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Nonlocal formulation of spin Coulomb drag
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The spin Coulomb drag (SCD) effect occurs in materials and devices where charged carriers with different
spins exchange momentum via Coulomb scattering. This causes frictional forces between spin-dependent currents
that lead to intrinsic dissipation, which may limit spintronics applications. A nonlocal formulation of SCD is
developed which is valid for strongly inhomogeneous systems such as nanoscale spintronics devices. This nonlocal
formulation of SCD is successfully applied to linewidths of intersubband spin plasmons in semiconductor quantum
wells, where experiments have shown that the local approximation fails.
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I. INTRODUCTION

The performance of nanoscale electronic devices is limited
by dissipative effects. There are many possible sources of
dissipation: some of them can be controlled, for example
by reducing disorder, whereas others are intrinsic and hence
unavoidable. One such relaxation mechanism is the spin
Coulomb drag (SCD),1,2 which plays an important role in
spintronics.3,4 The SCD effect occurs when two different spin
populations move with different momentum while interacting
via Coulomb scattering. The exchange of momentum leads to
a drag force between the two spin populations which causes
a decay—and eventually a halting—of spin currents. On the
other hand, SCD favors coherent transport of spin packets
in semiconductors by strongly decreasing the spin-diffusion
coefficients with respect to the charge ones, while maintaining
the high electron mobility.5–8

The standard phenomenological way of introducing the
SCD is by considering a homogeneous system in which two
populations of spin-σ and spin-σ̄ electrons, with densities
nσ and nσ̄ , are moving with velocities vσ (t) = vσ e−iωt and
vσ̄ (t) = vσ̄ e−iωt . The spin-σ̄ population exerts a Coulomb
force per unit volume

Fσ σ̄ (ω) = e2nσnσ̄ Re ρhom
σ σ̄ (ω,nσ ,nσ̄ )(vσ − vσ̄ ) (1)

on the spin-σ electrons. The frequency-dependent spin
transresistivity of a homogeneous system,1 ρhom

σ σ̄ (ω,nσ ,nσ̄ ), is
a measure of the SCD. The resulting power loss density for the
σ -spin population is given by Pσ (ω,n↑,n↓) = Fσ σ̄ · vσ . The
total SCD power loss for spin-σ electrons in an inhomogeneous
system can then be obtained using a local approximation.9

However, such a description becomes questionable10 when
considering nanoscale systems, where interfaces, quantum
confinement, or local doping can lead to strong inhomo-
geneities of background densities as well as current distri-
butions. In this paper we develop a formalism for the SCD
valid in the general inhomogeneous case, and we demonstrate
for the damping of spin plasmons in quantum wells that it is
superior to the local approximation.

II. MICROSCOPIC DERIVATION OF THE NONLOCAL
SPIN TRANSRESISTIVITY

To generalize Eq. (1) we consider the microscopic force
that a volume element of spin-σ̄ at position r′ with velocity

vσ̄ (r′) exerts on a volume element of spin-σ at position r with
velocity vσ (r) (see Fig. 1):

Fσ σ̄ (r,r′,ω) = e2nσ (r)nσ̄ (r′)Re
↔
ρσσ̄ (r,r′,ω)[vσ (r) − vσ̄ (r′)],

(2)

where
↔
ρσσ̄ (r,r′,ω) is the nonlocal spin-transresistivity tensor.

The total SCD power loss of spin-σ electrons in an inhomo-
geneous system will then be given by

P̄σ (ω) = e2
∫

d3r

∫
d3r ′ nσ (r)nσ̄ (r′)

× vσ (r) · {Re
↔
ρσσ̄ (r,r′,ω)[vσ (r) − vσ̄ (r′)]}. (3)

The major task is to evaluate the nonlocal spin-transresistivity
tensor. To do this, we start with the Kubo formula for the
spin-current response tensor in inhomogeneous systems,12

σ
αβ

σσ ′(r,r′,ω)

= ie2

mω

[
nσ (r)δ(r − r′)δσσ ′δαβ + m

〈〈
J α

σ (r); J β

σ ′(r′)
〉〉

ω

]
, (4)

where J α
σ (r) is the total spin-current operator for spin σ ,

defined as

J α
σ (r) = 1

2m

Nσ∑
i

[
pα

i δ(r − ri) + δ(r − ri)p
α
i

]
, (5)

pα
i = −ih̄∇α , and α and β are Cartesian coordinates.

〈〈A; B〉〉ω denotes the standard frequency-dependent response
function for the operators A and B.12 By inverting the Kubo
formula to first order in the response function (which is
sufficient since we are working in linear-response theory), we
find

ρ
αβ
σ σ̄ (r,r′,ω) = iωm2

e2

〈〈
J α

σ (r); J β
σ̄ (r′)

〉〉
ω

nσ (r)nσ̄ (r′)
. (6)

In the next step, we twice apply the equation of mo-
tion 〈〈A; B〉〉ω = ω−1(〈[A,B]〉 + i〈〈Ȧ; B〉〉ω), where Ȧ =
−(i/h̄)[A,H ], and H = T + WCoul + Vext is the many-body
Hamiltonian of the system (kinetic energy plus Coulomb
interaction plus external potential).

For the real part of the nonlocal spin transresistivity, the
dominant contribution from Coulomb interaction (and to the
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FIG. 1. (Color online) Schematic illustration of two volume
elements of inhomogeneous spin-up and spin-down electron velocity
distributions, indicated by blue and red streamlines, respectively. The
volume elements interact via Coulomb forces; the resulting exchange
of momentum leads to the SCD effect.

SCD) is then given by

[
Reραβ

σ σ̄ (r,r′,ω)
]

SCD = m2

ωe2

Im
〈〈
J̇ α

σ,Coul(r); J̇ β

σ̄ ,Coul(r
′)
〉〉

ω

nσ (r)nσ̄ (r′)
,

(7)

where

J̇ α
σ,Coul(r) = − i

h̄

[
J α

σ ,WCoul
]

(8)

= − e2

mV 2

∑
q

vqρ−qσ̄ qα
∑

q′
eiq′ ·rρ(q−q′)σ . (9)

Here, vq = 4π/q2 is the Fourier transform of the Coulomb in-
teraction, ρqσ = ∑Nσ

k eiq·rk is the density fluctuation operator,
and V is the volume. The real part of the spin transresistivity
(omitting the label SCD) then follows as

Reραβ
σ σ̄ (r,r′,ω) = e2

ωV 4

1

nσ (r)nσ̄ (r′)

∑
qq′

vqvq ′qαq ′βIm
∑
q′′q′′′

eiq′′ ·reiq′′′ ·r′ 〈〈ρ−qσ̄ ρ(q−q′′)σ ; ρ−q′σ ρ(q′−q′′′)σ̄ 〉〉ω. (10)

It is not difficult to see that the four-point function 〈〈ρ−qσ̄ ρ(q−q′′)σ ; ρ−q′σ ρ(q′−q′′′)σ̄ 〉〉ω is even under the simultaneous inversion of
all momenta, q,q′,q′′,q′′′ −→ −q, − q′, − q′′, − q′′′. We can therefore rewrite Eq. (10) as

Reραβ
σ σ̄ (r,r′,ω) = e2

ωV 4

1

nσ (r)nσ̄ (r′)

∑
qq′

vqvq ′qαq ′β ∑
q′′q′′′

eiq′′ ·reiq′′′ ·r′
Im〈〈ρqσ̄ ρ(q′′−q)σ ; ρq′σ ρ(q′′′−q′)σ̄ 〉〉ω, (11)

where the imaginary part refers only to the four-point function 〈〈ρqσ̄ ρ(q′′−q)σ ; ρq′σ ρ(q′′′−q′)σ̄ 〉〉ω. Equation (11) is completely
general and formally exact.

The final step is to evaluate the four-point function. Here we focus on the zero-temperature limit, and use the decoupling
approximation of Ref. 13; we thus obtain the following key result:

Reραβ
σ σ̄ (r,r′,ω) ≈ h̄e2

ωV 4

1

nσ (r)nσ̄ (r′)

∑
qq′

vqvq ′qαq ′β ∑
q′′q′′′

eiq′′ ·reiq′′′ ·r′
∫ ω

0

dω′

π

{
Imχ RPA

σ̄ σ (q,q′,ω′)Imχ RPA
σ σ̄ (q′′ − q,q′′′ − q′,ω − ω′)

+ Imχ RPA
σ̄ σ̄ (q,q′′′ − q′,ω′)Im χ RPA

σσ (q′′ − q,q′,ω − ω′)
}
, (12)

where Imχ RPA
σ̄ σ is the imaginary part of the spin-resolved

density-density response function in the random phase ap-
proximation (RPA). Substituting expression (12) into Eq. (3)
allows us to calculate the dissipation due to the SCD explicitly
for any inhomogeneous system.

It is instructive to derive the homogeneous limit of this
expression, where the spin densities nσ and nσ̄ become
constant. We write Eq. (12) as the Fourier transform

Reραβ
σ σ̄ (r,r′,ω) = 1

V 2

∑
q′′

∑
q′′′

eiq·reiq′′ ·r′′′
Reραβ

σ σ̄ (q′′,q′′′,ω).

(13)

In the homogeneous limit, all RPA response functions
are written as Imχ RPA

σ̄ σ (q,q′,ω′)δq,q′ = V Imχ RPA
σ̄ σ (q,ω′)δq,q′ [and

similarly for all other RPA response functions in Eq. (12)],
so that Reραβ

σ σ̄ (q′′,q′′′,ω) becomes diagonal in q′′ and q′′′. The
homogeneous limit of the spin transresistivity is then given by

its q′′ = 0 component, and we obtain

[
Reραβ

σ σ̄ (ω)
]

hom = h̄e2

ωV

1

nσnσ̄

∑
q

v2
qq

αqβ

∫ ω

0

dω′

π

× {
Imχ RPA

σ̄ σ (q,ω′)Imχ RPA
σ σ̄ (q,ω − ω′)

− Imχ RPA
σ̄ σ̄ (q,ω′)Imχ RPA

σσ (q,ω − ω′)
}
. (14)

The trace of this gives the zero-temperature limit
of the homogeneous spin transresistivity of Ref. 1:
(1/3)

∑
α[Reραα

σ σ̄ (ω)]hom = Reρσσ̄ (ω,T = 0).

III. APPLICATION: INTRINSIC DISSIPATION
OF INTERSUBBAND SPIN PLASMONS

We now test this general formalism for a quantum well
geometry, where the breakdown of the local approximation
can be clearly illustrated. Spin plasmons in quantum wells14,15

offer intriguing ways of studying the spin dynamics of
interacting electrons in semiconductors. The SCD gives an
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intrinsic contribution to the spin-plasmon linewidth9 which
cannot be avoided even in systems without any disorder. This
provides sensitive tests for first-principles descriptions of the
SCD.

In Ref. 9, the spin-plasmon linewidth was calculated within
a linear response formalism16,17 in which the SCD was treated
using a local approximation. However, in a recent experi-
mental study of intersubband spin plasmons using inelastic
light scattering,15 it was found that the local formalism
from Ref. 9, although giving the right order of magnitude,
significantly overestimates the actual spin-plasmon linewidth.
As we will show, the failure of the local approximation is
related to the crossover between two-dimensional (2D) and
three-dimensional (3D) behavior of the intersubband dynamics
in quantum wells.

We consider the dynamics of conduction electrons in n-
doped GaAs/AlGaAs quantum wells with given sheet density
Ns .18 The quantum well is assumed to be nonmagnetic, i.e.,
there is an equal number of spin-up and spin-down electrons.
We assume the electronic single-particle states to be plane
waves in the x-y plane of the well, and quantized along
the z direction. In the effective-mass approximation, the
subband envelope functions follow from a one-dimensional
Kohn-Sham equation,19

[
− h̄2

2m∗
d2

dz2
+ vconf(z) + vH(z) + vxc(z)

]
ϕj (z) = εjϕj (z),

(15)

where m∗ is the effective mass (for simplicity we assume the
same m∗ in well and barrier). Here, vconf is the quantum well
confining potential, vH is the Hartree potential, and vxc is the
exchange-correlation (xc) potential, which we approximate
using the 3D local-density approximation (LDA). As shown
by Pollack and Perdew,20 the 3D LDA is appropriate for the
ground-state electronic structure of sufficiently wide quantum
wells, such as the systems we will consider here. Furthermore,
we ignore spin-orbit interactions.

Equation (15) describes parabolic subbands with envelope
functions ϕj (z) and energies εj + h̄2k2

||/2m∗, where k|| is
the in-plane wave vector. We assume that only the lowest
subband is occupied, up to the conduction-band Fermi energy
εF = ε1 + πNsh̄

2/m∗.18,19

The single-particle and collective excitations are ob-
tained from time-dependent density-functional theory in linear
response,21 using the adiabatic LDA. Figure 2 shows the intra-
and intersubband excitation spectra, indicating the particle-
hole continuum regions and the intersubband charge- and
spin-plasmon frequency dispersions �c(q||) and �s(q||), where
q|| is the in-plane plasmon wave vector; we here assume
isotropy in the plane, so the plasmon dispersions depend only
on the magnitude q|| of the wave vector. In an unmagnetized
bulk system there would be only a charge plasmon but no spin
plasmon; this is because the particle-hole continuum of the 3D
electron gas is gapless. Similarly, there is no intrasubband spin
plasmon in an unmagnetized 2D electron gas.22

From a dynamical point of view, the intersubband plasmons
are collective oscillations of the electrons in the quantum well:
in a charge plasmon, the spin-up and spin-down electrons
oscillate in phase; in the spin plasmon they oscillate with

)( 1
| |q

 
 (m

eV
)

m

c

s

FIG. 2. (Color online) Electronic excitations in a 20-nm n-
doped quantum well with Ns = 2.3 × 1011 cm−2 (Ref. 15). The
intrasubband and first intersubband particle-hole (p-h) continua are
shaded in light blue and yellow, respectively; the charge and spin
plasmon dispersions are indicated by �c and �s . The two insets
show a pair of inter- and intrasubband p-h excitations, respectively,
which form the dominant spin-plasmon decay channel.

opposite phase. The associated currents flow back and forth
along the z direction. We can express the time-dependent
spin-up and -down current densities of the two plasmons as
follows:

jc↑,↓(q||,z,t) = jc(q||,z)ẑ e−i�c(q||)t , (16)

js↑,↓(q||,z,t) = js(q||,z)ẑ e−i[�s (q||)t±π/2], (17)

where ẑ is a unit vector along the z axis. We have used here a
mixed (q||,z) representation, defined via a Fourier transforma-
tion over the in-plane coordinates r|| = (x,y), which accounts
for the fact that the system is homogeneous in the plane and
quantum confined along z. In the following we will limit
the discussion to the case q|| = 0. This results in technical
simplifications, and it is justified as in practice the plasmon
wave vectors are rather small (see Fig. 2), so the plasmon
linewidth at zero q|| will not differ much from the linewidth at
the finite values of q|| considered experimentally.

In the two-level approximation, the charge and spin
plasmons have the same velocity field v12(z) = jc,s(z)/nσ (z),
given by

v12(z) = h̄

m∗nσ (z)

[
ϕ2(z)

d

dz
ϕ1(z) − ϕ1(z)

d

dz
ϕ2(z)

]
, (18)

where nσ (z) = nσ̄ (z) = n(z)/2. In Ref. 9 we derived, within
the framework of time-dependent spin-current density func-
tional theory, the following expression23 for the SCD linewidth
of the spin plasmon at q|| = 0:

loc
SCD = e2Ns

4�s

∫
dzReρhom

↑↓ (�s ; n↑(z),n↓(z))v2
12(z)n2(z).

(19)

Equation (19) is physically very appealing: its structure reflects
the SCD power loss derived phenomenologically from Eq. (1),
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TABLE I. Experimental and calculated spin-plasmon linewidths
(in meV) for two different quantum well samples.

2expt 2loc
SCD 2nloc

SCD 2nloc
SCD + xc

Sample 1 (Ref. 14)a 0.16 0.40 0.014 0.015
Sample 2 (Ref. 15)b 0.12 0.40 0.020 0.021

aWidth 25 nm, Ns = 1.6 × 1011 cm−2, μ = 1.1 × 106 cm2/V s.
bWidth 20 nm, Ns = 2.3 × 1011 cm−2, μ = 2 × 107 cm2/V s.

and suggests a simple, local, Ohmic-like dissipation of the spin
currents.

loc
SCD can be compared to experimental results for quantum

wells from inelastic light scattering.14,15 2SCD is the SCD con-
tribution to the full width at half maximum of the spin-plasmon
peak; from Table I we see that the local approximation overesti-
mates the linewidth by a factor of 2–3 in two different systems.

The overdamping of the local approximation (19) suggests
that a different approach is needed: the local approximation
may be underestimating the effect of inhomogeneities while its
use of a homogeneous 3D system as reference frame implies
that quantization along the growth axis is not properly taken
into account. Thus, the SCD linewidth of intersubband spin
plasmons needs to be generalized to a nonlocal form which
fully accounts for inhomogeneity and quantization.

To do so, we use our general formalism for the inhomo-
geneous spin transresistivity presented above to calculate the
spin-plasmon linewidth. By comparison with Eq. (3), and using
a mixed (q||,z) representation, we obtain

nloc
SCD = e2Ns

2m∗�s

∫
dz

∫
dz′Reρzz

↑↓(q|| = 0,z,z′,�s)

× nσ (z)nσ̄ (z′)
[
v2

12(z) + v12(z)v12(z′)
]
. (20)

Notice that here we need only the zz component of the spin-

transresistivity tensor Re
↔
ρσσ̄ , because the currents associated

with the plasmon are along the z direction. The main task
is to obtain Reρzz

↑↓(q|| = 0,z,z′,ω) from Eq. (12) by Fourier
transformation with respect to the in-plane coordinates. The
calculation is aided by momentum conservation due to the ho-
mogeneity in the quantum well plane, which can be accounted
for in Eq. (12) by multiplying the RPA response functions with
δ functions: for instance, Imχ RPA

σ̄ σ (q,q′,ω′)δq||−q′
|| , and similarly

for all RPA response functions. Furthermore, we express the
Coulomb interaction as

vq =
∫

dz eiqzzv2D
q|| e

−q|||z|, (21)

where v2D
q = 2π/q|| is the 2D Coulomb interaction. After

lengthy but straightforward manipulations, we obtain

nloc
SCD = e4h̄

2m∗2V 2

Ns

�2
s

∫
dz

∫
dz′ [v2

12(z) + v12(z)v12(z′)
]∑

q||

(
v2D

q||

)2
q2

||

∫ ω

0

dω′

π

∫
ds1

∫
ds2 sgn(z − s1) e−q|||z−s1| sgn(z′ − s2)

× e−q|||z′−s2|{Imχ RPA
σ̄ σ (q||,s1,s2,ω

′)Imχ RPA
σ σ̄ (−q||,z,z′,ω − ω′) + Imχ RPA

σ̄ σ̄ (q||,s1,z
′,ω′)Imχ RPA

σσ (−q||,z,s2,ω − ω′)
}
. (22)

We have evaluated Eq. (22) for the two experimentally
studied quantum wells; the results are given in Table I. It
can be seen that 2nloc

SCD is now smaller than the experimental
linewidth, as expected: the total linewidth will include extrinsic
contributions from disorder, interface roughness, phonons, etc.
in addition to the intrinsic SCD contribution. Indeed, sample
1 has the larger linewidth 2expt mainly because of its smaller
mobility μ (which indicates more disorder), in spite of the fact
that the SCD contribution is smaller than in sample 2.

We also considered the impact of dynamical exchange-
correlation (xc) effects beyond the RPA by replacing Imχ RPA

σσ ′
with Imχ RPA+xc

σσ ′ in Eq. (22), i.e., by including an xc local
field factor. In contrast to the findings of Ref. 24 we observe
only a slight increase of the SCD plasmon linewidth (see the
rightmost column of Table I).

We will now discuss why the nonlocal approach success-
fully reduces the spin-plasmon linewidth. Let us first look
at the structure of Eq. (22). The RPA response function
matrix is defined as [χRPA]−1 = [χ0]−1 − fH, where fH is

the Hartree kernel, and in mixed representation the quasi-2D
noninteracting response function is

χ0
σσ ′(q||,z,z′,ω)

= δσσ ′

occ∑
j=1

∞∑
l=1

Flj (q||,ω)ϕj (z)ϕl(z)ϕj (z′)ϕl(z
′). (23)

Flj (q||,ω) has a form similar to a 2D Lindhard function,
and defines a 2D particle-hole (p-h) continuum for each
pair of subband indices l and j .18,21 In contrast to the local
approximation, χRPA, through Eq. (23), therefore explicitly
accounts for the spectral information related to the quantization
and strong inhomogeneity along the growth direction.

The intrinsic dissipation of the spin plasmons arises from
a decay of the coherent plasmon mode (moving along z) into
incoherent pairs of p-h excitations moving in the plane of the
well. This can be explicitly seen already in Eq. (11) from the
presence of the four-point function, which describes correlated
pairs of p-h excitations.

However, the available continuum of p-h excitations
strongly depends on the system. The local approximation
assumes that, independent of the geometry of the system, the
plasmon couples locally to a 3D continuum. By contrast, in a
quantum well the continuum is restricted to the 2D in-plane
direction, due to quantization. This creates a bottleneck for
energy conservation, and hence reduces the plasmon linewidth.

The plasmon is a coherent superposition of intersubband p-
h excitations. To dissipate its energy, it decays into incoherent
p-h pairs; thus, the most efficient decay channel would be
decay into two intersubband p-h pairs, i.e., j = 1 and l = 2 in
Eq. (23). However, energy and momentum must be conserved:
the two p-h pairs must have total energy ω and total in-
plane momentum q|| = 0. The energy conservation blocks the
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intersubband-intersubband decay channel. The next possibility
is one intrasubband and one intersubband (j = l = 1) p-h pair
(see the insets in Fig. 2), which in fact turns out to be the
dominant contribution to nloc

SCD.

IV. CONCLUSIONS

In this paper, we have derived a general nonlocal approach
to SCD which is valid in inhomogeneous systems. This allows
for a quantitatively accurate description of SCD in nanoscale
device components. In particular, it tells us how collective
excitations in nanostructures dissipate, which is of practical
interest in areas such as plasmonics.25

The application explicitly discussed provides an unequiv-
ocal example of a breakdown of the local approximation
in a situation in which there is a dimensionality crossover
between 2D and 3D. The local approximation assumes a 3D
homogeneous reference system: energy bottlenecks due to
finite-size quantization are therefore not included. Our results
show that to describe the SCD dissipation in nanoscale systems
correctly, detailed spectral information is needed. In view of
the immense popularity of local approximations in condensed-
matter physics and other areas of science, these findings have
important general implications for developing new ways for
treating dynamical many-body effects in nanoscale systems.

For the quantum well systems that we discussed in the
second part of the paper, the intrinsic SCD contribution to the

spin-plasmon linewidth turned out to be significantly smaller
compared to other, extrinsic dissipation mechanisms such as
disorder or interface roughness. In principle, reducing the
disorder and surface roughness in the system should eventually
lead to situations where the SCD becomes the dominating
mechanism; however, it is unclear whether this is practically
feasible (the quantum wells under consideration in this paper
are already very clean, as evidenced by their high mobility). A
better approach to isolate the intrinsic SCD contribution to the
linewidth may be to compare experimental data for the spin and
charge intersubband plasmons for a parabolic quantum well,
as we suggested in Ref. 9. Since intersubband charge plasmons
in harmonically confined systems are protected from intrinsic
dissipation due to electronic many-body effects,26 comparing
the charge- and spin-plasmon linewidths in the same parabolic
well should provide a rather clear-cut experimental way
to identify the intrinsic contributions to the spin-plasmon
linewidth.

ACKNOWLEDGMENTS

We thank Florent Perez and Florent Baboux for valuable
discussions. I.D’A. acknowledges support from EPSRC Grant
No. EP/F016719/1 and from Royal Society Grant No. IJP
2008/R1 JP0870232. C.A.U. is supported by DOE Grant No.
DE-FG02-05ER46213.

1I. D’Amico and G. Vignale, Phys. Rev. B 62, 4853 (2000).
2I. D’Amico and C. A. Ullrich, Phys. Status Solidi B 247, 235
(2010).
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