 1 recovers the universal
one-scaling behavior (black lines). In the quasiballistic regime
the channel distribution [Eq. (38)] is not correct and the
diffusion approximation does not work. In fact, one can show
that the stationary channel distribution [Eq. (40)] formally

FIG. 9. (Color online) The same as in Fig. 7 for N = 10. The
scale factor γ ∼ 0.27 in the model with v/v0 = 0.02.
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leads to the complete reflection
∑

μ |r ′
νμ|2 = 1 so that one

should only expect the universal one-scaling behavior deep
in the localization regime or at a large number of channels.
Our results demonstrates that the DMPK equation with the
rescaled localization length [Eq. (41)] gives a quantitatively
correct result at much shorter distances even in a system with
few propagating channels. In the quasiballistic regime, the
conductance drops faster for smaller v/v0 and the variance
var(g) may display a higher peak at short distances. Similar
behavior was observed in ab initio transport studies of doped
silicon NW24 and it was attributed to scattering properties
of a single dopant. Our model suggests another possible
interpretation of the observed statistical behavior based on
the NW band structure.

V. CONCLUSION

We have studied transport statistics in a simple stochastic
model which describes random backscattering in N propa-
gating channels with linear dispersion law. The model with
equivalent channels can be solved exactly and its average
dynamics is governed by the DMPK equation with β =
1,2, or 4 depending on the symmetry of the backscattering
Hamiltonian term. This establishes an exact map between the
DMPK equation and an ordinary differential equation which
generalizes the recently reported random evolution approach
to all symmetry cases and provides an effective tool to obtain
detailed description of any desired transport statistics in quasi-
one-dimensional systems. Examples of such calculations have
been presented for a disordered wire sandwiched between
two ideal leads. We have calculated the conductance density
distribution, the average conductance and its variance, the
transmission channels density and shot-noise power for all
symmetry cases in a wide range of the wire length and number
of propagating channels. The accurate numerical results are
compared with the asymptotic approximation and perturbation
expansion indicating relatively poor applicability of these
approximations for β = 2 and 4.

The backscattering model with arbitrary group velocities
can be used to mimic quantum wires with a realistic band
structure and study possible deviations from the universal
statistics. We have derived the evolution equations in the
diffusion approximation and showed that the average dynamics
in the system is well described by the DMPK equation
with rescaled localization length. The transport statistics in
the quasiballistic regime is generally nonuniversal and the
variance of the conductance may significantly exceed the
universal values. Finally, we would like to mention another
possible generalization of our model. Deviation from the
universal quasi-one-dimensional transport statistics can be also
introduced by allowing for nondiagonal correlation matrix of
the backscattering term. It can be shown that under special
restrictions on the correlation matrix, one can recover an exact

diffusion equation for the probability density distribution of the
transmission eigenvalues which reproduces the generalized
DMPK equation.50,51 Thus, the backscattering model can
also be used to formulate a random evolution approach to
studying transport statistics beyond the quasi-one-dimensional
regime.52–54 This will be a subject of a separate publication.

APPENDIX A: ALGEBRA OF QUATERNIONS

A general 2N × 2N matrix Q can be written as a N × N

matrix with 2 × 2 quaternion elements qkl, k,l = 1,2, . . . N ,
each represented by four complex coefficients qi

kl,i = 0,1,2,3,

qkl = 1̂q
(0)
kl +

3∑
i=1

eiq
(i)
kl ≡ 1̂q

(0)
kl + eqkl (A1)

in terms of the basis elements, which include three traceless
matrices (quaternions),

e1 =
[

i 0

0 −i

]
; e2 =

[
0 −1

1 0

]
; e3 =

[
0 −i

−i 0

]
, (A2)

and the unit matrix 1̂ ≡ [ 1 0
0 1 ]. The multiplication rule for the

quaternions is

eiej =
3∑

k=1

εijkek − δij 1̂. (A3)

The Hermitian conjugate Q† and dual QR ≡ ZQT ZT matrices
are given by

(Q†)kl = q
†
lk ≡ 1̂q(0)∗

lk − eq∗
lk, (A4)

(QR)kl = q̃lk ≡ e2q
T
lke

T
2 = 1̂q(0)

lk − eq lk. (A5)

As follows from Eq. (A5), a self-dual matrix Q = QR can be
specified by one symmetric and three antisymmetric N × N

matrices

q(0) = q(0)T , q = −qT . (A6)

Equation (A5) can also be taken as a definition of QR for a
rectangular 2N × 2M matrix.

The product of two matrices A = 1̂a0 + ea and B = 1̂b0 +
eb is given by

(AB) = 1̂(a(0)b(0) − ab) + e(a(0)b + ab(0) + [a × b]).

(A7)

The trace of a (2N × 2N ) matrix in the quaternion represen-
tation is simply twice of the trace of its zeroth component,
i.e.,

TrA = 2trN×Na(0), (A8)

Tr(AB) = 2trN×N [a(0)b(0) − ab]. (A9)

Equations (A7)–(A9) have been used to perform averaging in
Eqs. (29) and (31) for β = 4.

APPENDIX B

The derivations in Sec. III involve averaging the product of
a function of the dynamical variables with the delta correlated
noise source. We present here a heuristic explanation of the
averaging procedure for the simplest one-dimensional case.
For more rigorous derivations see, e.g., Ref. 55. We calculate
the average of F (u(x))ξ (x) at x > 0, where u(x) is a solution
of the stochastic equation

du

dx
= f (u)ξ (x), (B1)
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with a specified initial value u(0), ξ (x) is the real-valued
white noise 〈ξ 〉 = 0,〈ξ (x)ξ (x ′)〉 = 2Dδ(x − x ′), and F,f are
two real-valued functions. Since u(x ′) at x ′ < x and ξ (x)
are statistically independent, we can write for an arbitrarily
small ε

〈F (u)ξ 〉x =
∫ x

x−ε

〈(
dF

du
f

)
x ′

ξ (x ′)ξ (x)dx ′
〉

=
∫ x

x−ε

〈(
dF

du
f

)
x−ε

ξ (x ′)ξ (x)dx ′
〉
+ 0(ε)

= D

〈(
dF

du
f

)
x−ε

〉
+ O(ε), (B2)

where we have use the fact that the delta-correlated noise is
gaussian and ξ (x) can only be paired with ξ (x ′). The final
result is obtained by taking the limit ε → 0.

APPENDIX C

The representation Eq. (35) of a generic self-dual matrix
is presumably well known to mathematicians. However, we
were unable to find an appropriate reference and provide the
proof in this appendix.

Let A = A1 + iA2 be a complex symmetric matrix AT =
A. Then, there exists a vector ξ which is a solution of the
equation

Aξ = λξ ∗, (C1)

with some real λ. One can find ξ = ξ1 + iξ2 and λ from the
real eigenvalue problem of double dimension

(
A1 −A2

−A2 −A1

)(
ξ1

ξ2

)
= λ

(
ξ1

ξ2

)
. (C2)

Since the matrix in the left hand side is symmetric, a real
solution (ξ1,ξ2,λ) exists.

Let us now consider a generic 2N × 2N self-dual matrix
Q which in the quaternion representation qkl = 1̂q

(0)
kl + eqkl is

defined by one symmetric q(0) = q(0)T and three antisymmetric
q(i) = −q(i)T (i = 1,2,3) N × N complex matrices. Accord-
ing to Eq. (C1), there exists a solution of the equation

⎛
⎜⎜⎜⎝

q(0) −q(1) −q(2) −q(3)

q(1) q(0) −q(3) q(2)

q(2) q(3) q(0) −q(1)

q(3) −q(2) q(1) q(0)

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

�(0)

�(1)

�(2)

�(3)

⎞
⎟⎟⎟⎠ = λ

⎛
⎜⎜⎜⎝

�(0)∗

�(1)∗

�(2)∗

�(3)∗

⎞
⎟⎟⎟⎠
(C3)

with some real parameter λ. One can see that Eq. (C3) is
equivalent to the equation

Q� = λZT �∗e2, (C4)

where � is the N -dimensional quaternion vector (i.e., 2N × 2
matrix) with components �k = 1̂�

(0)
k + e�k and Z is defined

in Eq. (14). From Eq. (C4) we obtain

�†� = 1

λ
e2�

T QT ZT � = 1

λ
�RQR�. (C5)

Equation (C5) shows that �†� is a 2 × 2 self-dual matrix
and therefore a scalar �†� = const · 1̂. The constant here is
real and one can always normalize � to unity. Then, one can
construct (in many ways) a unitary 2N × 2N matrix U1 whose
first two columns are given by �: U1 = [� �]. We perform
now the transformation

UR
1 QU1 =

[
�RQ� �RQ�

�RQ� �RQ�

]
=
⎡
⎣ λ 0

0 λ
�RQ�

0 0 �RQ�

⎤
⎦ , (C6)

where we have used Eq. (C4) and the unitarity condition
�†� = 1̂ ,�†� = 0. Since Q is self-dual, we must have
�RQ� = (�RQ�)R = 0, and

UR
1 QU1 =

⎡
⎣ λ 0

0 λ
0

0 0 Q1

⎤
⎦ , (C7)

where Q1 = �RQ� is a self-dual complex matrix whose order
is two less than that of Q. The same process can now be
repeated on Q1, and one can construct the unitary matrix in
the self-dual transformation [Eq. (35)] step by step.

APPENDIX D

In this Appendix we obtain the diffusion equation (33) from
the DMPK equation. We consider the average

〈F (t)〉L =
∫

dλF (t(λ))P (λ,L) (D1)

of an arbitrary function F (t) of tn ≡∑N
i=1(1 + λi)−n. Dif-

ferentiating both sides with respect to L, using Eq. (1), and
integrating by parts we obtain

d

dL
〈F 〉 = 2

ξ

〈
N∑

i=1

1

J

∂

∂λi

λi(λi + 1)J
∂F

∂λi

〉
. (D2)

Using

∂F

∂λi

= −
∑

n

n
∂F

∂tn

1

(1 + λi)n+1
, (D3)

∂2F

∂λ2
i

=
∑
nm

nm
∂2F

∂tn∂tm

1

(1 + λi)n+m+2

+
∑

n

n(n + 1)
∂F

∂tn

1

(1 + λi)n+2
, (D4)
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and

1

J

∂J

∂λi

= β
∑
j �=i

1

λi − λj

, (D5)

we arrive at

d

dL
〈F 〉 = 2

ξ

〈∑
n

(n(n − 1)tn − n2tn+1)
∂F

∂tn

+
∑
nm

nm(tn+m − tn+m+1)
∂2F

∂tn∂tm

−β
∑

n

n
∂F

∂tn

∑
i �=j

λi

(λi − λj )(1 + λi)n

〉
. (D6)

The last sum
∑

i �=j is calculated by adding the same expression
with exchanged summation indices i,j and rearranging the
terms in the sum in order to eliminate the factors (λi − λj ).

We obtain∑
i �=j

λi

(λi − λj )(1 + λi)n

= 1

2

[
n∑

m=1

tmtn−m+1 −
n−1∑
m=1

tmtn−m − ntn+1 + (n − 1)tn

]
,

(D7)

which gives the final result

d

dL
〈F 〉 = 1

ξ

〈
(2 − β)

∑
n

(n(n − 1)tn − n2tn+1)
∂F

∂tn

+ 2
∑
nm

nm(tn+m − tn+m+1)
∂2F

∂tn∂tm

+ β
∑

n

n
∂F

∂tn

[
n−1∑
m=1

tmtn−m −
n∑

m=1

tmtn−m+1

]〉
.

(D8)

*gena@si.eei.eng.osaka-u.ac.jp
1P. A. Lee and A. D. Stone, Phys. Rev. Lett. 55, 1622 (1985).
2P. A. Lee, A. D. Stone, and H. Fukuyama, Phys. Rev. B 35, 1039
(1987).

3Y. Imry, Europhys. Lett. 1, 249 (1986).
4K. A. Muttalib, J.-L. Pichard, and A. D. Stone, Phys. Rev. Lett. 59,
2475 (1987).

5P. A. Mello, Phys. Rev. Lett. 60, 1089 (1988).
6B. L. Al’tshuler and B. I. Shklovskii, Zh. Eksp. Teor. Fiz. 91, 220
(1986) [Sov. Phys. JETP 64, 127 (1986)].
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and J. J. Sáenz, Phys. Rev. Lett. 89, 246403 (2002).
35B. Rejaei, Phys. Rev. B 53, 13235 (1996).
36P. W. Brouwer and K. M. Frahm, Phys. Rev. B 53, 1490 (1996).
37M. R. Zirnbauer, Phys. Rev. Lett. 69, 1584 (1992).
38A. D. Mirlin, A. Müller-Groeling, and M. R. Zirnbauer, Ann. Phys.

(N. Y.) 236, 325 (1994).
39G. Mil’nikov and N. Mori, Phys. Rev. B 87, 035434 (2013).
40D. Endesfelder, Phys. Rev. B 53, 16555 (1996).
41R. Rammal and B. Doucot, J. Physique 48, 509 (1987).
42A. A. Abrikosov and I. A. Ryzhkin, Adv. Phys. 27, 147 (1978).
43M. L. Mehta, Random Matrices and the Statistical Theory of Energy

Levels (Academic Press Inc., New York, 1967).
44J. Brndiar, R. Derian, and P. Markoš, Phys. Rev. B 76, 155320
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