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Magnetic-field-dependent spin decoherence and dephasing in room-temperature CdSe
nanocrystal quantum dots
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We perform and analyze a series of time-resolved Faraday rotation measurements of coherent spin dynamics in a
room-temperature ensemble of CdSe nanocrystal quantum dots (NCQDs) to study the decoherence and dephasing
mechanisms that limit the transverse spin lifetime. Coherent spin lifetimes on the order of nanoseconds have been
previously observed in CdSe NCQDs, but the presence of multiple components with distinct dynamics and strong
inhomogeneous dephasing have made it difficult to study the relevant spin decay mechanisms quantitatively. Here,
we obtain reliable fitting results by ensuring that cross-correlations between model parameters are minimized
for the parameters of interest. Furthermore, we characterize the morphological inhomogeneity of the NCQD
ensemble using transmission electron microscopy to constrain the model parameters that specify inhomogeneous
dephasing. We find that g-factor inhomogeneity-induced dephasing (gID) is not sufficient to explain the magnetic-
field-dependent decay of the spin signal. We propose an additional decoherence mechanism arising from rapid
transitions between the fine structure states of the exciton referred to as fine-structure decoherence (FSD).
By including both gID and FSD in the model, excellent fits are obtained to the data, including a prominent
short-time-scale feature, which has typically been excluded from the fits in previous work.
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I. INTRODUCTION

Control of spin coherence in semiconductors opens the
route to new technologies ranging from spintronics to quantum
information processing.1,2 If such control can be achieved at
room temperature in conventional semiconducting materials,
the possibility for practical devices is greatly increased. Semi-
conductor nanocrystal quantum dots (NCQDs) are a promising
platform for studying, controlling, and exploiting room-
temperature spin coherence.3,4 Previous work has observed
spin coherence lifetime τ ≈ 2 ns in NCQDs synthesized from
II-VI semiconductors (e.g., CdSe), at room temperature.5,6 In
order to exploit spins in these materials, it will be necessary
to understand and control the mechanisms that limit the spin
coherence.7,8

There are primarily two confounding factors that arise in
studying the spin decay mechanisms in NCQDs. First, mea-
surements of spin dynamics in NCQD ensembles generally
show the sum of two distinct components, referred to here as
S1 and S2 components, with different dynamics and decay
characteristics. Second, in these ensemble measurements,
inhomogeneous dephasing plays a significant role in the
decay of the spin signal, particularly, in transverse magnetic
field B �= 0. These effects must be disentangled in order to
accurately measure dephasing and decoherence processes.

In this work, we investigate the spin decoherence and
dephasing behavior present in an NCQD ensemble by fitting
time-resolved Faraday rotation data to predicted models in
different applied magnetic fields. We focus on the low
magnetic field regime where the strength of both decoherence
and dephasing processes are comparable. Given the presence
of two distinct components both exhibiting dephasing and
decoherence processes, the predicted models will necessarily
have significant numbers of parameters. In order to achieve
reliable fitting results, it is critical to constrain as many pa-
rameters as possible, and examine cross-correlations between
free parameters. We image individual NCQDs from the same

ensemble using transmission electron microscopy (TEM). This
permits quantitative characterization of the morphological
inhomogeneity of the NCQD ensemble, thereby constraining
some of the parameters in the model. We then optimize the
form of the model function to minimize cross-correlation
between parameters, and to isolate correlations in parameters
that are not of interest.

We find that the data are not well described by a model
of B-independent decoherence, and B-dependent inhomo-
geneous dephasing, as has previously been suggested.9 We
describe an additional decoherence mechanism, referred to as
fine-structure decoherence (FSD), arising from fluctuations
among the electron-hole exchange- and crystal field-split
fine-structure levels of the exciton ground state. By including
FSD in the model function, the data are well fit at all magnetic
fields, including a prominent short-time-scale feature, which
had necessitated ad hoc treatment in previous models. The FSD
mechanism also provides a resolution to the open question of
how long-lived carrier spin coherence coexists with the much
shorter lifetime of the exciton spin state itself.10

The fitting procedure used here allows us to extract
reliable values for the spin lifetimes at B = 0, with associated
uncertainties. We find zero-field lifetimes for the S1 and S2

components of several nanoseconds, but with significantly
different values. This indicates that the two components arise
from distinct subensembles of NCQDs subject to different
decoherence and dephasing processes. In Conclusion, we
will discuss the possible mechanisms that may be ultimately
limiting these spin lifetimes.

The paper is organized in the following way. In Sec. II,
we review the electronic structure, optical spin pumping, spin
dynamics, and optical spin detection in NCQDs. Then we
present a general model for the measured FR signal. In Sec. III,
the FR measurement setup and the method used to find the
size and shape distribution within the NCQD ensemble is
described. In Sec. IV, we present the FR data, and first compare
to the gID model. Next, we describe the FSD mechanism and
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compare the data to a model including both gID and FSD. In
Sec. V, we discuss the results in the context of previous works
and present conclusions.

II. THEORY AND BACKGROUND

A. Electronic structure of NCQDs

In CdSe NCQDs with a radius of several nanometers,
quantum confinement splits the valence and conduction band
electronic states by tens or hundreds of meV, providing
confined quantum dot behavior at room temperature. The
energy level spectrum may be calculated from effective mass
theory,11 assuming a spherical confining potential. Imposing
different boundary conditions models the contribution of
surface structure to the quantum size levels and to the
electron magnetic moment in NCQDs.12 The lowest-energy
conduction band level, designated 1Se is separated from the
next lowest-energy level by several hundred meV, while the
highest-energy valence band state (lowest-energy hole state),
designated 1S3/2, is separated from the next hole level by
several tens of meV. Therefore the energy difference between
electron levels is much larger than thermal energy at room
temperature, and the energy difference between hole levels is
on the same order as the thermal energy.

The spectrum of electron-hole (exciton) states in NCQDs
displays significant fine structure splitting (FSS) in addition to
the size levels due to confinement.13 In the absence of FSS, the
electron with spin S = 1/2 and hole with angular momentum
J = 3/2 give rise to an eightfold degenerate exciton level.
Given the strong quantum confinement in NCQDs the electron-
hole exchange interaction yields splittings on the order of
tens of meV. When deviations from spherical symmetry are
included due to an ellipsoidal NCQD shape and the wurtzite
crystal structure, one finds that the excitonic levels are further
split, with contributions from these effects also on the order
of 10 meV. The result of the FSS is that in the lowest-energy
exciton size level the degeneracy is generally lifted into five
energy levels. Figure 1(a) illustrates the ground state of a
neutral quantum dot (no exciton), and the first exciton state
(1Se1S3/2) split into five levels, labeled by their angular
momentum projection F along the crystal c axis. The five
levels are made up of three Kramers doublets, one with
F = ±2 and two with F = ±1, and two levels with F = 0,
where the superscripts “L” and “U” denote symmetric and
antisymmetric superpositions of basis states.

Figure 1(b) shows the FSS of the 1Se1S3/2 exciton calcu-
lated using the method of Ref. 14. The NCQDs are taken
to be ellipsoidal with an ellipticity μ = a/b − 1, where a

and b are the semimajor and semiminor axes, respectively.
Figure 1(b) shows the FSS versus mean diameter d of the QDs
with a fixed ellipticity μ = 0.41, and Fig. 1(c) shows the FSS
versus μ with fixed d = 6 nm. The FSS depends strongly on
both NCQD size and shape, and will play an important role
in our understanding of spin dynamics in NCQD ensembles.
As is apparent in Figs. 1(b) and 1(c), there is a particular
value μqs(d) of the ellipticity where in an NCQD with mean
diameter d the crystal field and shape anisotropy contributions
to the FSS cancel each other for the sets of symmetric and
antisymmetric states. An NCQD with this combination of
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FIG. 1. (Color online) (a) Ground state of a neutral quantum dot
and five exciton states labeled by their angular momentum projection
along the crystal c axis. (b) FSS of a prolate CdSe QD with μ = 0.41.
(c) FSS of an NCQD with d = 6 nm vs ellipticity. (d) FSS of a d =
6 nm NCQD vs ellipticity near the quasispherical point in presence
of a 0.1 T magnetic field.

size and shape is referred to as “quasispherical” because the
effects that define a unique NCQD axis are canceled, leaving
the spherically symmetric electron-hole exchange interaction
as the only source of intrinsic FSS.14 A lone hole in the
NCQD also displays strong FSS, which cancels out at μqs. The
subpopulation of NCQDs at or near μqs has been proposed
to play an important role in the observed long-lived spin
dynamics.9 We will see below that a model that includes this
effect can well-reproduce our data.

An applied magnetic field lifts the degeneracy of the three
Kramers doublets, resulting in exciton FSS with eight nonde-
generate levels. Away from μqs where the spacing between the
Kramers doublets is large compared with the Zeeman energy,
the Zeeman splitting can be treated perturbatively. Near μqs,
however, the addition of a magnetic field mixes the exciton
eigenstates yielding two anticrossings of the energy levels.
Figure 1(d) shows the anticrossing with lower energy.

B. Spins in NCQDs

1. Optical spin pumping

Optical spin pumping is achieved when the selection rules
allow preferential excitation of electrons and/or holes with
a particular spin projection. A circularly polarized photon
propagating parallel to the crystal c axis can create an F = ±1
exciton depending on the photon helicity, whereas propagation
perpendicular to the c axis can excite only into the F = 0
exciton state.15 In the ensemble of randomly oriented NCQDs
studied here, the circularly polarized photons generate a net
spin polarization, a superposition of F = ±1, in the suitably
oriented NCQDs. In this work, the pump generates excitons
in higher quantum size levels, and we assume that these
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FIG. 2. (Color online) Charge states of NCQDs. Three possible
ground-state charge configurations, G0, G+, and G− along with the
three resultant excitonic states upon optical excitation, X, X+, and
X−.

states rapidly (<1 ps) decay to the lowest exciton level16

with minimal change in the spin state. This assumption is
supported by the similarity of the spin dynamics presented
here to those resulting from resonant pumping in the same
sample (not shown).

The result of optical pumping depends on the initial state
of the NCQD. As has been widely studied, intermittency of
the fluorescence from individual NCQDs (blinking) reveals
the existence of several possible metastable ground states.17

These are usually attributed to different charge states of the
NCQD. Here, we will consider possible optical excitation
from three ground states, G+ consisting of a single hole in
the valence band, G− consisting of a single electron in the
conduction band, and G0 consisting of no holes or electrons.
Here, the energy of the optical excitation is resonant with
higher-energy transitions, so we do not need to consider Pauli
blocking during the spin pumping process. After the optical
excitation and subsequent rapid energy relaxation, the final
state depends on the initial ground state as shown in Fig. 2.
The G− ground state results in a two electrons and a hole
(negative trion, X−), the G+ ground state results in two holes
and an electron (positive trion X+), and the G0 ground state
results in a neutral exciton X. Excitation into the X state results
in one of the exciton states shown in Fig. 1(a) (or a linear
combination thereof). For excitation into the X+ state, we
can assume that the holes rapidly relax into a spin-zero state,
leaving the twofold degenerate electron spin as the only spin.
Likewise, the X− state results in a pair of electrons in a spin
zero state with the lone hole comprising the only spin.

2. Spin dynamics

Once an F = ±1 exciton has been optically pumped, it may
make transitions to other exciton states with finite probabilities.
Transient grating spectroscopy has provided a tool to measure
these transition probabilities in NCQDs.18 In general, the
exciton states have lifetimes on the order of picoseconds. These
transitions may take place by an electron or hole spin flip
with inverse rates τe ∼ 1 ns and τh ∼ 1 ps, respectively.10,19,20

Transitions between exciton states involving a change in both
the electron and hole states are also possible, but will be
neglected here for simplicity. Though the exciton state is
changed on the time scale of τh, the electron spin state may
persist for a longer time. The measurements presented here are
sensitive to both the electron and hole spins regardless of the
particular exciton state.

When the spin of an NCQD is in a superposition of
eigenstates, the state evolves in time with a relative phase
accumulating to each eigenstate at a rate proportional to the
energy of that eigenstate. In the simplest case of a lone electron

in a transverse magnetic field B, this results in coherent spin
precession at a frequency ω = �EZ/h̄ = gμBB/h̄, where
�EZ is the Zeeman energy, μB is the Bohr magneton, h̄

is Planck’s constant, and g is the effective g factor in the
NCQD. For typical magnetic fields B ∼ 1 T, this results
in ω ∼ 100 GHz. Compared to the g factor in bulk CdSe,
quantum confinement in the NCQDs shifts the electron g

factor9,12

ge(E) = g0 − 2

3

Ep�so

(Eg + E + �so)(Eg + E)
, (1)

where g0 is the free electron g factor, Ep is the Kane energy
parameter, �so is the spin-orbit splitting of the valence band,
Eg is the semiconductor band gap, and the size dependence
is introduced via electron energy E. In the general case of an
exciton in a superposition of fine-structure-split NCQD states,
the large energy splitting between eigenstates (∼1 meV),
gives rise to very rapid evolution of the state (ω ∼ 1 THz).
The exception to this fast dynamics occurs near μqs where
an exciton state composed of a superposition of eigenstates
from the upper or lower manifold of fine-structure states has
splitting on the order of �EZ as shown in Fig. 1(d). For an
exciton in a quasispherical NCQD, Gupta et al.9 find the g

factor gexc = (ge − 3gh)/2, where the size dependence arises
from ge, and gh is taken to be constant. In that work, Eq. (1)
is found to predict the size dependence of the g factor of the
S1 component, whereas gexc is found to match the S2 g factor
with reasonable accuracy. This leads to the assignment of the
S1 component to lone electron spins, either in the X+ state
or after recombination of the X− state, and assignment of
the S2 component to spins in the X state. This assignment
is confirmed by the quenching of the S2 component upon
electrochemical charging of NCQDs.21

An exciton initially in a coherent state will be randomized
after some finite time due to decoherence processes. Further-
more, slowly varying effective magnetic fields (e.g., from the
hyperfine interaction with nuclear spins) may cause dephasing
in a time averaged measurement.22,23 Since the measurements
presented here do not distinguish the time scales associated
with these decoherence and dephasing processes, we will
combine them into a single decay time τ , with the decay
described by an exponential function exp(−t/τ ). Magnetic-
field-dependent ensemble averaging effects, such as dephasing
due to the inhomogeneity of g factors or inhomogeneity of
decoherence times, are not included in τ , and will be discussed
separately.

3. Spin detection

In this work, the Faraday effect is used to measure a
projection of the spin state in the ensemble of NCQDs.
The Faraday effect arises from a difference in the index
of refraction �n for right and left circularly polarized light
induced by spin polarization. In this case, �n primarily arises
from Pauli blocking of optical transitions with selection rules
involving circularly polarized light. In these experiments, �n

is measured as a polarization rotation of linearly polarized
light.24,25

Faraday effect measurements are sensitive to both electron
and/or hole spin. If an F = +1 exciton is generated by σ+
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excitation and then the hole spin is rapidly flipped, the electron
spin still blocks that transition or other transitions involving
the same electron state for σ+ photons. This aspect of Faraday-
effect based measurements explains why a spin signal can still
be measured well beyond the spin lifetime of the exciton state.

C. Model for spin dynamics in NCQDs

In this section, we will develop a general model for the
Faraday rotation signal from the ensemble of NCQDs observed
in these experiments. Beginning with the simple case of a
single NCQD in a transverse magnetic field, a spin-polarized
exciton is generated at time t = 0 into a superposition of
eigenstates and then precesses at frequency ω = gμBB/h̄. The
state is randomized with a characteristic time τ , and so repeated
initialization and measurement yield an exponential decay of
the signal. Measuring a projection of this spin state versus t

yields Faraday rotation signal

θ (t) = �(t)A cos(gμBBt/h̄) exp(−t/τ ), (2)

where �(t) is a step function and A is the amplitude of the
signal at t = 0.

In an ensemble measurement, dephasing arises when there
is a distribution of precession frequencies ω across the
ensemble. For NCQDs in a magnetic field B, this is caused
by a distribution P (g) of g factors. Here, P is a normalized
probability distribution, so that P (g)dg represents the fraction
of QDs with g factor in a range dg about g. By integrating
Eq. (2) multiplied by P (g)dg over all g, we can calculate the
ensemble-averaged FR signal

〈θ (t)〉 = A�(t) exp(−t/τ )
∫ ∞

−∞
P (g)dg cos(αgt), (3)

where α = μBB/h̄. If P (g) is symmetric about a central g

factor g0, then

〈θ (t)〉 = A�(t) exp(−t/τ ) cos(αg0t)P̂ (αt), (4)

where P̂ (αt) is Fourier transform of the g-factor distribution
with respect to αt and represents the decay envelope caused
by inhomogeneous dephasing.

Because of the existence of the S1 and S2 components
discussed above, we must include different sets of parameters
for each relevant component originating from NCQDs in the
X± states or in the X state, respectively. The expected FR
signal is then

〈θ (t)〉 = �(t)
∑
n=1,2

An exp(−t/τn) cos(gnαt)P̂n(αt), (5)

where n = 1,2 refers to the S1 and S2 components.

III. EXPERIMENTAL METHODS AND MATERIALS

We have performed measurements on chemically syn-
thesized CdSe nanocrystal quantum dots purchased from
NN-Labs, Inc. These nanocrystals are synthesized by standard
techniques with the surface stabilized by octadecyl amine.
The NCQDs are suspended at a density of approximately
2 mg/mL in toluene. Here, we present measurements on a
sample of NCQDs with mean diameter of 6.1 nm and first
absorption peak at 627 nm. The absorption spectrum is shown
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FIG. 3. (Color online) (a) Absorbance spectrum of the CdSe
NCQD sample used with d = 6.1 nm. The 50-nm-wide pump
and 30-nm-wide probe wavelength ranges are shown in gray.
(b) Schematic of TRFR experimental setup.

in Fig. 3(a). The same experiments and data analysis are
repeated on NCQDs with mean diameter of 5.7 nm, which
lead to similar results. For optical measurements, the NCQD
colloidal suspension is placed in a quartz cuvette with optical
path length 1 mm. All measurements are at room temperature.

To measure a projection of the spin in the NCQD ensemble,
we employ pump/probe Faraday rotation measurements [see
Fig. 3(b)]. The pump and probe pulses are derived from a
supercontinuum fiber source (Fianium SC450-8PP). This laser
provides broad spectrum (white light) pulses with duration
∼10 ps, with a repetition rate set to 5 MHz unless otherwise
noted. The pump and probe paths are separated by a beam
splitter, and each is passed through a linearly graded high-pass
and low-pass filter. By adjusting the positions of these filters,
we can independently select each beam’s center wavelength
and bandwidth. The pump and probe wavelength ranges used
for measurements are shown in Fig. 3(a). A wide bandwidth
for both the pump and probe is used to avoid selectively
pumping or probing only a part of the inhomogeneously
broadened ensemble of NCQDs. The probe wavelength range
is tuned near the lowest energy interband transitions to
probe energy-relaxed electrons and holes, whereas the pump
wavelength range is tuned to shorter wavelength. The shorter
pump wavelength serves to generate electrons and holes in
higher energy levels, which avoids effects arising from Pauli
blocking, and allows the use of filters to remove scattered
pump light from the detectors. The probe and pump are passed
through optical choppers at f1 = 350 Hz and f2 = 7.5 kHz,
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respectively, to provide modulation for lock-in detection. The
pump beam path includes a retroreflector on a motorized delay
line which adjusts the delay between the pump and probe
arrival at the sample from −0.5 to 16 ns. The pump beam
is circularly polarized via a polarizer and quarter waveplate,
while the probe is passed through a polarizer to provide
linear polarization. The pump and probe are parallel with a
separation of about 1 cm and are then passed through the same
lens, focusing both beams to the same ∼10-μm-diameter spot
within the sample.

The NCQD sample is placed between the poles of an
electromagnet which generates a magnetic field perpendicular
to the laser propagation direction (the Voigt geometry). The
pump pulse generates spin polarized electrons and holes in the
NCQDs. The spin state then evolves in time and is measured
by the Faraday rotation of the probe pulse. The rotation angle
of the probe polarization is then detected using a balanced
photodiode bridge and lock-in detection at frequencies f1 and
f2. By sweeping the pump-probe delay, the dynamics of the
ensemble-averaged spin are mapped out in time.

We measure the duration of the pump and probe pulses
using a time-correlated photon counting setup (PicoQuant
HydraHarp 400) and find pulse half width at half maximum
tpump ≈ 40 ps for the pump pulse and tprobe ≈ 20 ps for the
probe pulse. The observed FR signal will be spread in time
by the finite duration of both pulses effectively performing
a convolution of the signal with a pulse with HWHM tp ≈√

t2
pump + t2

probe ≈ 45 ps. We will see that the signal contains
features both with a time scale long compared to tp and features
limited in time by tp.

Because we are interested in the decay time and envelope
of the FR signal, we must check whether the mechanical
motion of the delay line introduces position-dependent errors.
Specifically, the change in the path length �x ∼ 1.5 m of
the pump beam could give rise to a change in the focus at
the sample, due to imperfect collimation or alignment. To
measure this effect, we set the pulse repetition frequency to
frep = 80 MHz (repetition period trep = 12.5 ns). This allows
us to observe two pump pulses within the range of the delay
line. By comparing the two features separated by trep, we can
determine that these artifacts yield a position dependent error
of 2.8% per nanosecond. Over the range of interest of several
nanoseconds, this yields an error of ∼10%, which can be
considered a systematic error in these measurements.

To measure the inhomogeneity of the NCQD ensemble, we
perform TEM measurements and measure size and ellipticity
of NCQDs in the resulting images. An aliquot of the NCQD
suspension is drawn from the same samples as used for the
optical measurements and prepared by drop casting diluted
NCQD solution on a TEM grid. A typical image is shown in
Fig. 4(a). As discussed above, we consider the NCQDs to be
ellipsoidal, with circular cross-section normal to the crystal c

axis. In order to measure the ellipticity μ, we must identify
NCQDs that are lying with the c axis parallel to the image
plane. This can be accomplished with reasonable accuracy by
selecting only images where the planes of atoms perpendicular
to the c axis are clearly visible in the image, as in the NCQD
labeled (A) in Fig. 4(a). [For contrast, the NCQD labeled (B)
is not suitably oriented.] The major and minor axes of the
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FIG. 4. (Color online) (a) High-resolution TEM image of CdSe
NCQDs. (A) and (C) are two example of properly oriented NCQDs
used for size and shape measurements. (B) is an NCQD not suitably
oriented. Shown in (b) and (c) are size and shape histograms of
NCQDs, respectively. The curve in (c) is a fit to normal distribution
with mean μ̄ and standard deviation δμ.

NCQD are then measured by placing an ellipse on the image
with one axis along the c axis and adjusting the major and
minor axes to match the image [see NCQD (C) in Fig. 4(a)].
We have measured the major and minor axes of 182 NCQDs
in this sample resulting in the histograms of mean diameter
d and ellipticity μ shown in Figs. 4(b) and 4(c). From these
measurements of inhomogeneity, we can compare the FR data
to models that quantitatively include the effects of ensemble-
averaged dephasing and decoherence.

IV. RESULTS

Figure 5(a) shows FR data at B = 0 (dashed red) and
200 mT (solid blue). The pump pulse arrival is centered at t =
0, where a rapid rise is seen as the spin is initialized. At B = 0,
the spin signal then decays away over several nanoseconds.
At B = 200 mT, oscillations are observed in the FR signal
as the spin precesses about the applied magnetic field. The
Fourier transform (FT) of the B = 200 mT data is shown in
Fig. 5(b). Two peaks are clearly visible, corresponding to the
S1 and S2 components. The two-frequency dynamics can also
be seen as a slight beating in the time-domain data [see the
inset of Fig. 5(a)]. Several features of the data are visible by
inspection. The B = 200 mT curve has a faster decay envelope
than the B = 0 curve, indicating B-dependent dephasing or
decoherence. The semilog plot of the B = 0 data in Fig. 5(c)
indicates that the zero-field decay is not exponential, and likely
not even biexponential. Below, we will show that the FSD
mechanism can explain this B = 0 line shape.

155316-5



A. KHASTEHDEL FUMANI AND J. BEREZOVSKY PHYSICAL REVIEW B 88, 155316 (2013)

m
ra

d)

0.4

0.8
0.6

1.0 (a)

0.0

0.1

(a
. u

.)

(b)

(m
ra

d)

(c)10
-3

B = 200 mT
B = 0 mT

FR
 (m

0.0
0.2

-0.2

0 1 2 3 4

0.5            1           1.5 2

1 6 11 16

FT
(

0 1 2 3 4

FR
 (

10
-4

B = 200 mT B = 0 mT

0 1 2 3 4 1 6 11 16
Freq. (GHz)

0 1 2 3 4
t (ns) t (ns)

FIG. 5. (Color online) TRFR data: (a) FR vs delay time at B = 200 (solid blue) and 0 mT (dashed red). The inset shows a closer view of
the data where beating of two oscillation frequencies is evident. (b) FT of the B = 200 mT FR data shown in (a). (c) Semilogarithmic plot of
FR data at zero magnetic field.

In the next sections, we will compare our experimental
results to models including two mechanisms for magnetic-
field-dependent spin decoherence and dephasing. First, we
will consider the model discussed by Gupta et al.,9 of
dephasing arising from inhomogeneous NCQD size (gID) and
B-independent decoherence. We will see that the dephasing
envelope predicted from the measured NCQD size distribution
is in reasonable quantitative agreement with the S1 component,
but not with the S2 component. Additionally, we find that,
as in Refs. 9 and 21, this model does not account for
the shorter time-scale features. We then describe the FSD
mechanism, arising from rapid transitions between different
exciton fine-structure states. In an individual NCQD, this
mechanism leads to an exponential decoherence of the spin
state. Because the FSS depends sensitively on NCQD size and
shape, this results in a distribution of exponential decoherence
times, yielding a nonexponential decay of the ensemble spin
signal. In addition to the B-dependent effects, we will assume a
constant, magnetic-field-independent exponential decay time
τ1,2 for the S1,2 spin ensembles.

Because the models being used to fit the data here, in
general, have a large number of parameters, we must examine
cross-correlations between parameters in the model to ensure
that the fitting procedure yields meaningful results. The
general scheme we will employ is as follows. First, we will
manually select realistic initial values βn for the Np model
parameters and fit a representative data set of FR versus time
(tj ,θj ) with all parameters varied in a nonlinear least squares fit
to model function f (βn; t). This will provide a starting value
for the βn = β0

n that is at least roughly consistent with the data.
Then we obtain the Jacobian matrix Ĵ with elements

Jjn = ∂f (tj )

∂βn

∣∣∣∣
β0

n

. (6)

The correlation matrix Ĉ is then obtained with matrix elements

Cjk = (Ĵ T Ĵ )−1
jk√

(Ĵ T Ĵ )−1
jj (Ĵ T Ĵ )−1

kk

. (7)

From the Np × Np elements of Ĉ, we can evaluate the degree
of independence of each parameter. If Cjk = ±1 for j �= k,
then a small change in βj has the same effect on the model
function as a small change in βk , and these two parameters
would be completely correlated. (By definition, Cjj = 1.) On

the other hand, if a small change in βj alters the model function
in a way orthogonal the effect of a small change in βk , then
the two parameters are completely uncorrelated and Cjk = 0.
If two parameters are highly correlated, then those parameters
are not well determined by the fit. Below, we will disregard
the sign of the cross-correlations and use the matrix |Ĉ| with
elements |Cjk|. In order to get reliable information from our
fitting procedure, we can reparameterize the fit function or
hold some parameters constant to reduce cross-correlations,
or to isolate cross-correlations in fit parameters that are not of
interest.

A. g-factor inhomogeneity induced dephasing

In previous work, inhomogeneous dephasing of spins in
NCQDs has been attributed to a normal distribution of g factors
arising from nonuniform NCQD size.9 The size distribution
leads to a distribution in quantum confinement, which in turn
leads to a distribution of g factors.

The expected dephasing envelope from a g-factor distribu-
tion P (g) is given by the Fourier transform P̂ (μBBt/h̄). From
the measured size distribution, we can estimate P (g) using
Eq. (1) for the S1 component and from gexc = (ge − 3gh)/2
for the S2 component (again, with the size dependence largely
arising from ge, and gh taken to be constant). Given this
relationship, we expect the widths �g1,2 of the g-factor
distributions for the S1,2 components to be related by �g2 =
�g1/2. The g-factor distributions are then used to estimate
the dephasing envelope of S1 and S2 components. Figure 6
shows the electron g-factor histogram calculated using the
TEM size measurements with fits to both normal (a) and
Lorentzian (b) distributions. The shaded region indicates the
1/e confidence interval. If P (g) is a normal distribution with
standard deviation �g, the dephasing envelope

P̂ (t) = exp [−(�gμBt)2/2h̄2], (8)

which is a Gaussian function with standard deviation τ =
h̄/(�gμB). If P (g) is a Lorentzian distribution with HWHM
�g, the dephasing envelope

P̂ (t) = exp (−�gμBt/h̄), (9)

which is an exponentially decaying function with time con-
stant τ = h̄/(�gμB). As shown in Fig. 6(b), the Lorentzian
distribution with �g1 = 0.036 provides a better fit than the
normal distribution, as the normal distribution does not capture
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FIG. 6. (Color online) The electron g-factor distribution of
NCQDs calculated based on TEM size measurements. The red
curves show fits to (a) normal distribution, ∝exp[−(g − ḡ)2/2�g2],
ḡ = 1.005, �g = 0.043 and (b) Lorentzian distribution, ∝1/{1 +
[(g − ḡ)/�g]2}, ḡ = 1.003, �g = 0.036. The shaded regions depict
the 1/e confidence interval for each bin of data, assuming a Poissonian
statistics.

the tails of the histogram in Fig. 6(a). A priori, it is unclear
what distribution function should be expected for P (g). This
distribution is set by the dynamic processes involved in the
nucleation and growth of the nanocrystals and likely depends
on the specific synthesis protocol.

We can compare the FR data to a model including gID
[see Eq. (5)] with different forms of P (g). Additionally, the
model must include convolution with the pump and probe pulse
temporal profile fp(t), taken together as a Gaussian function
with HWHM tp. There is a small nonprecessing background
fbkg = abkg exp(−t/τbkg) + ybkg, which must be included to
achieve a good fit. Such backgrounds have been observed
previously,21,26 and their origin remains unclear. Putting these
terms together, we obtain the model function

〈θ (t)〉 = [�(t)(A1f1(t) + A2f2(t) + fbkg(t))] fp(t), (10)

where

fn(t) = cos(gnμBBt/h̄)P̂n(μBBt/h̄) exp(−t/τn) (11)

in which P̂n is either exponential or Gaussian decay envelope
for each component, n = 1,2, corresponding to a Lorentzian
or normal g-factor distribution. The three parameters An, �gn,
and τn describe the decay envelope, and gn describes the
coherent dynamics of the Sn component. The main effect
of pulse width tp is a broadening of the step that occurs at
t = 0. At t 
 tp, the effect of tp is limited to small changes
in the overall amplitude of the signal. We will first focus on
exponential P̂n, which is supported by the measured g-factor
distribution.

Figure 7(a) shows a fit of the FR data at B = 200 mT to
Eq. (10) with exponential P̂n, allowing all 12 parameters in the
model to vary. Despite the large number of free parameters, the
model does not fit the data well. This is because the short-time-
scale behavior, t � 0.1 ns, is not characterized by the same
lifetime as the longer-time behavior, t � 0.1 ns. Such a short-
time-scale feature is generally observed in FR measurements
of NCQDs9,21,26–29 and is typically ignored either by truncating
the data for short times, or by taking the Fourier transform
which transfers the short time feature into a broad feature in
frequency domain, which can then be ignored. Note that in
previous work with shorter pulse duration, this feature appears
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FIG. 7. Fits to gID model at B = 200 mT: (a) fit to Eq. (10) with
exponential P̂n (b) Fitting result to the same function with data at
t < 0.13 ns excluded. The solid black curve in (b) is fbkg(t).

more sharply peaked in time. Therefore it is likely that the
width of the short-time-scale feature seen here is set by the
pulse width tp in our experiment. For now, we will follow
the strategy of truncating the data, only including t > 0.13 ns
[indicated by the vertical dashed line in Fig. 7(b)].

Though for now we truncate the short-time-scale data, we
do attribute it to FR from optically pumped spins, unlike the
case in GaAs where a pulse-width-limited feature is attributed
to nonlinear optical effects that do not arise from optical
spin pumping.30 Since these dispersive second-order nonlinear
effects do not require excitation, the feature remains prominent
at pump energies within the band gap. In this case, we find
that the short-time-scale feature disappears at pump energies
below the band gap, and in fact scales with pump energy the
same as the longer-time-scale FR signal (not shown).

A fit of the FR data at B = 200 mT and t > 0.13 ns to
Eq. (10) with exponential P̂ is shown in Fig. 7(b). The inset
shows a zoom-in at longer times. Within the time range used
for the fit (to the right of the vertical dashed line), the model
captures many features of the data well, including the shape
of the decay envelope and the coherent precession. Again, it
is clear that this model does not capture the short-time-scale
behavior.

Given the large number of parameters in the model, it
is necessary to study the cross-correlations between model
parameters before assigning any credence to the fits. The
initially chosen parameters β0

n yield an initial set of values
for studying the correlations between parameters. Figure 8(a)
depicts the correlation matrix |Ĉ| calculated for the model
curve shown in Fig. 7(b) (black = 1, white = 0). The
parameters have been grouped to render the matrix roughly
block-diagonal. The parameters that are highly correlated with
each other can be split into groups. The first two groups
correspond to the parameters that govern the shape of the
decay envelopes. The S1 decay envelope is set by A1, τ1, and
�g1, while the S2 envelope is set mainly by A2, τ2, and �g2.
The pulse width tp also is correlated with this second group,
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(a) (b) (c)

FIG. 8. (Color online) Correlation matrices of fit parameters in gID model. The gray color saturation shows the degree of correlation
between the parameters. Black is perfect correlation and white is independence. (a) |Ĉ| for the initial model [fit shown in Fig. 7(a)] (b) |Ĉ|
when tp is fixed and the decoherence and correlation times are combined into ζn. (c) |Ĉ| after introducing A∗

n = An exp(ζnt0).

but with the initial step excluded from the fit, this parameter
has very little impact on the model function. The other main
group of correlated parameters (Abkg, τbkg, and ybkg) govern the
small no-precessing background [shown for reference as solid
curve in Fig. 7(b)]. Because these background parameters are
not of interest for the discussion here, the correlations between
them are not of consequence. The remaining two parameters
g1 and g2 are highly independent of all the other parameters.

The parameters that pertain to the dephasing and deco-
herence properties, which is the subject of this work, are
indicated by the dashed box in Fig. 8(a). Though there exist
significant correlations amongst those parameters, they are
all quite independent of the parameters outside that group
(g1, g2, and the three background parameters). In order to
deal with the cross-correlations amongst the parameters of
interest, first we will note that for both S1 and S2 components,
we can combine the decoherence and dephasing terms in
Eq. (10) into one term exp(−t/τn)P̂n(μBBt/h̄) = exp(−ζnt),
with ζn = 1/τn + �gnμBB/h̄. Making this change combines
the decoherence and dephasing times into a single parameter,
but the dephasing and decoherence contributions can be
ultimately disentangled by the different B dependence of
the two terms in ζn. Also, since tp has little effect on the
model function when the initial step is excluded, we will fix
tp = 45 ps, at the approximate measured value.

With decoherence and dephasing times combined into the
effective decay rates ζn and tp fixed, the resulting correlation
matrix is shown in Fig. 8(b). We have reduced the number
of parameters needed to capture the behavior of interest
from seven to four. There is, however, still fairly significant
correlation between an and ζn. This occurs because t = 0
is not included in the fit, where the difference between a
change in these two parameters is greatest. We can reduce
these correlations with reparameterization A∗

n = An exp(ζnt0),
with a constant t0 = 0.23 ns. This shifts the point where the
exponential is equal to unity to t = t0, within the range of the
fit. With this change made to both components, the resulting
correlation matrix is shown in Fig. 8(c). We now see that
only the background terms show significant cross-correlations
between themselves, and all of the other parameters are highly
independent.

We now perform the least squares fit of eleven datasets
ranging from B = 0 to 200 mT, to the model described

above. These fits have nine free parameters, with four of
them pertaining to the behavior of interest. Figure 9 shows
three of these data sets and corresponding fits, with the insets
showing a zoom of the long-time-scale behavior. Also shown is
the correlation matrix for each fit. [The order of parameters in
the matrix is the same as in Fig. 8(c)]. All fits show reasonable
agreement with the data, and only at the lowest fields do the
parameters become significantly correlated. Figures 10(b)–
10(e) show the parameters An, gn, and ζn versus B, for
B > 40 mT, where the parameters are largely uncorrelated.
The error bars are calculated from QR decomposition of the
Jacobian matrix [see Eq. (6)]. We see that the An and gn are
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roughly constant. The effective decay rates ζn vary linearly,
as indicated by the fits shown in Fig. 10(a). From these
fits, we can obtain τ1 = 0.89 ± 0.30 ns, τ2 = 2.72 ± 1.79 ns,
�g1 = 0.068 ± 0.03, and �g2 = 0.14 ± 0.02.

Though the ζn show linear B dependence, in agreement
with the model of gID and B-independent decoherence, the
values of �gn do not agree with the values obtained from
the measured size distribution. The values of �g1 from the
FR data and the size distribution data differ by about a factor
of 2, and the corresponding values of �g2 differ by about a
factor of 8. Moreover, the previously observed size dependence
of g1 and g2 predicts that �g2 ≈ �g1/2, whereas the fits to
the gID model yield �g2 significantly larger than �g1. This
discrepancy may be partly explained by additional sources of
g-factor inhomogeneity, such as shape anisotropy and surface
structure.31,32 However, it seems unlikely that these effects
would be strong enough to fully explain the discrepancy seen in
the S2 component. This unexpectedly strong dephasing in the
S2 component was also observed in Ref. 9, with no explanation
given. In the next section, we find that the FSD mechanism
can account for this effect.

The fits to the g-factor distribution as calculated from
the size distribution indicate that the dephasing should be
better described by an exponential envelope, rather than a
Gaussian envelope. Using the values of τ1 and τ2 obtained
from the fits above (which do not depend on the form of the
B-dependent dephasing), we can repeat the fit at B = 200 mT
using Gaussian P̂n, and compare to the exponential case. The
resulting fit is shown in Fig. 11, with τ1,2 fixed, but allowing
�g1,2 to vary. The exponential case fits the spin signal better
than the Gaussian case, as expected, although both fail to
capture the short-time-scale peak. This underscores the point
that a complete description of the dephasing behavior requires
knowledge of the form of the g-factor distribution.
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FIG. 11. Fits to gID model with reduced parameters at B =
200 mT. The short time data, t < 0.13 ns, are not included. (a) and
(b) are with exponential and Gaussian P̂n, respectively. Insets show
zoom-in at longer times.

The fitting above shows that the FR data can be described
by the gID model, though there are weaknesses with this
description. First, the short-time-scale behavior must be
excluded from the fit. Second, the magnitude of the B-
dependent dephasing is larger than expected, especially for
the S2 component. In the next section, we will describe a
model that explicitly incorporates the fine structure splitting
of the exciton levels and resolves the problems with the gID
description.

B. Fine structure-induced decoherence

We now compare the FR data to a model including fine-
structure decoherence (FSD) of the spins due to a rapidly
fluctuating random splitting arising from transitions between
different exciton fine structure states. This model is analogous
to the Bir-Aronov-Pikus mechanism for electron spin deco-
herence caused by bound holes,33 but with the fluctuating
splitting given by a combination of exchange interaction
and shape-dependent crystal splitting. Huxter et al.10,20 have
measured the rate of transitions between exciton FSS states
in NCQDs at room temperature to be ∼1 ps−1. At first, this
seems in conflict with the approximately nanosecond-scale
coherent dynamics seen in the FR measurements. However, FR
is sensitive to the net spin of the electrons and holes, regardless
of the particular exciton state. For example, a similar effect
arises in GaAs, where the electron spin coherence time is much
longer than that of the holes.34 Long-lived spin coherence is
observed via FR even though the optically pumped exciton
very rapidly loses coherence. The full treatment of optical
excitation and quantum evolution in the manifold of exciton
fine-structure states is beyond the scope of this work. Here,
we will present an effective theory that captures the essential
physics, and well describes the data. Furthermore, we will find
that the predicted ensemble spin behavior is insensitive to the
details of the exciton state dynamics, justifying the simplified
model.
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The FSD mechanism we describe here is based on two
assumptions: (1) the NCQD exciton state is randomly varied
on short time scales, but without complete loss of spin
information, and (2) there exist NCQDs within the ensemble
where the exciton FSS approaches zero in zero applied
magnetic field. The first assumption is justified by transient
grating measurements20 that find transition times among
exciton states, approximately picosecond, and by TRFR
measurements9 that show coherent spin behavior persisting for
time scales of about nanosecond. The second assumption refers
to the existence of “quasispherical” NCQDs, as hypothesized
by Gupta et al.9 In Fig. 1(c), the calculated FSS displays two
crossings at μ = μqs. If an exciton state within the ensemble
is composed of a linear combination of eigenstates near one
of these crossings, then this satisfies the second assumption.
To model these two assumptions, we introduce a correlation
time τc that describes the random variation of the exciton state.
As an exciton state varies between superpositions of different
eigenstates, the energy splitting fluctuates with a root-mean-
squared (rms) magnitude δE given by the magnitude of the
FSS in that NCQD. Though δE depends on both NCQD size
and shape, we make the simplifying assumption that δE is a
function of NCQD ellipticity μ only, and increases linearly
away from μqs. In an applied magnetic field B, the crossing at
μqs becomes an anticrossing with splitting � ∝ B. Therefore
we take

δE =
√

k2(μ − μqs)2 + �2

=
√

k2(μ − μqs)2 + (γB)2, (12)

where k and γ are constants that describe the slope of δE versus
μ, and the magnitude of δE at the anticrossing, respectively.
Figure 12(a) shows δE(μ) at B = 0 and at B �= 0 for k =
2 meV, γ = 0.1 meV, and μqs = 0.41.

A rapidly fluctuating spin splitting causes decoherence
of a spin state with an exponential decay envelope. The
decoherence rate 1/τ resulting from an isotropic randomly
varying splitting with rms magnitude δE and correlation time
τc can be calculated in the Born-Markov approximation.35 In
the regime where τc � τ ,

1

τ
= (δE)2τc

h̄2

[
1 + 1

(gμBB/h̄)2τ 2
c + 1

]
. (13)

The results presented here are in the regime where
gμBB/h̄ � 1/τc, so we can simplify

1

τ
≈ (δE)2τc

h̄2 . (14)

Combining Eqs. (12) and (14), we obtain an expression for the
decoherence rate

1

τ
= [k2(μ − μqs)2 + (γB)2]τc

h̄2 . (15)

Figure 12(b) shows the resulting spin decoherence time τ

versus μ at B = 0 and B �= 0. This mechanism yields greatly
varying decoherence times depending on the NCQD shape. At
B = 0, τ (μqs) = ∞, and falls off like (μ − μqs)−2. At B �= 0,
the maximum at μqs is reduced with τ (μqs) ∝ B−2 and far
from μqs, also falls off like (μ − μqs)−2. At large values of
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FIG. 12. (Color online) (a) and (b) show δE and τ vs ellipticity μ

in the vicinity of μqs at B = 0 T and B = 0.2 T. (c) The three terms
of Eq. (17). (d) Black circles indicate measured d and μ within the
ensemble. The curve shows μqs(d). [Curves in (a)–(c) are plotted with
μqs = 0.41, k = 2 meV, γ = 0.1 meV, δμ = 0.179, and μ̄ = 0.147.]

|μ − μqs|, the calculated decoherence time τ < τc, which is
outside the range of validity of Eq. (13). These short time
scales, however, are below the resolution of the measurements
here, and therefore will not significantly affect the comparison
of the model to the data.

The effect of the FSD mechanism in an ensemble measure-
ment must take into account the inhomogeneity of NCQD
ellipticity μ, described by a distribution P (μ). Using the
mean ellipticity μ and standard deviation δμ found from
TEM measurements [see Fig. 4(c)], and assuming a normal
distribution, we have

P (μ) = 1√
2πδμ

exp

[−(μ − μ)2

2δ2
μ

]
, (16)

as shown in Fig. 4(c). Integrating the exponential decay with
lifetime given by Eq. (15) over the distribution P (μ) we obtain
the ensemble decay envelope

�FSD(t) = 1√
1 + 2tτck2δ2

μ

/
h̄2

exp

[ −(μ − μqs)2

h̄2/(tτck2) + 2δ2
μ

]

× exp(−tγ 2B2τc/h̄
2). (17)

The three terms of this equation are plotted in Fig. 12(c),
with time on a logarithmic axis. We can see that �FSD(t = 0) =
1, and then decays to zero as time increases. The first term
yields a fast decay at short time scales (∼1 ps). The second
term modifies the decay at short time scales, but then becomes
constant. The main effect of this term is to change the relative
amplitude of the short-time-scale behavior and the longer-
time-scale behavior. If μ̄ = μqs (if the shape distribution is
centered at the quasispherical point), then this term is equal to
unity. As long as the shape distribution has some amount of
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weight at the quasispherical point (|μ − μqs| � δμ), the second
term will change the relative amplitude of the fast decay to
the slow decay by a factor on the order of unity. Finally, the
third term describes an exponential decay with a time constant
proportional to 1/B2. This term is similar to the dephasing
term due to the g-factor distribution but with a decay constant
proportional to 1/B2 instead of 1/B.

The exponential decay term in Eq. (17) represents the spin
dynamics in NCQDs with μ ≈ μqs, which is responsible for
the nanosecond-scale spin dynamics. The points in Fig. 12(d)
show the values of μ and d for all NCQDs measured via TEM.
The solid line represents the calculated μqs(d). The overlap
of μqs(d) with the measured scatter of (μ,d) points suggests
that we expect NCQDs with long-lived spin coherence to exist
within the ensemble. The NCQDs farther from the line in
Fig. 12(d) give rise to the observed short-time-scale behavior.

We will now develop a model function, including the gID
and FSD mechanisms to explain the magnetic-field-dependent
decay envelopes. As discussed above the S1 component is
thought to arise from individual electrons (either in the X+
state or after recombination of the X− state),21 so the splittings
due to the hole spin and the electron-hole exchange interaction
will not affect the S1 spin signal, and thus the FSD mechanism
will not be active in the S1 component. Therefore we will model
the S1 component using gID and B-independent decoherence:

f1(t) = cos(g1αt) exp(−�g1αt) exp(−t/τ1). (18)

We will model the S2 component, attributed to NCQDs in the
X state, using the same terms as above, with the addition of
the FSD ensemble decoherence mechanism:

f2(t) = cos(g2αt) exp(−�g2αt)�FSD(t) exp(−t/τ2). (19)

�FSD also depends on parameters μ, μqs, δμ, k, τc, and γ . We
will use the measured values of μ = 0.147 and δμ = 0.179 and
the calculated value of μqs = 0.409; the rest of parameters will
be discussed below.

As in the previous section, we must closely examine the
model and the resulting fits to the data to extract meaningful
information, given the large number of parameters. This will be
accomplished by studying and reducing the cross-correlations
between parameters in the model, where possible. There are a
total of 15 parameters in this model for which we choose an
initial guess and perform a least squares fit to the data set at
B = 200 mT, shown in Fig. 13(a).

From Fig. 13(a), we see that this model, unlike the model
with gID alone, is capable of describing the data over the entire
range, including both long- and short-time-scale dynamics.
Figure 13(b) shows the correlation matrix |Ĉ| for the fit with
all parameters varied [see Fig. 13(a)], with the parameters
ordered to make |Ĉ| roughly block-diagonal. Black (white)
indicates completely correlated (uncorrelated) parameters.
These parameters are grouped according to which parts of the
FR signal they affect. The decay envelope of the S1 component
is described by A1, τ1, and �g1. The short-time-scale portion
of the decay envelope of S2 is described by A2, k, τc, and tp.
The pulse width tp enters here because the duration of the pump
and probe pulses is most prominently seen in the convolution
with the very short-time-scale behavior. The longer-time-scale
decay envelope S2 is mainly given by parameters γ , �g2, and
τ2, which characterize the random splitting at μ = μqs, the
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FIG. 13. (Color online) (a) Fit to the gID + FSD model at B =
200 mT. The inset shows a close-up. (b) |Ĉ| for the parameters used
in (a). The parameters that primarily define the dephasing and the
decoherence dynamics are enclosed in the dashed box. (c) |Ĉ| with
reduced number of parameters by introducing ζ1 and ζ ∗

2 . The fit
parameter values in (a) are as follows: γ = 0.09 meV/T, g1 = 1.15,
g2 = 1.59, k = 4.5 meV, τ1 = 1.5 ns, τ2 = 1.08 ns.

gID mechanism, and the B-independent decoherence time,
respectively. Again, g1 and g2 describe the oscillation of the
FR signal, and the final three parameters include a small
nonprecessing background.

The parameters we are primarily interested in here are those
pertaining to the dephasing and decoherence envelopes, and
are highlighted by the dashed box in Fig. 13(b). The remaining
parameters describe the spin precession and the background,
and are quite un-correlated with the parameters of interest. The
high degree of correlation between the parameters that describe
the short-time-scale dynamics (A2, k, τc, and tp) is inevitable
given that the details of the dynamics on these short time scales
are below the time resolution of the experiment. Therefore we
cannot ascribe any significance to the specific values of those
parameters. Instead, we will fix three of the four (k, τc, and tp),
and only vary A2 in the fits. The values for these three fixed
parameters are all in the expected range: k = 2.1 meV matches
the typical energy scales of FSS, τc = 1 ps agrees with exciton
transition rates measured in Ref. 18, and tp = 41 ps is close
to the value obtained from time-correlated photon counting.
This leaves the correlations within the two sets of three
parameters defining the longer-time-scale decay envelopes
of the S1 and S2 components. As above, we can combine
exponentially decaying terms together by using ζ1 defined
above, and ζ ∗

2 = 1/τ2 + �g2μBB/h̄ + γ 2B2τc/h̄
2. As before,

ζ1 is a first order polynomial in B, but ζ ∗
2 is a second order
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B = 60 mT
0.0

-0.2

0.8
1.0 (d) 10

-3

10
-4

0.0

0.4
0.2

0.6

B = 0 mT
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FIG. 14. (Color online) Fits of FR data to gID + FSD model with
reduced parameters at different magnetic fields. The insets in (a)–(c)
show a close-up of data and the fits along with |Ĉ|. The insets in (d)
are semilogarithmic plot of the data and fit along with |Ĉ|.

polynomial in B now that we have added the exponential decay
contribution from FSD with decay rate ∝B2. As before, we
can further reduce correlations between the decay rates and the
amplitudes by shifting the zero of the exponential decay, using
the parameter A∗

2 defined above. The resulting correlation
matrix with reduced parameters is shown in Fig. 13(c).

By making the changes described in the previous para-
graph, there are now nine parameters in the model, four
of which affect the dephasing and decoherence behavior.
The remaining five describe the spin precession dynamics,
and a small nonprecessing background. Figure 14 shows the
result of fitting the data to this model at several magnetic
fields, and the corresponding correlation matrices. From
the correlation matrices, we can see that the four dephas-
ing/decoherence parameters are highly uncorrelated from the
five other parameters, and the four dephasing/decoherence
parameters are only partially correlated amongst themselves
at B �= 0. In order to separately extract the different
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FIG. 15. (Color online) (a) ζ1 (blue cicles) and ζ ∗
2 (red squares)

vs B along with linear (dashed blue) and second-order polynomial
(solid red) fits to them. (b)–(e) show A1,2 and g1,2 vs B, respectively.

contributions to the decay contained in ζ1 and ζ ∗
2 , we fit

data sets at 11 magnetic fields from B = 0 to 200 mT. The
model captures the short- and long-time-scale dynamics at
all magnetic fields, well reproducing the shape of the decay
envelope. This can be seen further in the semilogarithmic plot
of the B = 0 data and fit in the inset to Fig. 14(d). The best-fit
parameters are plotted in Fig. 15. A1, A2, g1, and g2 do not
vary greatly with B. By fitting ζ1 versus B to a first-order
polynomial and ζ ∗

2 to a second-order polynomial, we obtain
values for τ1, τ2, �g1, �g2, and γ . The fits are shown in
Fig. 15(a) with the values obtained listed in Table I.

The value of �g1 = 0.057 ± 0.009 and �g2 = 0.040 ±
0.011 are consistent with the values found from the TEM
measurements. Significantly, these values agree with the
expectation that �g2 ≈ �g1/2. The fact that these values
of �g1,2 are somewhat greater than those from the TEM
size measurements suggests that other sources of g-factor
inhomogeneity are present, e.g., surface structure and shape
dependence.31,32 Since γ arises from Zeeman splitting of
degenerate states, we expect γ ∼ μB ≈ 0.0579 meV/T. The
value γ = 0.098 meV/T agrees with this expectation. Finally,
these measurements provide values of τ1 = 1.69 ± 0.28 ns
and τ2 = 3.11 ± 0.47 ns. These decay times are significantly
different from each other, and emphasize that the S1 and S2

TABLE I. Fit parameters in the gID + FSD model.

Parameter Value

τ1 1.69 ± 0.28 ns
τ2 3.11 ± 0.47 ns
�g1 0.057 ± 0.009
�g2 0.040 ± 0.011
γ 0.098 ± 0.001 meV/T
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FIG. 16. gID + FSD model function with tp = 0.5, 5.0, and 40 ps.
Parameter values are from final fit of the previous section with B =
200 mT. Inset shows a close-up of the tp = 5.0 ps curve.

components are subject to different B-independent dephas-
ing/decoherence processes.

V. DISCUSSION AND CONCLUSIONS

Comparison of the FR data to the two models above
demonstrates that the gID model is not sufficient to explain
the observed behavior, but the addition of the FSD mechanism
well-captures the measured decay envelope. To explain the
B dependence of the decay envelope using gID alone, the
magnitude of the effect for the S2 component would have to
be implausibly large, given both the magnitude of the effect in
the S1 component and the prediction from TEM measurements
and effective mass theory. On the other hand, the measured
NCQD size and shape distribution are consistent with the
gID + FSD model, but not with the gID model alone.

Previous FR measurements in NCQDs have observed the
short-time-scale behavior here attributed to FSD.9,21,26,28 In
these works, the short-time-scale behavior is ignored, typically
by eliminating the data at short time. These experiments were
performed with shorter pump and probe pulse duration, tp ∼
100 fs to ∼1 ps. Because in the present work the short-time-
scale behavior predicted by FSD is limited by convolution with
the pump and probe pulses, the short-time-scale feature has
smaller amplitude and larger width than in experiments with
shorter pulse duration. Figure 16 shows the gID + FSD model
function [see Eq. (10) with f1,2 as in Eqs. (18) and (19)] plotted
with tp = 40, 5, and 0.5 ps. On the nanosecond scale axes on
which the FR data is typically plotted, the short-time-scale
feature often appears as a spike with unresolved width. In
some previous work, the short-time-scale feature is plotted off
the y-axis scale (inset to Fig. 16).

The inclusion of the FSD mechanism in the S2 component
but not the S1 component is supported by data in Refs. 21
and 26. Both of these results observe spin dynamics in
NCQDs that can be tuned to include both the S1 and S2

components, or the S1 component only (by charging the
NCQDs electrochemically21 or by tuning the pump energy).26

In both cases, the short-time-scale feature is present if and only
if the S2 component is present (see Fig. 2 in Ref. 21 and Fig. 3
in Ref. 26). The FSD mechanism should also be present in the
dynamics of lone holes, or in the X− state with the electrons in
a spin zero configuration. We do not observe long-time-scale
dynamics reflecting the expected hole g factor, but these states
may contribute to the short-time-scale signal.

The procedure used to fit the data here allows for the
extraction of the zero-field decoherence times τ1 = 1.69 ±
0.28 ns and τ2 = 3.11 ± 0.47 ns with reasonable confidence.
The fact that these numbers differ with statistical significance
suggests that different mechanisms are ultimately limiting
the spin coherence time for the S1 and S2 components.
The S2 component, associated with carrier spin dynamics
in NCQDs containing an exciton, is clearly not limited
by the exciton recombination lifetime τX ≈ 20 ns.36,37 The
lifetime of several nanoseconds is consistent with predictions
of decoherence and dephasing caused by randomly oriented
nuclear spins,22,23 which interact with the carrier spins via the
hyperfine interaction. We would expect the S1 component to
also be affected by nuclear spin induced decoherence, but as
τ1 < τ2, it appears that another mechanism must be further
limiting the S1 lifetime. If the S1 component arises from the
electron spin in the X+ state, then τ1 would be limited by the
nonradiative recombination of the X+ state. While the lifetime
τX+ of the X+ nonradiative recombination is not precisely
known, estimates of τX+ ≈ 0.7 ns, are at least of the correct
order of magnitude.38–40 In negatively charged NCQDs, single
electron spins can be initialized by a process involving Pauli
blocking of transitions to the X− state.21 In that process,
the electron is polarized in the ground state so there is no
possibility of spin decay by recombination. While it is possible
that some other mechanism could limit the single electron spin
lifetime, the fact that we measure τ1 < τ2 suggests that the S1

component arises from the electron in the X+ state, or possibly
a combination of X+ and single electrons polarized via the X−
state.

The results here illustrate that to obtain quantitative infor-
mation about decoherence and dephasing in NCQDs from a fit
to a multiparameter model, there is a need to use a well-defined
procedure for fitting the data in which cross-correlations
between model parameters are understood. Furthermore, we
see that excluding parts of the data in order to improve the
quality of the fit, can alter the results, and therefore such fits
must be treated with caution.

The FSD mechanism presented here provides a resolution
to four separate open questions. First, given the FSS of the
exciton ground state in NCQDs, it was unclear how exciton
spin dynamics should manifest in this ensemble. This led to
the hypothesis that only quasispherical NCQDs give rise to
the observed exciton spin precession. This idea is built into the
FSD mechanism in that only excitons near the quasispherical
point exhibit long-lived spin coherence. Second, FSD cor-
rectly reproduces the previously unexplained short-time-scale
feature, here caused by exciton spins in NCQDs away from the
quasispherical point. Third, FSD accounts for the unexpectedly
strong B dependence of the decay of the spin signal for the
S2 component. In this model, this arises from the anticrossing
in the FSS near the quasispherical point, which has a splitting
proportional to B. Random fluctuations between the levels near
this anticrossing cause decoherence at a rate ∝B2. The fitting
here reveals this parabolic dependence of the decay rate vs.
B. Fourth, transient grating measurements have shown very
short lifetimes for excitons in a particular fine-structure state
despite long-lived spin coherence observed in Faraday rotation
experiments. This has previously been explained by positing
that rapid fluctuations do occur between exciton fine structure
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states, but without total loss of carrier spin information. In
FSD, these rapid fluctuations are the cause of the decoherence
of the long-lived carrier spin.

In the discussion of the FSD mechanism here, the exact
nature of the fluctuations between different exciton fine-
structure states is not discussed. Here, we can avoid this
complex issue as the decay envelope predicted by FSD does
not depend strongly on these details within the resolution
of these measurements, as long as the quasispherical point
is included somewhere within the inhomogeneous ensemble,
and the random splitting becomes large away from it. This
allows us to assume a simple form for the distribution of
random splittings, which allows analytical evaluation of the
ensemble decay profile. Future work may shed light on
how the details of the time evolution of the exciton state
within the manifold of fine structure states affects the spin
dynamics.

The time-resolved Faraday rotation measurements, com-
bined with TEM characterization of the ensemble and fitting
procedures demonstrated here allow for quantitative analysis
of decoherence and dephasing effects in NCQDs. Previously,
this has proven difficult due to the complexity of the observed
dynamics, and the ad hoc nature of the model functions used
for fitting. These techniques will allow future experiments that
study the room-temperature and low-temperature decoherence
and dephasing mechanisms in NCQDs in greater detail, with
the possibility achieving more robust spin coherence in these
semiconductor nanostructures.
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8I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323
(2004).

9J. A. Gupta, D. D. Awschalom, A. L. Efros, and A. V. Rodina, Phys.
Rev. B 66, 125307 (2002).

10V. M. Huxter, V. Kovalevskij, and G. D. Scholes, J. Phys. Chem. B
109, 20060 (2005).

11J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).
12A. V. Rodina, A. L. Efros, and A. Y. Alekseev, Phys. Rev. B 67,

155312 (2003).
13A. I. Ekimov, F. Hache, M. C. Schanne-Klein, D. Ricard,

C. Flytzanis, I. A. Kudryavtsev, T. V. Yazeva, A. V. Rodina, and
A. L. Efros, J. Opt. Soc. Am. B 10, 100 (1993).

14A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and
M. Bawendi, Phys. Rev. B 54, 4843 (1996).

15A. L. Efros, Phys. Rev. B 46, 7448 (1992).
16U. Woggon, H. Giessen, F. Gindele, O. Wind, B. Fluegel, and

N. Peyghambarian, Phys. Rev. B 54, 17681 (1996).
17P. Frantsuzov, M. Kuno, B. Janko, and R. A. Marcus, Nat. Phys. 4,

519 (2008).
18G. D. Scholes, J. Kim, and C. Y. Wong, Phys. Rev. B 73, 195325

(2006).
19C. Y. Wong, J. Kim, P. S. Nair, M. C. Nagy, and G. D. Scholes,

J. Phys. Chem. C 113, 795 (2009).

20V. M. Huxter, J. Kim, S. S. Lo, A. Lee, P. S. Nair, and G. D. Scholes,
Chem. Phys. Lett. 491, 187 (2010).

21N. P. Stern, M. Poggio, M. H. Bartl, E. L. Hu, G. D. Stucky, and
D. D. Awschalom, Phys. Rev. B 72, 161303 (2005).

22J. Schliemann, A. Khaetskii, and D. Loss, J. Phys.: Condens. Matter
15, 1809 (2003).

23I. A. Merkulov, A. L. Efros, and M. Rosen, Phys. Rev. B 65, 205309
(2002).

24S. A. Crooker, D. D. Awschalom, J. J. Baumberg, F. Flack, and
N. Samarth, Phys. Rev. B 56, 7574 (1997).

25S. A. Crooker, J. J. Baumberg, F. Flack, N. Samarth, and D. D.
Awschalom, Phys. Rev. Lett. 77, 2814 (1996).

26J. Berezovsky, O. Gywat, F. Meier, D. Battaglia, X. Peng, and
D. D. Awschalom, Nat. Phys. 2, 831 (2006).

27M. Ouyang and D. D. Awschalom, Science 301, 1074 (2003).
28J. Berezovsky, M. Ouyang, F. Meier, D. D. Awschalom,

D. Battaglia, and X. Peng, Phys. Rev. B 71, 081309 (2005).
29Y. Q. Li, D. W. Steuerman, J. Berezovsky, D. S. Seferos,

G. C. Bazan, and D. D. Awschalom, Appl. Phys. Lett. 88, 193126
(2006).

30A. V. Kimel, F. Bentivegna, V. N. Gridnev, V. V. Pavlov, R. V.
Pisarev, and T. Rasing, Phys. Rev. B 63, 235201 (2001).

31S. J. Prado, C. Trallero-Giner, A. M. Alcalde, V. López-Richard,
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