
PHYSICAL REVIEW B 88, 155328 (2013)

Position and spin control by dynamical ultrastrong spin-orbit coupling
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Focusing on the efficient probe and manipulation of single-particle spin states, we investigate the coupled spin
and orbital dynamics of a spin-1/2 particle in a harmonic potential subject to ultrastrong spin-orbit interaction and
external magnetic field. The advantage of these systems is the clear visualization of the strong spin-orbit coupling
in the orbital dynamics. We also investigate the effect of a time-dependent coupling: Its nonadiabatic change
causes an interesting interplay of spin and orbital motion which is related to the direction and magnitude of the
applied magnetic field. This result suggests that orbital state manipulation can be realized through ultrastrong
spin-orbit interactions, becoming a useful tool for handling entangled spin and orbital degrees of freedom to
produce, for example, spin-desirable polarizations in time that are interesting for spintronics implementations.

DOI: 10.1103/PhysRevB.88.155328 PACS number(s): 72.25.Rb, 03.67.Bg, 71.70.Ej, 73.63.Kv

I. INTRODUCTION

Spin-orbit interactions have been proven very useful for
realization of spintronics1 with electrons in nanosystems. On
the one hand, it has been demonstrated in theory and experi-
ment that spins can be tuned by various electric means.2–7 On
the other hand, since spin-orbit coupling entangles spin and
orbital motion, spin readout is reachable by electric means.8

Such a combination points to the possibility of probing and
manipulating spins hosted by semiconductor quantum dots9,10

using only electric fields.5 The spin-orbit control of qubits
is a promising tool that suggests the investigation of the
ultrastrong spin-orbit coupling regime to see all the features of
this technique. Extreme spin-orbit interactions can be achieved
at the surfaces of semiconductors coated with heavy metals
(see, e.g., Refs. 11 and 12), which allow for spin manipulation
by electric fields.13,14 Recently, Rashba performed a detailed
analysis of two-dimensional quantum dots with the ultrastrong
spin-orbit coupling.15 Very recently, it was recognized that
fully controllable strong interactions, greatly beyond the range
reachable in semiconductors, can be produced in ultracold
atomic Bose and Fermi gases by optical means.16,17 Similar
to electrons in quantum dots, cold atoms are located in
harmonic traps and can demonstrate controllably modified
time-dependent spin-orbit coupling, opening new venues for
studies of related dynamics.

The spin dynamics in these systems can be studied
theoretically by analyzing the interaction between a harmonic
oscillator and a two-level spin, making it similar to the
Jaynes-Cummings model in quantum optics, as suggested by
Debald and Emary.18 This is a wide-purpose model (see, e.g.,
Refs. 19–21) applied in different fields of condensed-matter
physics and quantum optics, such as cavity quantum electrody-
namics, trapped ions, and superconducting qubits (see Refs. 22
and 23 for recent results). In addition, carbon nanotubes
holding electron spins deeply coupled to the vibrational
modes24 can be described with the Jaynes-Cummings model.

The systems with spin-orbit couplings have several advan-
tages not applicable elsewhere. We mention just two. First, the
coordinate dependence of the spin density makes it possible to
visualize the effects of strong coupling in terms of particle po-
sition and measurable spin densities. Second, spin-orbit inter-

action and the Zeeman field can be made time dependent,25–27

making the relevant dynamics in both spin and coordinate
spaces accessible. These effects provide strongly nontrivial
extensions of the conventional Jaynes-Cummings model.

In a quantum dot, a spin-orbit strength α = ξeEz, where ξ is
the material- and structure-dependent constant, can be induced
by applying an external electric field Ez;28 a scheme for the
experimental setup is given in Fig. 1. In cold atomic gases this
time-dependent modification can be reached by changing the
amplitudes and geometries of the corresponding laser fields.

In this paper, we present a description of the spin dynamics
of an electron in a semiconductor quantum dot or trapped cold
atoms, subject to strong spin-obit interactions. We focus on
a one-dimensional harmonic oscillator with a spin degree of
freedom, capturing the main physics of the systems of interest.
This oscillator is under an applied magnetic field which one
can rotate with respect to the coordinate axes. We consider two
types of spin-orbit couplings, constant and time dependent; the
results given below thereby acquire wider application.

FIG. 1. (Color online) (a) Setup scheme for external generation of
spin-orbit coupling through a bias voltage. Thick solid curves indicate
the confining parabolic potential. (b) A nonadiabatic time-dependent
field can cause electron displacement with spin rotation.
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II. HAMILTONIAN, EIGENSTATES, AND OBSERVABLES

The eigenstates can be obtained from the following Hamil-
tonian:

Ĥ (t) = h̄2k2/2m + mω2x2/2 + α(t)σxk + �

2
σ�, (1)

where m is the particle effective mass, � and θ are the
Zeeman splitting and tilt angle of the magnetic field as
applied in the xz plane, respectively, σ� = σx sin θ + σz cos θ

is the corresponding spin projection, and σx,σz are the Pauli
matrices. In the second quantization this Hamiltonian reads

Ĥ = h̄ω(â†â + 1/2) + ih̄ωg(t)(â† − â)σx + �

2
σ�, (2)

where â† and â are the creation and annihilation operators,
respectively, and g = α

√
m/2h̄3ω is a dimensionless cou-

pling constant, which can be understood as the ratio of the
characteristic anomalous spin-dependent velocity α/h̄ to the
characteristic quantum velocity spread in the ground state of
the harmonic oscillator

√
h̄ω/m or as the ratio of the quantum

oscillator length l0 = √
h̄/mω to the spin precession length

h̄2/mα. We use the basis of spin orbitals |n〉|σ 〉, composed of
the eigenstates of â†â, |n〉, and those of σz, |σ 〉 ≡ |↑〉z, and
|↓〉z with respect to the z axis. Numerical values of g strongly
vary from system to system. For InSb-based quantum dots,
where α can reach 10−5 meV cm, m is of the order of 0.02
of the free electron mass, and ω ∼ 1012 s−1, one can expect
g ≈ 1. For cold fermions such as 40K, where α/h̄ can be of the
order of 10 cm/s and ω ∼ 103 s−1, g can be of the order of 10.

To make a connection to previous works on the ultrastrong
regime (see, e.g., Ref. 19), first we investigate the effect of a
constant coupling. The eigenstates of the full Hamiltonian |φi〉
have the form

∑
n |n〉(cu

n |↑〉z + cd
n |↓〉z ), with the expansion

coefficients cu
n and cd

n; the normalized orbitals are expressed in
the x representation as

〈x|n〉 = 4

√
1

πl2
022n(n!)2

exp

[
− x2

2l2
0

]
Hn

[
x

l0

]
, (3)

where Hn is the nth-order Hermite polynomial. In the limit of a
very weak coupling, g 
 1, in an arbitrarily directed magnetic
field, |φi〉 contains five main contributions. The main one is
the direct product of |n〉 and the eigenstate of σ�. The other
four are perturbative terms of direct products of |n ± 1〉 and
eigenstates of σ�. At θ = 0, corresponding to the conventional
Jaynes-Cummings model, spin selection rules exclude two
of these four states. Moreover, at θ = 0, in the eigenstates
the contributions with different spatial parities have opposite
spins. The expectation value of the velocity in the eigenstates
is zero, 〈v〉 = d〈x〉/dt = 0; however, the mean momentum is
finite:

〈v〉 = i

h̄
〈[H,x]〉 = h̄

m
〈k〉 + α

h̄
〈σx〉 = 0,

(4)
〈k〉 = −

√
2

g

l0
〈σx〉.

Correspondingly, for the coordinate, 〈φi |x|φi〉 = 0. Equation
(4) corresponds to zero mechanical momentum h̄k − A for
the gauge29 A = −mασx/h̄. The total spectrum results from
the magnetic field mixing of two parabolic branches; that for

FIG. 2. (Color online) Nonzero spin densities ρx,z for different g

values when the electron is at the ground state. Note that ρx and ρz

merge for smaller g coupling. Here and below we use a truncated
Hilbert space of 64 states, which is sufficient to study ultrastrong
spin-orbit coupling. The Zeeman splitting in all calculations is taken
as � = 0.5h̄ω.

〈k〉 = −√
2g/l0 when the spin state is |↑〉x , and that for 〈k〉 =√

2g/l0 when it is |↓〉x .
To show the advantages of systems with spin-orbit coupling,

we calculate the spatially resolved spin densities ρj (x), j =
x,y,z, providing valuable information about the system.30 For
an arbitrary state |ψ〉, presented in the form

∑
n |n〉(au

n |↑〉z +
ad

n |↓〉z ), these functions are defined as

ρj (x) =
∑
n,m

〈n|x〉〈x|m〉(au∗
n ,ad∗

n

)
σj

(
au

m

ad
m

)
. (5)

We focus on a particle in the ground state and take θ = π/4 as
an example. The densities ρj (x) are presented in Fig. 2. The
integrals of ρj (x) over the x coordinate are the spin expectation
values.

III. COUPLED SPIN AND COORDINATE DYNAMICS

Next, we analyze the coupled dynamics of a system in a
state initially different from an eigenstate of the Hamiltonian
in Eq. (2). For this purpose, we choose as a typical example
an eigenstate of σ� antiparallel to the magnetic field:

|ψ(0)〉 = |0〉[− sin(θ/2) |↑〉z + cos(θ/2) |↓〉z ]. (6)

The time dependence is obtained from |ψ(t)〉 =∑
i ζi |φi〉e−iEi t/h̄, where ζi are the corresponding expansion

coefficients. We study the dynamics of spin densities for
θ = π/4 and g = 1. The particle oscillations are shown in
Fig. 3(a). The Gaussian-like shape of ρx(x) is robust against
time; however, those of ρy(x) and ρz(x) (not shown) are
fully changed. As a consequence, we see a strong correlation
between the spin state and the position of the particle even in
the dynamical regime.

One of the main advantages of quantum dots and cold atoms
is the ability to manipulate the strength of spin-orbit coupling
and thus to cause dynamics in the orbital and spin channels.
The time-dependent spin-orbit coupling can be used for the
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FIG. 3. (Color online) Spin densities (a) ρx and (b) ρy as a
function of time for an electron spin antiparallel to the applied
magnetic field with θ = π/4; here we take the marginal case g = 1.

generation of spin currents in a two-dimensional electron
gas31 and spin separation in two-electron quantum dots similar
to that predicted in Ref. 32. Here we take a single-period
perturbation g(t) = g0 sin(�t) at frequency �, which is fast
enough to yield an appreciable nonadiabatic behavior but
sufficiently slow to allow using the available electrical and
optical means to generate the spin-orbit interaction. To clearly
see the effects of strong spin-orbit coupling, we compare below
the obtained numerically exact result with the perturbation
theory.

To use the perturbation theory we take the basis of the first
four eigenstates,

ψ1 = |0〉|↓〉z, ψ2 = |0〉|↑〉z,
(7)

ψ3 = |1〉|↓〉z, ψ4 = |1〉|↑〉z,

where the time-dependent wave function becomes

ψ(t) = a1(t)ψ1 + a3(t)ψ3e
−iωt + a4(t)ψ4e

−i(ω+�)t . (8)

FIG. 4. (Color online) Dynamics of spins under a time-dependent
g(t) = g0 sin(�t). Lines are marked by corresponding g0 values. The
inset shows a comparison of the exact (dashed line) and perturbation-
theory (solid line) results for g0 = 0.5.

The assumed time dependence yields the expansion coeffi-
cients

a3(t) = −g0 sin θ

∫ t

0
sin(�τeiωτ dτ, (9)

a4(t) = g0 cos θ

∫ t

0
sin(�τ )ei(ω+�)τ dτ. (10)

The expectation values of coordinate and spin projection
onto the magnetic are expressed as

〈x(t)〉 ≡ 〈ψ(t)| x̂ |ψ(t)〉 = 1√
2

[a3(t)e−iωt + c.c.], (11)

〈σ�(t)〉 ≡ 〈ψ(t)| σ� |ψ(t)〉 = −1 + 2
∣∣a2

4(t)
∣∣ . (12)

These perturbation-theory formulas show the role of the
direction of magnetic field on the spin and spatial dynamics,
which is not present in the conventional Jaynes-Cummings
model and allows us to extend the abilities for coordinate and
spin manipulation.

We treat the problem numerically for a single period T =
2π/�,33 beginning with θ = 0, where Zeeman and spin-orbit
fields are orthogonal, similar to the Jaynes-Cummings model.
Figure 4 demonstrates the time dependence of 〈σ�(t)〉 for
different couplings g0 and shows a comparison with the
perturbation result for g0 = 0.5 in the inset. As can be seen in
Fig. 4, spin projection at the magnetic field changes strongly
with time, corresponding to the spin rotation due to the
spin-orbit coupling, and remains constant, as expected, after
the change stops. The value of this projection after the end of
the perturbation corresponds to the degree of nonadiabaticity
of this process. It is interesting to mention the appearance
of plateaus at the strong spin-orbit-coupling regime. These
plateaus show that even a low-frequency dynamics is strongly
nonadiabatic. The reason is the following. In the presence of
spin-orbit coupling and magnetic field with θ = 0, the splitting
of the ground-state doublet, � exp(−2g2) 
 �, is small due
to weakly overlapping eigenstates in the momentum space, as
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FIG. 5. (Color online) Dynamics of particle mean coordinate
under time-dependent strength g(t) = g0 sin(�t). Lines are marked
by corresponding g0 values. The inset shows a comparison of the
exact (dashed line) and perturbation-theory (solid line) results for
g0 = 0.5.

discussed after Eq. (4). As a result, even very slow changes
in the system parameters cannot be treated adiabatically. Here
spatial motion does not occur [〈x(t)〉 = 0], in agreement with
Eq. (11).

Next, we take the state of Eq. (6), with θ = π/4 as the initial
one to demonstrate the qualitative role of the magnetic field
direction. First, the qualitative effect is nonmonochromatic os-
cillations of the position, as depicted in Fig. 5. The oscillations
in 〈x(t)〉 are caused mainly by transitions between the ground
and first excited eigenstates of the model Hamiltonian; these
states get mixed by the strong coupling. The amplitude of
oscillations increases with g0, as expected, and also with �.
The behavior strongly depends on the frequency and amplitude
of spin-orbit coupling, as can be seen by comparing adiabatic
and nonadiabatic plots. After the end of perturbation, the
coordinate oscillates at frequency ω. The next qualitative
difference is in the behavior of 〈σ�(t)〉. Here, in the case of
a strong static spin-orbit coupling, the splitting of the lowest
doublet is � cos θ . We see the effects of nonadiabatic pertur-
bation and strong coupling in Fig. 6. Depending on g0 and
�, different regimes in the dynamics of 〈σ�(t)〉 are possible:
the system either returns to the initial state after the end of
perturbation or switches to other states. The switching effect
depends on the frequency of the field. At a small frequency,
the dynamics is more adiabatic and perturbative, while for a
larger frequency switching can occur. The insets in Figs. 5 and
6(a) show that the perturbation theory works if time is less
than the oscillator period, while at longer times more states
participate and the results become different. From this plot
we can formulate the condition of strong spin-orbit coupling
for a given system as a transition from peaklike (“weak” or
“moderate” coupling) to steplike (“strong” coupling) evolution
of 〈σ�(t)〉. It is interesting to mention that the transition and
therefore the definition of the coupling strength in a dynamical
system depend on the frequency of the applied external
field.

FIG. 6. (Color online) Dynamics of 〈σ�〉 under time-dependent
strength g(t) = g0 sin(�t). Lines are marked by corresponding g0

values. The initial state is the same as in Fig. 5. Insets show
comparisons of the exact (dashed line) and perturbation-theory (solid
line) results for g0 = 0.5. (a) � = 0.2 and (b) � = 0.1.

IV. CONCLUSIONS

In summary, we have investigated how strong dynamical
spin-orbit couplings can be applied to probe and manipulate
spins of electrons in semiconductor quantum dots and cold
atoms in parabolic confinement through the correlated spin
and orbital motion. We reveal the importance of the tilt
angle of the applied magnetic field, an effect greatly beyond
the conventional Jaynes-Cummings model. The obtained
dynamics shows that, under a strong constant coupling, a
particle oscillates in correlation with its spin orientation. The
motion of the particle can be influenced by time-dependent
coupling, with the result strongly dependent on all parameters.
We observe a transition from periodic to steplike behavior
of the spin component parallel to the magnetic field with
increasing coupling strength. This fact clarifies the way to
define the qualitative effect of ultrastrong spin-orbit coupling.
The present work widens the applicability of spin-orbit control,
as it covers different strengths for the induced interaction and
tilt angles for the applied magnetic field. It also emphasizes
the usability of electric and optical fields for spin probe and
manipulation, which are crucial for spintronics. These results
may also be of interest for quantum optics and quantum
information realizations.
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