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Thermal conductivity of Si1−xGex/Si1− yGe y superlattices: Competition between interfacial
and internal scattering

Z. Aksamija*

Department of Electrical and Computer Engineering, University of Massachusetts–Amherst, Amherst, Massachusetts 01003-9292, USA

I. Knezevic†

Department of Electrical and Computer Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706-1691, USA
(Received 23 April 2013; revised manuscript received 3 July 2013; published 22 October 2013)

We investigate thermal transport in Si/Ge and Si1−xGex /Si1−yGey alloy superlattices based on solving the
single-mode phonon Boltzmann transport equation in the relaxation-time approximation and with full phonon
dispersions. We derive an effective interface scattering rate that depends both on the interface roughness (captured
by a wave-vector-dependent specularity parameter) and on the efficiency of internal scattering mechanisms
(mass-difference and phonon-phonon scattering). We provide compact expressions for the calculations of in-plane
and cross-plane thermal conductivities in superlattices. Our numerical results accurately capture both the observed
increase in thermal conductivity as the superlattice period increases and the in-plane vs cross-plane anisotropy of
thermal conductivity. Owing to the combined effect of interface and internal scattering, an alloy/alloy superlattice
has a lower thermal conductivity than bulk SiGe with the same alloy composition. Thermal conductivity can
be minimized by growing short-period alloy/alloy superlattices or Si/Si1−xGex superlattices with the SiGe layer
thicker than the Si one.
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I. INTRODUCTION

Silicon, a cheap and widely available semiconductor ma-
terial, is the basis of modern electronics. However, silicon is
not a good thermoelectric material in its bulk form because of
its low thermoelectric conversion efficiency. Thermoelectric
efficiency is given by a dimensionless figure of merit (ZT ),
which depends on the Seebeck coefficient (S; also known as the
thermopower), absolute temperature (T ), and ratio of electrical
(σ )-to-thermal conductivity (κ) through ZT = S2σT/κ .1 In
most semiconductors, the lattice contribution to thermal
conductivity (κl) far outweighs its electronic counterpart (κe).
The high lattice thermal conductivity of bulk silicon at room
temperature (146 W/m·K)2,3 limits the ZT of silicon to
approximately 0.05,4 which is almost two orders of magnitude
below ZT = 3, the value generally considered desirable in
order for solid-state thermoelectric devices to replace the
conventional methods of cooling and power generation.5

Nanostructuring6,7 and alloying8,9 have both been proposed
as avenues to boost ZT and improve the thermoelectric
conversion efficiency of semiconductors.10–12 Superlattices
offer the possibility of combining quantum confinement in
the thin layers of the superlattice with reduced thermal
conductivity arising from both nanostructuring and alloying.
Bismuth-based superlattices have been shown to possess very
high figures of merit, reaching ZT ≈ 2.6;13 however, silicon-
based superlattices are more attractive from the viewpoint
of their lower cost, wider availability, and well-established
processing. In addition, silicon-based superlattices offer the
ease of integration with existing microelectronics, opening
up the possibility for on-chip cooling and improved thermal
management in ultrascaled CMOS circuits.14–16

Silicon/germanium (Si/Ge)17 and silicon/alloy
(Si/Si1−xGex) superlattices18,19 show promise for application
as efficient thermoelectrics because of their low thermal
conductivity, below that of bulk Si1−xGex alloys.20 Initial

studies and models of the lattice thermal conductivity in
superlattice systems focused primarily on the lattice dynamics
and the effect of periodicity on the phonon velocity.21–23

Models based on the lattice dynamics of the heterostructure
are typically limited to having only a few monolayers of
each material. In addition, it was found that the reduction in
thermal conductivity from the effect of the intrinsic reduction
in phonon group velocity due to phonon confinement and
coherent reflections at interfaces in superlattices is not
enough to account for the measurements24–26 and that the
intrinsic effects lead to a thermal conductivity decreasing with
increasing period thickness, opposite to the trends observed
in measurements.27

Instead, lattice thermal conductivity (especially cross-
plane) in thin superlattices appears to be dominated by
scattering from the rough interfaces between layers.22,28,29

In recent years, considerable theoretical work based on
density functional theory30–33 and molecular dynamics34–37

has addressed thermal transport in semiconductor materials
including Si, Ge, SiGe alloys, and Si/Ge superlattices, in
particular, issues such as interface conductance35 and the
role of interface scattering in the experimentally observed
dependence of thermal conductivity on superlattice period.30

Intrinsic thermal conductivities based on exact solutions to
the PBTE have also been calculated using iterative32 and
variational33 approaches; however, such approaches are most
appropriate for bulk crystals, where size effects arising from
boundary scattering can be treated as an additional relaxation
time, ignoring any explicit spatial variation in the solution. In
contrast, SiGe-alloy-based superlattices,18,19,38 in which both
composition and layer thickness can be used to tune thermal
transport,39,40 have received little theoretical attention.

In this paper, we elucidate the interplay between internal
and interface scattering in Si/Ge and SiGe-alloy-based super-
lattices. Based on solving the phonon Boltzmann transport
equation (PBTE) in the usual single-mode, relaxation-time
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approximation (RTA), we derive an effective interface scat-
tering rate for a superlattice, which depends on the scatter-
ing rate due to internal scattering mechanisms: a complex
interdependence between the probability of scattering from
a rough interface (captured through a wave-vector-dependent
specularity parameter) and the efficiency of internal scattering
mechanisms determines the overall influence of interfaces
on phonon transport. We also discuss the influence of the
random variation of roughness between superlattice layers and
determine that the exponential distribution of roughness rms
heights over layers works best for capturing experimental mea-
surements, especially the in-plane vs cross-plane anisotropy
of the thermal conductivity. We give compact expressions
for the calculations of the in-plane and cross-plane thermal
conductivities of superlattices that accurately capture the
interplay of internal and interface scattering. We compare
the results to the measurements in Refs. 17–19 and 41 and
demonstrate their excellent agreement. The presented model
accurately captures the trend of thermal conductivity increase
with superlattice period increase. We also demonstrate that an
alloy superlattice has a lower thermal conductivity than bulk
SiGe with the same alloy composition. The lowest thermal
conductivities can be obtained in alloy superlattices with very
thin layers. Also, the model accurately captures the in-plane
versus cross-plane anisotropy that has been experimentally
demonstrated.

The paper is organized as follows: in Sec. II, we consider
phonon transport in bulk alloys. In Sec. III, we present
the phonon transport model in layered superlattices, discuss the
calculation of the interface scattering rate, and elaborate on the
momentum-dependent specularity parameter for the treatment
of interface scattering. We also discuss the anisotropy between
in-plane and cross-plane thermal transport in superlattices. In
Sec. IV, we present the lattice thermal conductivity results for
cross-plane transport in Si/Ge and Si/Si1−xGex superlattices
and compare them to measurements in Refs. 17–19 and 41.
We conclude in Sec. V, with a brief summary and a few final
remarks.

II. PHONON TRANSPORT IN BULK ALLOYS

Lattice heat conduction is determined by the phonon
distribution function. The steady-state distribution function
of phonons can be obtained by solving the time-independent
PBTE. In an infinite bulk crystal, no boundaries or interfaces
are present. Internal scattering mechanisms (mass-difference
scattering from isotopes, alloying, and other impurities such
as dopants,42 anharmonic scattering due to resistive umklapp
three-phonon processes,43 and scattering from any defects
present in the crystal44) randomize the phonon momentum
and relax the distribution function.

In the single-mode RTA, the time-independent PBTE is45

�υb(�q) · ∇�rNb(�q,�r) = Nb(�q,�r) − N0
b,T (�q)

τb, Internal(�q)
. (1)

Here, �q denotes the phonon wave vector, �υb(�q) is the phonon
velocity, Nb(�q,�r) is the steady-state phonon distribution func-
tion, and N0

b,T (�q) is the equilibrium (Bose-Einstein) phonon
distribution function at temperature T . The equations hold
for each branch b and interbranch scattering is included in

τ−1
b, Internal(�q), the scattering rate due to all the intrinsic scattering

mechanisms combined:

τ−1
b,Internal(�q) = τ−1

b,U(�q) + τ−1
b,Impurity(�q) + τ−1

b,Alloy(�q). (2)

Here, τ−1
b,U, τ−1

b,Impurity, and τ−1
b,Alloy are the umklapp, impurity, and

alloy (mass-difference) scattering rates, respectively. Details
on the calculation of these rates, which are fairly standard, can
be found in the Appendix.

Out of equilibrium, we can write

Nb(�q,�r) = N0
b,T (�q) + nb(�q,�r), (3)

so the PBTE becomes

�υb(�q) · ∇�rT
∂N0

b,T (�q)

∂T
+ �υb(�q) · ∇�rnb(�q,�r) = nb(�q,�r)

τb, Internal(�q)
.

(4)

In the case of a uniform bulk crystal subject to a small and
uniform temperature gradient,

�υb(�q) · ∇�rT
∂N0

b,T (�q)

∂T
= nb(�q,�r)

τb, Internal(�q)
. (5)

The bulk-limit form of nb(�q,�r) is denoted Rb(�q) and is given
by

Rb(�q) = τb, Internal(�q)�υb(�q) · ∇�rT
∂N0

b,T (�q)

∂T
. (6)

A. Thermal conductivity tensor

The full thermal conductivity tensor καβ is obtained as a
sum over all phonon momenta and branches,43

καβ =
∑
b,�q

τb(�q)Cb,T (�q)υα
b (�q)υβ

b (�q), (7)

where τb(�q) is the total phonon relaxation time [for a bulk
sample, τb(�q) = τb,Internal(�q) from Eq. (2)] and the phonon heat
capacity per mode Cb,T (�q) is given by

Cb,T (�q) = [h̄ωb(�q)]2

kBT 2

e(h̄ωb(�q)/kBT )

[e(h̄ωb(�q)/kBT ) − 1]2
. (8)

υα
b (�q) is a component of the phonon velocity vector cal-

culated from the full phonon dispersion based on Weber’s
adiabatic bond charge (ABC) model.46 The ABC model
includes interactions between ions, bond charges, bond bend-
ing, and long-range electrostatic interactions and has been
shown to reproduce measured phonon vibrational frequencies
in virtually all group IV,46–49 III–V,49,50 and II–VI51 semicon-
ductors with excellent accuracy. The ABC phonon dispersions
for Si can be found in Refs. 46 and 47, and those for Ge in
Refs. 46 and 49. Vibrational properties of Si1−xGex alloys,
including phonon dispersion and velocity, are calculated here
in the virtual crystal approximation.20

Figure 1 shows the thermal conductivity of bulk SiGe alloys
as a function of composition. The strong quadratic dependence
on the germanium fraction x, especially in 
Mass, is the primary
reason for the drastic reduction in thermal conductivity from
pure Si or Ge to the alloy. The thermal conductivity of bulk
alloys quickly decreases for low concentrations and then
reaches a wide and nearly flat plateau for 0.2 < x < 0.8.
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FIG. 1. (Color online) Thermal conductivity of bulk Si1−xGex ,
showing a strong dependence on the germanium fraction x. The
thermal conductivity of bulk alloys quickly decreases with increasing
x, then reaches a plateau for 0.2 < x < 0.8. Experimental data points
are shown for comparison, demonstrating excellent agreement with
the model. The (blue) circles are taken from Ref. 52, and the (red)
squares from Ref. 39. Inset: The calculated thermal conductivity
shows excellent agreement with the measurements from Ref. 2 for
bulk Si [(blue) circles] and Ge [(red) squares] over a wide range of
temperatures.

Experimental data points are shown for comparison,39,52

demonstrating excellent agreement between measured bulk
alloy thermal conductivities and the model.

III. PHONON TRANSPORT MODEL
FOR ALLOY SUPERLATTICES

There are two types of models traditionally used to describe
the transport of phonons across the interface between different
materials. One is the acoustic mismatch model (AMM), orig-
inally proposed by Khalatnikov53 to describe the experiments
by Kapitza on the copper/helium thermal boundary.54 In the
acoustic mismatch model, the interface is essentially viewed as
perfectly smooth and phonons are treated as classical waves,
whose transmission and reflection obey a generalization of
Snell’s law. While this view is valid for long-wavelength
(zone-center) phonons, it is inadequate for shorter-wavelength
phonons,55–57 which scatter strongly from the atomically rough
interface features. The diffuse mismatch model (DMM)58

treats the interface as perfectly diffuse: a phonon is destroyed
at the interface and the replacement phonon’s probability of
transmission to either side of the interface depends on the ratio
of the density of phonon states in the two media.

In this section, our goal is to develop a model that will accu-
rately predict both the cross-plane and the in-plane transport in
realistic superlattices, where layers are generally acoustically
mismatched and the interfaces are always atomically rough.
We wish to go beyond the diffuse mismatch model and allow
for partially (as opposed to completely) diffuse scattering
at the interfaces, to seek a model that will account for
different phonon modes seeing the surface roughness features
differently. It is important to note that we do not assume to
be working with superlattices whose periods are so small and
interfaces so smooth and so well acoustically matched that
wave effects become significant and miniband formation due

to periodicity and essentially ballistic phonon transport are
observed. The model developed here is firmly in the domain
of semiclassical (Boltzmann) phonon transport, applicable to
superlattices whose layer thicknesses are comparable to or
longer than the phonon mean free path, which will occur in
two types of systems: in bulklike SiGe-based superlattices,
where the layer thickness (and consequently the lattice period)
exceeds the mean free path due to internal scattering and
the dominant internal scattering mechanism (typically alloy
scattering; see Fig. 1) governs transports; and in short-
period superlattices with interface roughness, where layers
are thinner than the mean free path for internal scattering,
and the total phonon mean free path will approximately equal
the layer thickness due to phonon scattering at the rough
interfaces.28

The following two limits reveal some important considera-
tions that inform our model.

1. Acoustic mismatch, but no interface roughness. Assume
that we have a single interface between two slabs of acous-
tically mismatched materials. If we were to let the surface
roughness vanish, the remaining interface effects would be
due to acoustic mismatch alone. Now, assume that we put
a thermal contact on each of the two slabs, so that heat
flows across the interface when the two contacts are held at
different temperatures. As there are no diffusive processes
at the interface, the populations of individual phonon modes
would be dictated by the diffusive processes in each slab;
each slab would thermalize individually. In the steady state,
each bulklike slab will reach a constant temperature, but, in
order to accommodate the flux across the interface, there will
be a temperature step at the interface. This scenario reveals
the existence of an interface resistance between mismatched
materials because, in order to accommodate the nonzero
heat flux, the populations of phonons that are connected
via Snell’s law on the two sides of the interface deviates
from the detailed balance that holds across the interface in
equilibrium.

In contrast, if we put two thermal contacts at different
temperatures in one of the directions parallel to the interface,
so that heat flows parallel to the interface, thermal conductivity
would coincide with the thermal conductivity of the two slabs
in parallel. With no flux across the interface, there would
be no temperature step across the interface and the relative
populations of the modes that are connected on the two
sides of the interfaces would remain the same as in equi-
librium, i.e., satisfy detailed balance at every point along the
interface.58,59

The conclusion is that the effect of pure acoustic mismatch
should definitely be captured at the level of cross-plane
thermal conduction, but not in-plane conduction. In addition,
mismatch at the interface does not lead to randomization
of the phonon momentum; instead, mismatch only leads to
partial transmission of the phonon wave, without randomizing
its direction.60 Hence, mismatch should not be captured at
the level of a scattering mechanism in the solution of the
PBTE because the thermal conductivity tensor obtained from
the solution to the PBTE applies equally in both the in-plane
and the cross-plane transport directions. Instead, interface
mismatch should be captured through an additional resistance
at the interface in the case of cross-plane thermal transport.61
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2. Rough interface, no acoustic mismatch. Now, imagine
the case in which we have two acoustically matched lay-
ers, separated by a rough interface (for instance, a grain
boundary between two misoriented grains in a polycrystalline
material). Each time a phonon is about to cross the rough
interface, there is a finite probability p that it will go through
unscattered and the complementary probability 1 − p that
its momentum will be randomized. An unscattered phonon
contributes appreciably to the population of that same mode
on the other side of the interface, therefore the effect of
scattering from roughness should be observable at the level of
phonon distribution. Indeed, in the presence of rough interfaces
and the corresponding effects in phonon distributions, both
cross-plane and in-plane thermal conductivity will be affected,
as observed in experiments.62,63

While in reality it is certainly true that one cannot separate
an atomically rough interface between two materials from the
actual materials, this is effectively what we do here in order to
arrive at a tractable model that satisfies physical limits 1 and
2 above. We treat surface roughness and acoustic mismatch
separately, in the following sense: the interface roughness
is captured at the level of phonon distributions, i.e., it is
incorporated into the solution to the PBTE, while acoustic
mismatch is captured at the level of thermal conductivity
calculation, through an additional acoustic-mismatch interface
resistance.58,64

A. Brief overview and key features of
the phonon transport model

We consider a superlattice consisting of materials 1 and 2,
with layers of thicknesses L1 and L2, respectively. All inter-
faces between them are rough, with a characteristic distribution
of roughness rms heights, and we assume that, on average,
we can characterize each interface with the same effective
rms roughness and thus the same momentum-dependent
specularity parameter p(�q) (see more in Sec. III D). If we forget
about acoustic mismatch, we can think of the layers of the
superlattice as interspersed layers of two sublattices, one con-
sisting of material 1 only and the other consisting of material 2
only, each sublattice having rough interfaces between adjacent
layers. We calculate the thermal conductivity tensors of the two
sublattices, each with layers of a single thickness (L1 or L2),
based on solving the PBTE with partially diffuse interface scat-
tering (Sec. III E). Then, cross-plane thermal conductivities of
the sublattices are combined in series, with an additional con-
tribution from mismatch-induced interface resistance, while
in-plane conductivities are combined in parallel.

The model (i) enables calculation of the full thermal
conductivity tensor for a superlattice within a unified frame-
work, (ii) reproduces the measured in-plane versus cross-
plane anisotropy, and (iii) reproduces the thickness and alloy
composition dependence of the measured cross-plane thermal
conductivity. In the rest of this section, we present the technical
details of the model.

B. A single interface

Consider the case of a single rough interface between two
acoustically matched materials, located at y = 0. Because of

the interface, the crystal is no longer completely uniform,
and the phonon density becomes dependent on y, Nb(�q,y) =
N0

b,T (�q) + nb(�q,y).42 The steady-state PBTE can be written as

�υb(�q) · ∇�rT
∂N0

b,�q(T )

∂T
+ υb,⊥(�q)

∂nb(�q,y)

∂y
= nb(�q,y)

τb, Internal(�q)
,

(9)

which we must solve for nb(�q,y). The solution of Eq. (9) in
this case is specified by the boundary condition nb(�q,0) for
the phonon distribution at the interface, while the solution will
tend to the bulk RTA solution Rb(�q) away from the interface.42

Consequently, we can write the complete solution nb(�q,y) of
Eq. (4) as a combination of nb(�q,0) and the RTA expressions

nb(�q,y) = Rb(�q){1 − exp[−y/τb, Internal(�q)υb,⊥(�q)]}
+ nb(�q,0+) exp[−y/τb, Internal(�q)υb,⊥(�q)], (10)

where τb, Internal(�q)υb,⊥(�q) is the mean free path in bulk due
to internal scattering. The second term in Eq. (10) is the
contribution to nb(�q,y) from all the phonons in the same mode
that existed at y = 0+ and remained unscattered until they
reached y.

The boundary condition nb(�q,0+) at an interface is dictated
by the interface roughness. The probability that a phonon
will pass through the interface unscattered is given by the
specularity factor p(�q). For a right-moving phonon (i.e., one
moving in the positive y-direction) with momentum �q and
velocity component υb,⊥(�q) perpendicular to the interface,
a fraction p(�q) of the Nb(�q,0−) incoming phonons will
be transmitted unscattered, while the remaining 1 − p(�q)
phonons will be diffusely scattered and randomized. We can
write the boundary condition at the interface as65

Nb(�q,0+) = p(�q)Nb(�q,0−) + [1 − p(�q)]N0
b,T (�q). (11)

[The scattered portion of the solution, given by the the second
term on the right-hand side of Eq. (11), relaxes back to the
equilibrium phonon distribution.] The first term in Eq. (11)
tells us that a fraction p(�q) of the surplus phonons in mode
�q will continue along the path defined by their group velocity
υb,⊥(�q); i.e., Eq. (11) can be written as

nb(�q,0+) = p(�q)nb(�q,0−), (12)

where nb(�q,0−) is the number of phonons in mode b,�q to the
left of the interface.

C. Effective interface scattering rate for a superlattice

Assume we have a superlattice with layers of thickness L.
All layers are made of the same material but separated by
rough interfaces, and all interfaces have the same scattering
properties, i.e., the same specularity parameter p(�q). Under

155318-4



THERMAL CONDUCTIVITY OF Si1−xGex /Si . . . PHYSICAL REVIEW B 88, 155318 (2013)

these assumptions, the purpose of this section is to derive the
phonon population inside a single layer.

After a phonon enters a layer at y = 0, we can trace its path
as in Fig. 2. Every time the phonon reaches an interface, it has
probability p(�q) of continuing unscattered into the neighboring
layer and probability 1 − p(�q) of being scattered diffusely.
Inside the layer, the phonon can undergo scattering due to
internal scattering mechanisms.

As a result, the phonon distribution at a given y inside
the layer carries contributions from phonons that did not
cross any interfaces between having been created (as a
result of an internal scattering event) and reaching y, along
with contributions from all the phonons that were generated
in preceding layers and have crossed one, two, three, or
more interfaces unscattered in order to reach y. Based on
Eqs. (10) and (12), we thus obtain an infinite sum of the
form

n(0−)

n(L−) [1 − p(q)]n(L−)

[1 − p(q)]n(0−)

p(q)n(L−)

ΘI

p(q)n(0−)

η

υ(q)τInternal(q)

FIG. 2. (Color online) Phonon trajectory inside a single layer of a
superlattice. The phonon has probability p(�q) of crossing an interface
unscattered and probability 1 − p(�q) of scattering and having its
momentum randomized. Inside the layer, the phonon’s trajectory can
be interrupted by internal scattering mechanisms.

nb(�q,y) = Rb(�q)[1 − exp (−y/τb, Internal(�q)υb,⊥(�q))] + p(�q) exp (−y/τb, Internal(�q)υb,⊥(�q))

×{Rb(�q)[1 − exp (−L/τb, Internal(�q)υb,⊥(�q))] + p(�q) exp (−L/τb, Internal(�q)υb,⊥(�q))

×{Rb(�q)[1 − exp (−L/τb, Internal(�q)υb,⊥(�q))] + · · ·}}. (13)

Here, the term proportional to p(�q)m describes the contribution from phonons that crossed m interfaces unscattered in
order to reach y. Written compactly,

nb(�q,y) = Rb(�q)

{
1 − [1 − p(�q)] exp[−y/τb, Internal(�q)υb,⊥(�q)]

∞∑
k=0

p(�q)k exp[−kL/τb, Internal(�q)υb,⊥(�q)]

}
. (14)

The sum can be expressed in closed form as a product of the RTA bulk solution, Rb(�q), and a factor due to the periodic array of
partially diffuse interfaces spaced by L:

nb(�q,y) = Rb(�q)

{
1 −

[
1 − p(�q)

1 − p(�q) exp[−L/τb, Internal(�q)υb,⊥(�q)]

]
exp[−y/τb, Internal(�q)υb,⊥(�q)]

}
. (15)

If we substitute nb(�q,y) and Rb(�q) from Eq. (6) into Eq. (4),
then average the whole equation along the y direction over
the layer, we can define an effective interface scattering rate,
τ−1

Interface(�q), through42

Rb(�q)

τb, Internal(�q)
=

[
1

τb, Internal(�q)
+ 1

τInterface(�q)

]
〈nb(�q,y)〉. (16)

Here, 〈· · ·〉 represents an average over y. The interface
scattering rate is then obtained as

1

τInterface(�q)
= υb,⊥(�q)

L

Fp(�q,L)

1 − τb, Internal(�q)υb,⊥(�q)
L

Fp(�q,L)
, (17)

where a mode-dependent scaling factor Fp(�q,L) is given by

Fp(�q,L) = [1 − p(�q)]{1 − exp[−L/τb, Internal(�q)υb,⊥(�q)]}
1 − p(�q) exp[−L/τb, Internal(�q)υb,⊥(�q)]

.

(18)

This formulation of interface scattering allows for the rates
of internal and interface scattering to be added together,66

despite their interdependence. The factor given by Eq. (18)

encapsulates the competition between interface and internal
scattering: the effective strength of interface scattering will
depend on the strength of the competing internal scattering
mechanisms. There are two extremes to this effect. When
internal scattering is very strong, such as in alloy layers of
a superlattice, the internal scattering mechanisms will tend
to minimize the effect of the interfaces, which results in the
interface scattering rate being reduced to a simpler form (limit
τb, Internal → 0),

1

τInterface(�q)
= υb,⊥(�q)

L
[1 − p(�q)]. (19)

On the opposite extreme, where interface scattering is
strongly dominant (as in the case of pure crystal layers
thinner than the mean free path for internal scattering), internal
scattering can be considered very weak (τb, Internal → ∞).
In this limit, the interface scattering rate reduces to the
well-known expression derived by Ziman,67

1

τInterface(�q)
= 2υb,⊥(�q)

L

1 − p(�q)

1 + p(�q)
, (20)

155318-5



Z. AKSAMIJA AND I. KNEZEVIC PHYSICAL REVIEW B 88, 155318 (2013)

10−2 10−1 100 101 1020

0.5

1

1.5

2

τCasimir/τInternal

τ C
a
si
m

ir
/
τ I

n
te

rf
a
c
e

p

FIG. 3. (Color online) Interface scattering rate versus internal
scattering rate [both rates are given in units of the Casimir rate,
υb,⊥(�q)/L] for values of the specularity parameter p(�q) ranging from
0.1 to 1, in 0.1 increments. The direction of increasing p(�q) is marked
by the arrow. Increasing specularity decreases the overall rate of
interface scattering, as well as the competition between interface
and internal scattering mechanisms. In the diffuse case (smaller
p), there is a larger variation in the interface scattering rate due
to competing internal scattering. Overall, the maximum variation due
to competition between interface and internal scattering can account
for a factor of 2 difference in the interface scattering rate.

with the additional factor of 2 due to the two-dimensional slab
geometry of a single layer (the ratio of perimeter length to
cross-sectional area of a slab of thickness L is P/A = 2/L in
the limit of a very thin slab).68

The behavior of the internal scattering rate between the two
extremes is shown in Fig. 3, where we plot the value of the
interface scattering rate τ−1

Interface(�q) [in units of the “Casimir”
rate τ−1

Casimir(�q) = υb,⊥(�q)/L] as a function of the internal
scattering rate τ−1

b, Internal(�q) in the same units. We can see the
limit where interface scattering dominates on the left, and
the opposite limit where internal scattering dominates on the
right side of the plot. Overall, the variation in the internal
scattering rate can be a factor of 2 for the completely diffuse
case [p(�q) = 0], but this variation decreases for more specular
interfaces, where p(�q) is closer to 1.

D. Effective specularity parameter for a superlattice

Previous calculations relied on treating the interface scat-
tering with an empirical specularity parameter, which is then
either assumed to be zero66 (corresponding to com-
pletely diffuse interfaces) or adjusted empirically to fit
experiments.59,69,70 In our model, in order to accurately
treat phonon scattering from a series of atomically rough
interfaces with different roughness rms heights η, we employ
the momentum-dependent specularity parameter p(�q). If all
interfaces had the same rms roughness height, we could
describe the entire superlattice with a single p(�q); however,
since the rms heights η of the rough interfaces will be randomly
distributed around an average rms height �, we must describe
the rms roughness heights of all the interfaces in a superlattice
by a probability distribution function P (η).71 The probability
distribution of interface roughness heights is not known a
priori; however, we can choose a suitable distribution function

based on a small set of reasonable assumptions. The roughness
heights of the superlattice interfaces are uncorrelated, but they
are similar because the same process is used repeatedly in
all layers of the superlattice. We expect that the distribution
function P (η) should therefore go smoothly to 0 in the limit
of η = ∞ and should have an average value given by a single
parameter—the average, or effective, rms interface roughness
height �. These criteria are well satisfied by several standard
distributions, namely, the exponential,71,72 the half-normal,
and the Rayleigh distribution, given by

Pexp.(η) = 1

�
exp

(
− η

�

)
, (21a)

Phfn.(η) = 2

π�
exp

(
− η2

π�2

)
, (21b)

Pray.(η) = πη

2�2
exp

(
−πη2

4�2

)
. (21c)

All three distributions have � as their mean.
The effective value of the specularity parameter p̄(�q) is then

obtained from the momentum-dependent specularity parame-
ter for a single interface,47 p(�q) = exp(−4η2q2 cos2 �I ), by
averaging over the distribution of interfaces present between
the layers of the superlattice. This is achieved by integrating
the single-interface specularity parameter p(�q) over the prob-
ability distribution function P (η) of the rms roughness heights
of the individual interfaces:67,72

p̄(�q) =
∫ ∞

0
P (η) exp(−4η2q2 cos2 �I )dη. (22)

Using Eqs. (21) for P (η) and integrating as in Eq. (22),
we derive a set of new analytical expressions for the effective
specularity parameter p̄(�q) for each of the distributions given
in Eqs. (21) as

p̄exp.(�q) =
√

π exp
(

1
4�q cos �I

)
erfc

(
1

4�q cos �I

)
4�q cos �I

, (23a)

p̄hfn.(�q) = 1√
4π�2q2 cos2 �I + 1

, (23b)

p̄ray.(�q) = π

16�2q2 cos2 �I + π
, (23c)

where erfc is the complementary error function. The expres-
sions in Eqs. (23) allow us to connect the effective specularity
parameter p̄(�q) with the average magnitude of the surface
roughness height �, the phonon wave vector �q, and the
angle �I between the incident phonon and the interface
surface normal (see the schematic in Fig. 2). By comparing
the numerical model for each of the three candidate dis-
tributions to measured data, we can select the one that
best represents the distribution of roughness heights of the
interfaces in a superlattice. In the remainder of this paper, the
exponential distribution will be used because it offers the best
agreement with measured data.

E. Superlattice thermal conductivity tensor. Interface resistance

To calculate the thermal conductivity tensor of a SiGe-
alloy-based superlattice (Si1−xGex /Si1−yGey), with layers of
thickness L1 and L2, respectively, we can think of it as having
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interspersed layers of two sublattices: one consisting only of
Si1−xGex , with layers of thickness L1, and the other having
Si1−yGey layers of thickness L2. The thermal conductivity
tensor of each sublattice can be obtained based on Eq. (7),
with the total relaxation rate τ−1

b (�q) given by the sum of the
internal and interface scattering rates,

1

τb(�q)
= 1

τb,Internal(�q)
+ 1

τb,Interface(�q)
, (24)

where the calculation of τ−1
b,Interface(�q) is done based on Eq. (17).

Once the thermal conductivity tensors for each of the
two alternating layers in the superlattice have been obtained,
they are decomposed into their respective in-plane (assumed
to be along the x axis) and cross-plane (along the y axis)
components, κxx and κyy . Note that we are neglecting possible
in-plane anisotropy.47 The two alternating layers of the
superlattice are combined in series for cross-plane transport
through the superlattice22 and in parallel for in-plane transport
along the plane of the interfaces:73

κ in-plane = L1κ
xx
1 + L2κ

xx
2

L1 + L2
, (25a)

κcross-plane = L1 + L2
L1

κ
yy

1
+ L2

κ
yy

2
+ 1

σ AIM
1

+ 1
σ AIM

2

, (25b)

where 1/σ AIM
1,2 are the additional interface resistance contribu-

tions due to the acoustic impedance mismatch between the two
materials,58 one for each interface (1 → 2 and 2 → 1). The
interface resistance is added to the contribution from partially
diffuse scattering in each layer because it arises from the two
materials’ having different phonon velocity components υ⊥

b (�q)
normal to the interface and, consequently, different acoustic
impedances Z⊥

b,i(�q) = ρiυ
⊥
b,i(�q).70 The interface conductance

κAIM is obtained from the transmission coefficient in the
direction perpendicular to the interface,74

tAIM
b (�q) = 4Z⊥

b,1(�q)Z⊥
b,2(�q)

[Z⊥
b,1(�q) + Z⊥

b,2(�q)]2
, (26)

by summing over all phonon branches b that contribute to
transport in each layer i = 1,2 and all modes �q that satisfy the
energy transmission ω1(�q) � maxb,�q ω2(�q) and critical angle
�I � �c conditions:58

σ AIM
i,T = 1

2

∑
b,�q

Ci,b,T (�q)υ⊥
i,b(�q)tAIM

b (�q)

1 − 〈
tAIM
b (�q)

〉 . (27)

The correction factor in the denominator ensures that the
interface resistance goes to 0 in the limit of a fictitious ideal
interface between two identical materials, where tAIM becomes
unity and interface resistance must vanish.70

IV. RESULTS: THERMAL CONDUCTIVITY
IN ALLOY SUPERLATTICES

In superlattices, the difference between the in-plane and the
cross-plane components of the thermal conductivity tensor,
Eqs. (25), gives rise to strong in-plane/cross-plane anisotropy
in heat transport. The anisotropy is caused by the difference
in the effect of interface scattering on in-plane versus cross-
plane transport: in the in-plane direction, heat is carried

50 100 150 200 250 300 350
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in−plane 4 nm
cross−plane 4 nm
cross−plane 9 nm

FIG. 4. (Color online) Thermal conductivity of a 9-nm-period
Si/Ge superlattice in the cross-plane direction [(blue) triangles] and a
4-nm-period Si/Ge superlattice in both the in-plane [(black) circles]
and the cross-plane directions [(red) squares]. Experimental data,
represented by symbols, were taken from Refs. 41 and 62. The
anisotropy between the in-plane and the cross-plane directions, as
well as the thickness and temperature dependence, is well explained
by our momentum-dependent interface roughness scattering model.

largely by phonons whose velocities are nearly parallel to
the interface and which therefore undergo significantly less
interface scattering than phonons that carry heat cross-plane.47

The effect of anisotropy can be seen in Fig. 4, where excellent
agreement with the measured data, taken from Ref. 41, is
achieved. In choosing the right model for the roughness
distribution from among the exponential, half-normal, and
Rayleigh distributions, we find that the exponential distribution
and p̄ given by Eq. (23a) reproduce the experimental data best,
in particular, the measured in-plane/cross-plane ratio.

Results for 4-nm period Si/Ge superlattices in Fig. 4 (data
from Ref. 41) show a strong anisotropy of thermal conductivity
due to the directional dependence of the phonon velocity and
boundary scattering, as discussed above. In addition, interface
resistance due to acoustic mismatch only affects cross-plane
transport, where heat flux is directed normal to the interfaces.
We find that interface resistance due to acoustic impedance
mismatch plays a minor role relative to the strong effect of
diffuse scattering at the interfaces between successive layers.
The effect of acoustic impedance mismatch is strongest in
Si/Ge superlattices, due to the larger difference in acoustic
wave velocities between the two materials, and the interface
resistance (κAIM)−1 reaches about 2 × 10−9 m2 K/W at room
temperature, in agreement with previous calculations.58,75

With increasing germanium fraction in the alloy layers of
Si/Si1−xGex and Si1−xGex /Si1−yGey superlattices, the differ-
ence in phonon velocities diminishes, further reducing the
effect of the acoustic impedance mismatch.

The computed values of cross-plane thermal conductivity
κcross-plane in Fig. 5 show excellent agreement with the
measurements on Si/Ge superlattices at both high and low
temperatures. Symbols represent the data taken from Ref. 17
for superlattice periods ranging from 3 to 6.5 nm. The rms
roughness amplitude � was taken as the only adjustable
parameter. The value of � varies from sample to sample
and was assumed to be 1.4 Å in thinner samples with 3- and
5-nm period lengths, while the values of 3 and 1.65 Å were
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FIG. 5. (Color online) Cross-plane thermal conductivity of Si/Ge
superlattices with periods ranging from 3 to 6.5 nm. Experimental
data, represented by symbols, was taken from Ref. 17. The general
trend is that thermal conductivity increases with superlattice period;
however, it also depends on the relative thicknesses of the two
constituent materials.

used for thicker samples with period lengths of 6 and 6.5 nm,
respectively. We note here that, although the 6-nm superlattice
has a larger period thickness, the thermal conductivity is
reduced below that of the 5-nm-period superlattice because of
the larger value of �, showing that partially diffuse scattering
at the interfaces can play a dominant role in the lattice thermal
conductivity of short-period superlattices.

The computed values of cross-plane thermal conductivity
also show excellent agreement with the measurements on a
3.5-μm-thick Si0.9Ge0.1 alloy film and 15-nm-period
Si/Si0.4Ge0.6 superlattices, as shown in Fig. 6. Experimental
data, represented by symbols in Fig. 6, were taken from
Refs. 18, 76, and 77. The electronic component of thermal

50 100 150 200 250 300

2
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 κ
 (W

/m
⋅K

)

 T (K)

3.5 μm Si0.9Ge0.1 film
Poly Si0.8Ge0.2 film
15 nm Si/Si0.4Ge0.6 SL

FIG. 6. (Color online) Thermal conductivity of a 3.5-μm
Si0.9Ge0.1 alloy film [(blue) curve with diamonds], a bulk-sintered
Si0.8Ge0.2 alloy (black curve with squares), and a 15-nm-period-
thickness 2:1 Si/Si0.4Ge0.6 alloy superlattice [(red) curve with circles].
Experimental data from Ref. 19 are represented by the (blue)
diamonds and (red) circles, while the data from Refs. 76 and 77 are
given by the black squares. Dashed lines indicate the lattice thermal
conductivity, while solid lines are the total thermal conductivity
including the electronic contribution, which was calculated from the
reported doping densities.
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30 nm Si/Si0.7Ge0.3 SL
15 nm Si/Si0.7Ge0.3 SL
7.5 nm Si/Si0.7Ge0.3 SL
4.5 nm Si/Si0.7Ge0.3 SL
18.1 nm Si0.9Ge0.1/Si0.1Ge0.9 SL

FIG. 7. (Color online) Cross-plane thermal conductivity of
Si/Si0.7Ge0.3 alloy superlattices with period lengths of 4.5, 7.5, 15,
and 30 nm [black squares, (blue) diamonds, (red) downward-pointing
triangles, and black upward-pointing triangles, respectively), showing
that the thermal conductivity in the presence of partially diffuse
interface scattering scales with layer thickness, in agreement with
the measurements and data reported in Ref. 19. In the case of the
18.1-nm Si0.9Ge0.1/Si0.1Ge0.9 superlattice [(red) circles], the presence
of alloying in both layers of the superlattice and the large difference
in the alloy concentration of the layers lead to a dramatic lowering
of the thermal conductivity. All experimental data were taken from
Ref. 19.

conductivity, κe, was calculated using the Wiedeman-Franz
law and the reported measured carrier densities,18,19 assuming
an electron mobility value of μe = 100 cm2/Vs. Alloy films
typically have very rough surfaces, so � was assumed to be 5 Å
for both the 3.5-μm-thick Si0.9Ge0.1 film and the bulk-sintered
Si0.8Ge0.2 alloy, while the 15-nm-period 2:1 Si/Si0.4Ge0.6

superlattice had a � of 1.85 Å, similar to the Si/Ge samples.
The thermal conductivity of alloys reaches a minimum plateau
for x = 0.2 (see Fig. 1) and typically cannot be reduced further
by alloying alone. This was considered to be the “alloy limit.”
However, the 15-nm-period 2:1 Si/Si0.4Ge0.6 superlattice has
a lower thermal conductivity than the bulk-sintered Si0.8Ge0.2

alloy, despite having the same relative proportions of Si and
Ge (both contain 20% germanium because the ratio of the
thicknesses of the Si and Si0.4Ge0.6 layers in the superlattice is
2:1). This reduction is explained by the additional scattering
from the partially diffuse interfaces between layers of the
superlattice, which acts in addition to the alloy scattering to
reduce the thermal conductivity of the superlattice below that
of the corresponding alloy with the same relative participation
of Si and Ge. Therefore, we find that the alloy limit can be
surpassed by utilizing diffuse interfaces.

Figure 7 shows a comparison between the model
results and measurements from Ref. 19 for Si/Si0.7Ge0.3 alloy
superlattices with period lengths of 4.5 nm, 7.5 nm, 15 nm, and
30 nm.78 The 15-nm and 30-nm-period Si/SiGe superlattices
have significantly higher thermal conductivities than the
thinner samples shown in Fig. 7, owing to less influence of the
roughness scattering. Our calculations accurately reproduce
these experimental data from Ref. 19; however, we note
that dislocation formation due to stress is quite possible in
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large-period alloy superlattices38 and has not been included in
this model. Dislocation scattering would become more promi-
nent at low temperatures. In the Si/Si0.7Ge0.3, the difference in
the alloy composition of the two layers was small, leading to
the small value of the rms interface roughness of 0.2 Å in our
model. In contrast, when alloying is introduced in both layers
and the difference in alloy concentration is large, as in the
case of the 18.1-nm-period Si0.9Ge0.1/Si0.1Ge0.9 superlattice,
the thermal conductivity is drastically reduced. The value of
� is larger due to the larger lattice mismatch between layers.
The value used here is 1.2 Å, very similar to the 15-nm-period
Si/Si0.4Ge0.6 superlattice shown in Fig. 6, which also showed a
similarly large difference in the alloy concentration of the two
layers.

V. CONCLUSIONS

In summary, we have presented a model for the calculation
of the full thermal conductivity tensor in Si1−xGex /Si1−yGey

superlattices based on solving the PBTE in the RTA. We have
shown that the lifetime of phonons due to scattering with
the rough interfaces depends not only on the thickness of
each layer and the roughness of the interfaces, but also on
the strength of the competing internal scattering mechanisms,
such as isotope and phonon-phonon umklapp scattering. This
competition between internal and interface scattering leads to
a variation in the interface scattering rate between the case
in which each layer is a single crystal and the case in which
the structure contains alloys. The PBTE-RTA model captures
the competing influences of internal and interface scattering
mechanisms, which play out strongly in silicon/alloy and
alloy/alloy superlattices. The model captures the anisotropy,
temperature, and thickness variation of the measured samples
reported in Refs. 17–19 and 41 very well.

Based on this model, we find that minimal thermal conduc-
tivity is achieved by introducing alloying into both layers in
the superlattice and ensuring that the difference in the alloy
concentration of the two layers is large. Further optimization
is possible by reducing the overall thickness of the superlattice
period, increasing the roughness of the interfaces, and either
introducing alloying into both layers of the superlattice or
minimizing the thickness of the pure layer in silicon-alloy
superlattices. We also expect that superlattices with purely
diffuse interfaces, such as those where quantum dots are
present between layers,79 will lead to a highly controllable
thermal conductivity which scales with thickness.
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APPENDIX: ALLOY, ISOTOPE,
AND UMKLAPP SCATTERING RATES

When two materials are combined in an alloy, such as in the
case of Si1−xGex considered here, the aperiodic mass variation
between the two constituent types of atoms perturbs the lattice
waves and leads to strong alloy scattering of phonons. Much
like other point-defect scattering mechanisms, such as isotope
and impurity, alloy scattering is elastic and has no temperature
dependence.80 The energy dependence of the alloy scattering
rate is calculated from81,82

1

τAlloy(ω)
= π

6
V0
Alloyω

2 D(ω), (A1)

where V0 is the volume per atom and D(ω) is the vibrational
density of states per unit volume.83 The total energy-dependent
vibrational density of states is given by a sum over all phonon
branches b:

D(ω) =
∑

b

∫
d �q

(2π )3
δ[ω − ωb(�q)]. (A2)

The volume integral of the energy-conserving δ function over
the whole first Brillouin zone is calculated from the full phonon
dispersion using the method of Gilat and Raubenheimer.84

The alloy disorder constant 
Alloy(x) has three
components—mass difference, isotope, and strain:


Alloy(x) = 
Mass(x) + 
Iso + 
Strain(x). (A3)

The mass-difference constant 
Mass = ∑
i fi(1 − Mi/M)2,

where fi is the proportion of material i with mass Mi , while
the average mass is M = ∑

i fiMi .85 The same expression also
holds for isotope and impurity scattering within each material
in the alloy.86

For the specific case of the Si1−xGex alloy, the expression
for 
Mass depends on the germanium fraction x in the alloy as


Mass(x) = x(1 − x)
(MGe − MSi)2

(xMGe + (1 − x)MSi)
2 . (A4)

The contribution due to isotopic variation in each of the
constituent materials can be obtained by combining the isotope
constants for each pure material as


Iso(x) = (1 − x)
SiM
2
Si + x
GeM

2
Ge

(xMGe + (1 − x)MSi)
2 , (A5)

where the pure silicon and germanium isotope scattering
constants 
Si and 
Ge were taken from Ref. 85. An additional
component to alloy scattering arising from the strain field due
to the difference in lattice constants of pure Si and Ge and
their alloys has been proposed. The contribution due to strain
is then given by87


Strain(x) = εx(1 − x)
(aGe − aSi)2

a2
SiGe(x)

, (A6)

where aSiGe(x) is the composition-dependent alloy lattice
constant, taken in the virtual crystal approximation, including
bowing.88 The empirical strain parameter is taken to be
ε = 39.20 For most values of germanium concentration x, the
strain contribution 
Strain(x) is found to be much smaller than
the mass-difference component.
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The resistive umklapp phonon-phonon scattering rate was
calculated in the standard general approximation for dielectric
crystals,85

τ−1
b,U(�q) = h̄γ 2

λ

M�bῡ
2
λ

ω2
λ(�q)T e−�λ/3T , (A7)

where the speed of sound ῡb of each branch b is determined
from the average slope of its dispersion curve near the 
 point,
and M is the average atomic mass. The Grüneissen parameter
γb was obtained for each branch from the phonon dispersion
and has the value of 1.1 for the longitudinal acoustic branch and
−0.6 for the transverse acoustic branch.85 The expression in

(A7) contains the exponential term e−�b/3T in the temperature
dependence, which controls the onset of resistive umklapp
scattering for each phonon branch through the branch-specific
Debye temperatures �λ, which were obtained from89

�2
b = 5h̄2

3k2
B

∫
ω2gb(ω)dω∫
gb(ω)dω

, (A8)

where the vibrational density of states function gb(ω) =∑
b,�q δ[ω − ωb(�q)] was calculated for each phonon branch b

from the full dispersion. This way, the temperature dependence
of the contribution from each phonon branch to the total
thermal conductivity is correctly represented.
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