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Tunneling spectroscopy of a spiral Luttinger liquid in contact with superconductors
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One-dimensional wires with Rashba spin-orbit coupling, magnetic field, and strong electron-electron
interactions are described by a spiral Luttinger liquid model. We develop a theory to investigate the tunneling
density of states into a spiral Luttinger liquid under the proximity effect with superconductors. This approach
provides a way to disentangle the delicate interplay between superconducting correlations and strong electron
interactions. If the wire-superconductor boundary is dominated by Andreev reflection, we find that in the vicinity
of the interface the zero-bias tunneling anomaly reveals a power law enhancement with the unusual exponent.
Far away from the interface strong correlations inherent to the Luttinger liquid prevail and restore conventional
suppression of the tunneling density of states at the Fermi level, which acquire, however, a Friedel-like oscillatory
envelope with the period renormalized by the strength of the interaction.
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I. INTRODUCTION

In a one-dimensional system strong electron-electron inter-
actions cause non-Fermi-liquid physics, which is described
by the Luttinger liquid theory.1 Nowadays quantum wires
with Rashba spin-orbit coupling in the external magnetic field
attract a great deal of attention due to their special charge and
spin transport, as well as spectral properties.2–9 The presence
of spin-orbit coupling leads to a relative shift of the electronic
dispersions for both spin species. Furthermore, a magnetic
field applied to the system lifts the spin degeneracy and causes
the opening of a Zeeman gap in the spectrum. If the chemical
potential lies inside the gap, the system is equivalent to a
spinful Luttinger liquid with a spiral magnetic field. This
peculiar state was abbreviated as a spiral Luttinger liquid
(SLL). In the presence of a bulk s-wave superconducting
order, the wire becomes a topological superconductor and
hosts Majorana zero energy modes.10,11 Compelling evidence
for the latter has been recently reported in experiments.12–15 It
is obviously of great interest to investigate the fate of super-
conducting correlations when embedded into the environment
of the strongly interacting Luttinger liquid. Previous works
considered the phase diagram for this system in the presence
of bulk superconductivity.16–18 Here we develop a theory for
the spatially and energy resolved tunneling spectroscopy of a
spiral Luttinger liquid which is brought into the proximity to
a superconductor (SC) at its boundary. This proposal provides
a way to disentangle the interplay between the complexity of
the superconducting effects and the nontrivial electron liquid
properties.

It is very well known from the context of mesoscopic
conductors that if the normal wire is placed between two
superconductors, thus forming a superconductor-normal-
superconductor junction, its spectral properties are strongly
affected by the proximity effect.19 Indeed, the leakage of
Cooper pairs into the wire induces a nonvanishing supercon-
ducting pair amplitude which opens a gap in the spectrum of the
wire. For wires with a length exceeding the superconducting
coherence length, the gap is small, of the order of Thouless
energy ETh, which evolves into the complete superconducting
gap � in the opposite limit of short wires. If the normal wire is
replaced by the Luttinger liquid conductor, then even without

superconducting perturbations the density of states already has
a striking feature. This is the famous zero-bias anomaly—the
density of states vanishing as a power law near the Fermi
energy.20 One may naively expect that proximitizing the
Luttinger liquid with a superconductor would further facilitate
depletion of the states near the Fermi energy towards opening a
gap. Surprisingly, one discovers an entirely different scenario,
an enhancement of the anomaly—the zero-bias peak—which
physically can be rooted to the coherent backscattering from
the interface of the subgap excitations that lead to the pileup
of states near the zero energy.21 The latter has interesting
consequences for the Josephson effect in the Luttinger liquid
constriction between superconducting leads.22–24 A similar
enhancement mechanism for tunneling has been also discussed
for a Luttinger liquid with impurity.25 Here we study this
physics in the context of spiral Luttinger liquids.

The behavior of the tunneling density of states (TDOS)
is sensitive to the properties of the boundary between the
Luttinger liquid and a superconductor. Competition between
normal and Andreev reflection for this system has been
discussed recently in the literature.26 We consider a perfect
SC-SLL interface that is dominated by an Andreev boundary
condition.21,22 By performing a canonical transformation to
separate a gapless field from a gapped field, and using a
mode expansion, we obtain the low-energy asymptote for
the tunneling density of states analytically. We conclude that
although Zeeman splitting and a Rashba interaction destroy the
TDOS enhancement for the case when the chemical potential
μ is detuned from the Zeeman gap, an enhancement survives
in the SLL limit, namely, when μ lies within the gap. The
power exponent of this anomaly is different as compared to
that in the conventional case of a spinful Luttinger liquid
without spin-orbit coupling. An enhancement manifests only
for distances close to the SC-SLL interface in the wire, but
disappears far away from the contact where strong correlations
inherent to SLL restore conventional power law suppression
of TDOS with additional oscillations. The latter contribution
is reminiscent of Friedel oscillations with the period renormal-
ized by interactions.27 We also compute the tunneling density
of states numerically by using a self-consistent harmonic
approximation and find the result to be consistent with the
analytical calculations.
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FIG. 1. (Color online) (a) Schematic representation of a
superconductor-spiral Luttinger liquid wire system. (b) Band struc-
ture of the wire with Rashba spin-orbit coupling (SOC) and a magnetic
field. The green dashed lines describe the position of the chemical
potential μ for two different cases: (1) |kF |, |kF − kSO| � 1/ξ for
which μ is far above the Zeeman gap; (2) kF = kSO for which μ lays
within the Zeeman gap.

II. MODEL AND HAMILTONIAN

We consider an interacting one-dimensional (1D) quantum
wire with Rashba spin-orbit coupling in the z direction and a
magnetic field in parallel with the wire. Both sides of the wire
are in perfect contact with an s-wave superconductor. We are
interested in the density of states of the wire in the presence of
electron-electron interactions. A schematic setup of the system
under consideration is shown in Fig. 1(a). The Hamiltonian of
the central part, i.e., the 1D Rashba wire with length L, can be
written as

HW =
∫ L

0
dx ��†(x)H (x) ��(x)T +

∫ L

0
dxdx ′Uρ(x)ρ(x ′),

(1)

with

H (x) = − ∂2
x

2m
+ μ + Bσ̂x − i

kSO

m
σ̂z∂x, (2)

where ��†(x) = [�†
↑(x),�†

↓(x)] being the electron annihilation
operators for spin s = ↑,↓ at position x, and kSO is the Rashba
spin-orbit momentum of the wire. The magnetic field is applied
along the x direction, and is assumed to be uniform. The second
term in Eq. (1) represents the electron-electron interaction
with potential U (x − x ′), and ρ(x) = ∑

s �
†
s (x)�s(x) is the

electron density (we choose h̄ = 1 throughout the paper). It is
convenient to perform a spin-dependent gauge transformation,
�↑↓(x) = ψ↑↓(x)e±ikSOx , followed by a standard bosonization
in a linearized spectrum:

ψ±,s(x) = 1√
2πα

ei
√

π
2 �±,s (x,t)

= 1√
2πα

ei
√

π
2 {∓[φρ (x)+sφσ (x)]+θρ (x)+sθσ (x)}, (3)

with the full fermion operator ψs(x) = eikF xψ+,s(x) +
e−ikF xψ−,s(x), where ψ±,s(x) represent the right and left
moving fields, respectively, and α is a conventional short
distance cutoff. Note that this transformation also shifts the
chemical potential μ → μ + k2

SO/2m. After these steps, the
system is reduced to an equivalent spiral Luttinger liquid
model,4,6 which is written in terms of bosonic spin (σ ) and
charge (ρ) fields and reads explicitly as

HW =
∑

ν=ρ,σ

vν

2

∫ L

0
dx[gν(∂xθν)2 + g−1

ν (∂xφν)2]

+ B

2α

∫ L

0
dx cos[

√
2π (φρ + θσ ) − 2(kF − kSO)x],

(4)

where gρ,σ are the interaction parameters and vρ,σ are the
renormalized Fermi velocities. The fast oscillating terms on
the scales ∼2kSOx and ∼2(kF + kSO)x are neglected in Eq. (4).
We discuss two possible cases as shown in Fig. 1(b): (1)
μ is far above the Zeeman gap, i.e., |kF |, |kF − kSO| � 1/ξ

with the correlation length being the minimal scale between
the wire length and thermal length ξ = min{L,vF /T }; (2)
the chemical potential μ lies in the middle of the Zeeman
gap, i.e., kF ≈ kSO. For case (1), the term proportional to B

strongly oscillates and thus is irrelevant in the renormalization
group (RG) sense. Therefore, the magnetic field can be
neglected in the low-energy limit from Eq. (4), and the
model becomes the SC-spinful LL wire system with, however,
an extra term, ∼∫

dx cos[
√

8πθσ ], due to the pair hopping
processes.3 This term induces a spin gap and totally destroys
the anomalous enhancement of TDOS. This behavior is in
sharp contrast with the SC-spinful LL wire without spin-
orbit physics involved.21 For case (2), the cosine is only
slowly oscillating and such a spatial modulation that is due
to 2(kF − kSO)x can be dropped out if |kF − kSO| < 1/ξ .
In that limit, the magnetic field B is relevant and will
grow as energy decreases if gρ + 1/gσ < 2.4,6 Note that
the pair hopping processes are strongly suppressed due to
the Zeeman gap. We will mostly focus on case (2) in this
paper.

III. MODE EXPANSION FOR ANDREEV
BOUNDARY CONDITION

We assume that the Rashba wire-superconductor interfaces
are very clean such that the Andreev reflection is the dom-
inant process at both boundaries. To treat the interfaces in
the deep subgap limit, ε � � with SC gap �, we apply
the following fermion fields matching the condition21,22,26

ψ+,s(x = 0,L) = ∓ieiχ1,2ψ
†
−,−s(x = 0,L), where s stands for

spin-up and spin-down channels, respectively, and χ1,2 are
the phases of the SC order for the left (near x = 0) and
right (near x = L) superconductors. It is important to em-
phasize that the spin-dependent gauge transformation used
above to transform the Hamiltonian leaves invariant both
the Cooper pairing term in the s-wave SC and the Andreev
boundary condition. To proceed, we adopt the canonical mode
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expansion21,22

θρ(x) =
√

π

2
(J + χ )

x

L
+ i

√
1

gρ

∑
q>0

γq sin(qx)(b†ρq − bρq ),

θσ (x) = θ0
σ√
π

+
√

1

gσ

∑
q>0

γq cos(qx)(b†σq + bσq),

(5)

φρ(x) = φ0
ρ√
π

+ √
gρ

∑
q>0

γq cos(qx)(b†ρq + bρq),

φσ (x) =
√

π

2
M

x

L
+ i

√
gσ

∑
q>0

γq sin(qx)(b†σq − bσq),

where χ = χ1 − χ2 is the global phase difference between
two SC islands, bρq and bσq are bosonic operators, γq =
e−qα/2π/

√
qL is the convergence factor, and q = πn/L (n =

1,2, . . .). The zero mode operators, satisfying the commuta-
tions [θ0

σ ,M] = i and [φ0
σ , J ] = i, describe the topological

excitations.28 Note that those are not the eigenmodes for
our system, and just serve as the starting point for the
diagonalization later.

IV. LOW-ENERGY TDOS OF THE WIRE

The magnetic field will flow to strong coupling for gρ +
1/gσ < 2 at low energy. To separate the corresponding gapped
field from a gapless part, one can apply the following canonical
transformation:4

φρ = gρ√
g

φ+ +
√

gρ

gσg
φ−, θρ = 1√

g
θ+ + 1√

gρgσg
θ−,

φσ = 1√
g

θ+ −
√

gρ

gσg
θ−, θσ = 1

gσ

√
g

φ+ −
√

gρ

gσg
φ−,

(6)

where g = gρ + 1/gσ . The Hamiltonian (4) then becomes

HW =
∫ L

0
dx

∑
i=±

ui

2
[(∂xθi)

2 + (∂xφi)
2]

+ B

2α

∫ L

0
dx cos[

√
2πgφ+(x)], (7)

where u+ = (vρgρ + vσ /gσ )/g and u− = (vρ/gσ + vσgρ)/g.
The off-diagonal terms ∼(∂xφ+)(∂xφ−) and ∼(∂xθ+)(∂xθ−)
are neglected in a mean-field treatment for large B.4,8 This
canonical transformation along with Eq. (5) results in

θ+(x) =
√

π

2
N+

x

L
+ i

∑
q>0

γq sin(qx)(b†+q − b+q),

θ−(x) =
√

π

2

√
gρ

gσ

N−
x

L
+ i

∑
q>0

γq sin(qx)(b†−q − b−q),

(8)

φ+(x) = φ
(0)
+√
π

+
∑
q>0

γq cos(qx)(b†+q + b+q),

φ−(x) =
√

gσ

gρ

φ
(0)
−√
π

+
∑
q>0

γq cos(qx)(b†−q + b−q),

where b±, q = (±√
gρbρ/σ, q + bσ/ρ, q/

√
gσ )/

√
g, φ

(0)
+ =

(φ0
ρ + φ0

σ )/
√

g, φ
(0)
− = (φ0

ρ/gσ − gρφ
0
σ )/

√
g, N+ = [M/gσ +

gρ(J + χ )]/
√

g, and N− = (J + χ − M)/
√

g.
The density of states in a wire measured at a dis-

tance x from the left interface is given by the Fourier
transform of the retarded Green’s function GR(x,x ′,t) =
−iθ (t)〈{�(x,t),�†(x ′,0)}〉,

ν(x,ε) = − 1

π
Im

∫ +∞

−∞
dteiεtGR(x,x,t). (9)

Here, �(x,t) = �↑(x,t) + �↓(x,t) and �s(x,t) =
ei(kF +skSO)ψ+,s(x,t) + ei(−kF +skSO)ψ−,s(x,t), where ψ±,s

is obtained using Eq. (3) and the mode expansion Eq. (8). The
correlation function includes the following terms:

〈�(x,t)�†(x,0)〉 =
∑

α=±,s

〈ψα,s(x,t)ψ†
α,s(x,0)〉

+ 〈ψ−↑(x,t)ψ†
+↓(x,0)〉

+ 〈ψ+↓(x,t)ψ†
−↑(x,0)〉. (10)

Some other terms are zero due to the neutrality condition,
i.e., 〈eiAφ

(0)
− · · ·〉 = 0 for A �= 0. Note that this is not true for

〈eiAφ
(0)
+ · · ·〉 due to the cosine potential. In the low-energy limit,

φ+(x,t) is pinned to the local minima of the cosine potential
and behaves as a constant phase. Using the canonical transfor-
mation shown in Eq. (6) and dropping out the constant phase,
the bosonized field �±,s(x,t) introduced in Eq. (3) becomes

�+,↑ = −2
√

gρ

gσg
φ− +

(√
gρgσ

g
+ 1√

gρgσg

)
θ−,

�+,↓ =
(

1√
gρgσg

−
√

gρgσ

g

)
θ−(x,t) + 2√

g
θ+,

(11)

�−,↑ =
(

1√
gρgσg

−
√

gρgσ

g

)
θ−(x,t) + 2√

g
θ+,

�−,↓ = 2
√

gρ

gσg
φ− +

(√
gρgσ

g
+ 1√

gρgσg

)
θ−.

The dual field θ+(x,t) is totally disordered and the correlation
〈eiαθ+(x,t)e−iαθ+(x,0)〉 decays exponentially to zero (as a
function of t), and therefore any term in the density of
states including such correlations does not show a power law
divergence, which can be safely neglected for our purpose.
Then, the correlation function can be simplified to

〈�(x,t)�†(x,0)〉 = 〈ψ+↑(x,t)ψ†
+↑(x,0)〉

+ 〈ψ−↓(x,t)ψ†
−↓(x,0)〉. (12)

By using now Eqs. (3), (6), and (8), the correlation functions
for a finite wire and for χ = 0 (condition of the absence of
the supercurrent) yield

〈�(x,t)�†(x,0)〉

= 1

πα

[
1 − e−πα/L

1 − e−π(iu−t+α)/L

]η+β

×
[

(1 − e−π(α−2ix)/L)(1 − e−π(α+2ix)/L)

(1 − e−π(i(u−t−2x)+α)/L)(1 − e−π(i(u−t+2x)+α)/L)

] η−β

2

,

(13)
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which, in the long wire limit, becomes

〈�(x,t)�†(x,0)〉

= 1

πα

[
α

iu−t + α

]η+β

×
[

α2 + (2x)2

[i(u−t − 2x) + α][i(u−t + 2x) + α]

] η−β

2

, (14)

where η = gρ/(1 + gρgσ ) and β = 1/4η. Finally, performing
a Fourier integral, we find that at low energy ε � �, the TDOS
at the SC-SLL interface x = 0 follows the unusual power law

ν(0,ε) = 2

π�(2η)u−

[
αε

u−

]2η−1

, (15)

where � is the Euler gamma function. Since we are in the
regime gρ + 1/gσ < 2, such that the cosine term is relevant,
this power is always negative, 2η − 1 < 0, which induces an
anomalous density of states enhancement at the Fermi energy
(i.e., zero voltage bias peak). For x �= 0, the TDOS is obtained
by integrating over t along three branch cuts (with branching
points iα and ±2x/u− + iα,) in the complex t plane. In the
limit 2xε/u− � 1, the contributions of those branch cuts
can be calculated independently (see Appendix A for further
details). One then obtains the density of states asymptote far
from the interface x � u−/ε:

ν(x,ε) = 1

π�(η + β)u−

[
αε

u−

]η+β−1

+ 22−η−β cos(2xε/u− + δ)

π�((η − β)/2)u−

[
αε

u−

] η−β

2 −1[
α

x

] η

2 + 3β

2

,

(16)

where the phase shift is δ = Arg(i
3η

2 + β

2 ) and η + β − 1 > 0.
Figure 2 represents TDOS for a finite long wire computed
numerically from Eqs. (8) and (12). Here, we choose a finite
frequency resolution in the numerical Fourier transformation.
For x = 0 and a specific choice of the interaction parameters
indicated in the caption of Fig. 2, the TDOS displays a clear
power law enhancement at zero energy: ν ∝ ε−0.3. For small x,
one can see the oscillation. For large distances (x = 0.2L away
from the interface), the factor x− η

2 − 3β

2 makes an oscillatory

10
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−1

10
0

10
1

10
−2

10
−1

10
0

ε

D
O

S
:ν

(ε
) 

(U
ni

t: 
ρ 0)

x=0.0, with ν(ε)∼ε−0.3

x=0.001 L
x=0.005 L

x=0.2 L, with ν(ε)∼ε0.063

FIG. 2. (Color online) The TDOS for a finite long wire using
Eq. (12) and the mode expansion Eq. (8). The parameters are L =
10 000, α = 0.01, gρ = 0.5, gσ = 0.85, vρ = 0.8, vσ = 0.47, and
ρ0 = 1/

√
2πα.

term invisible in the plot, while the main contribution to
TDOS shows a power law decay ν ∝ εη+β−1 ∝ ε0.063.

V. SELF-CONSISTENT HARMONIC
APPROXIMATION (SCHA)

The TDOS can be also obtained by using SCHA, i.e.,
expanding the cosine term in Eq. (4) up to the second order
around one of the minima. Then, the effective Hamiltonian
becomes quadratic,

HW =
∑

ν=ρ,σ

vν

2

∫ L

0
dx[gν(∂xθν)2 + g−1

ν (∂xφν)2]

+ πB

2α

∫ L

0
dx[φρ + θσ − (2l + 1)

√
π/2]2. (17)

At this stage one inserts the mode expansion from Eq. (5)
into Eq. (17), and diagonalizes the new Hamiltonian
using the Bogolubov-Hopfield transformation numerically
(see Appendix B). After the diagonalization, one can obtain
the time evolution of the mode expansion in Eq. (5) in terms of
their new eigenmodes and eigenenergies. The TDOS defined
in Eqs. (9) and (10) can then be computed numerically.

In Fig. 3 we plot the resulting TDOS for a finite wire
(L = 200) at the Rashba wire-superconductor interface x = 0
(upper panel) and at x = 0.6,1.4,2.2,20.0 (lower panel) for
gρ = 0.5 and gσ = 0.85 as a function of the energy ε (or
equivalently bias voltage eV ). The B → 0 curve corresponds
to the ordinary spinful Luttinger liquid, which shows zero-bias
enhancement ν(ε) ∝ εgρ/2+1/(2gσ )−1 at the interfaces, which is
consistent with Ref. 21. In contrast, farther away from the
interface (x = 0.1L), the TDOS displays the usual power
law suppression at zero voltage bias. The curves for the
nonvanishing field are shown for the case where μ lies in
the the middle of the Zeeman gap kF = kSO, i.e., SLL limit.
At the interface the TDOS for the SLL also exhibits an
anomalous enhancement at zero bias, but with a different
power exponent [see Eq. (15)]. The middle panel shows
the TDOS at x = 0.6,1.4,2.2,20.0 away from the SC-SLL
boundary. The zero-energy peak survives for small x (x = 0.6)
and vanishes as x increases. The TDOS for x = 0.6,1.4,2.2
shows the oscillations and their amplitudes are reduced
when increasing x. Those signatures are consistent with the
factor x−η/2−3β/2 in our analytical asymptotic result Eq. (16).
Because of the suppression factor and the finite frequency
resolution in numerics (note that there is always such a
frequency cutoff in experiments), the oscillation disappears
for large x (e.g., x = 20.0). A two-dimensional color map of
the DOS near the SC-SLL interface x = 0 as both functions
of ε and x is plotted in the lower panel of Fig. 3, which
shows the zero-bias enhancement near the SC-SLL interface,
the zero-bias suppression far away from x = 0, and the
Friedel-type oscillation.

VI. SUMMARY

We have studied tunneling density of states into a quantum
wire with strong spin-orbit coupling proximitized to supercon-
ductors. The delicate interplay of superconducting correlations
and Luttinger liquid interactions leads to a dramatic change
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FIG. 3. (Color online) Upper panel: The blue square curve
corresponds to B̃ = πB/2α → 0 and x = 0 (we choose B̃ = 10−7

in numerics), with ν(ε) ∝ ε−0.17, where the power exponent for the
spinful LL is gρ/2 + 1/(2gσ ) − 1 = −0.162. The black dotted curve
is for B̃ → 0 and x = 20.0. The red circle curve is for B̃ = 8.0 and
x = 0, with ν(ε) ∝ ε−0.3. The inset shows the fitting to the power
law expressions. Middle panel: TDOS at x �= 0 from the SC-SLL
interface. Lower panel: Two-dimensional map of the TDOS in the
x-ε plane. Parameters: L = 200.0, α = 0.04, gρ = 0.5, gσ = 0.85,
vρ = 0.4, vσ = 0.235, and χ = 0. The unit of TDOS is L/2π .

in the zero-bias anomaly which transforms into a peak.
This signature is a consequence of the Andreev reflections
at the SC-SLL interface. Our predictions may trigger new
experiments and can be tested in carbon nanotubes29,30 or
InAs quantum wires.31 Perhaps it is plausible to argue that yet
unexplained narrow needlelike resonance pinned at zero bias
of a superconductor-InAs nanowire-superconductor device31

is in fact related to the anomalous enhancement of the density
of states in a wire due to proximity effect and can be qualitative
explained by our theory.

There is one important comment to be made about the
system under consideration. If the wire is built on top of a
superconductor, the spiral Luttinger liquid, in the part that is
proximitized to the superconducting bulk, is in its topological

superconducting phase and thus supports Majorana fermions
at the interfaces.16–18 In this case, the zero-bias anomaly
peak feature due to Andreev reflections, discussed in this
paper, coexists with the zero-bias peak due to the Majorana
fermion.12,14,15,32 As the chemical potential is tuned far
above the Zeeman gap, the zero-bias anomaly peak due to
Andreev reflection disappears, which also coincides with the
disappearance of Majorana fermions. Therefore, our signature
in the tunneling density of states masks the possible presence
of the Majorana fermion. This brings yet another important
detail that should be carefully looked at when interpreting
experimental data.
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APPENDIX A: DERIVATION OF TDOS
IN EQS. (15) AND (16)

The TDOS is given in terms of the time correlation function

ν(x,ε) =
∫ +∞

−∞

dt

2π
eiεt [〈�(x,t)�†(x,0)〉 + 〈�†(x,0)�(x,t)〉],

(A1)

where 〈�†(x,0)�(x,t)〉 can be computed similar to
〈�(x,t)�†(x,0)〉, and its result is obtained by changing t to
−t in Eq. (14). At the SC-SLL interface x = 0, the correlation
function yields

〈�(0,t)�†(0,0)〉 = 1

πα

[
α

iu−t + α

]2η

. (A2)

Fourier transforming this one finds Eq. (15) of the main text.
For x �= 0, the TDOS: ν(x,ε > 0) can be obtained by

integrating over t along three branch cuts, i.e.,C−1,C0, andC1

(with branching points iα and ±2x/u− + iα), with integrand
〈�(x,t)�†(x,0)〉 in the upper complex t plane, as shown in
Fig. 4. The ν(x,ε < 0) is obtained by integrating over t along
three other branch cuts with the integrand 〈�†(x,0)�(x,t)〉 in

FIG. 4. (Color online) Integration contour in the upper complex
plane of t . The red cross symbols are branching points for the corre-
lation function 〈�(x,t)�†(x,0)〉 (upper plane) and 〈�†(x,0)�(x,t)〉
(lower plane).
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the lower complex t plane. Let us focus on the ε > 0 case,

ν(x,ε > 0) = 1

2π2α

∫
C−1+C0+C1

dteiεt

[
α

iu−t + α

]η+β[
α2 + (2x)2

[i(u−t − 2x) + α][i(u−t + 2x) + α]

] η−β

2

= IC−1 + IC0 + IC1 . (A3)

In the limit 2xε/u− � 1, the contribution of those branch cuts can be calculated independently. First of all, the integral IC0 is

IC0 ≈ 1

2π2α

[
α2 + (2x)2

(2x)2

] η−β

2
∫
C0

dteiεt

[
α

iu−t

]η+β

= 1

π�(η + β)u−

[
αε

u−

]η+β−1

(A4)

as x � α. Second, the integral involving the path IC−1 can be simplified by using a variable substitution τ = t + 2x/u−,

IC−1 = 1

2π2α
αη+β (α2 + 4x2)

η−β

2 e
−i 2xε

u−

∫
C0

dτeiετ

[
1

i(u−τ − 2x)

]η+β [
1

i(u−τ − 4x)

] η−β

2
[

1

iu−τ

] η−β

2

= αη+β−1i
η−β

2

π�
(

η−β

2

)
u−

[
i

2

]η+β[
ε

u−

] η−β

2 −1

x− η

2 − 3β

2 e
−i 2xε

u− . (A5)

Similarly, the last integral involving the path IC1 can be simplified by using a variable substitution τ = t − 2x/u−, and then

IC1 = αη+β−1(−i)
η−β

2

π�
(

η−β

2

)
u−

[−i

2

]η+β [
ε

u−

] η−β

2 −1

x− η

2 − 3β

2 e
i 2xε

u− . (A6)

Summing up all the terms, one can obtain the TDOS asymptote, i.e., Eq. (16) from the main text.

APPENDIX B: DIAGONALIZATION OF
EFFECTIVE HAMILTONIAN IN SCHA

Inserting the mode expansion from Eq. (5) into Eq. (17),
we get

H = gρvρ(J + χ )2

4L
+ vσM2

4Lgσ

+ B̃L

π

(
φ̂0

ρ + θ̂0
σ − Umin

)2

+
∑
q>0

[ ∑
ν=ρ,σ

vν

2
q(2b†νqbνq + 1)

+ B̃gρ

2q
(b†ρq + bρq)2 + B̃

2gσq
(b†σq + bσq)2

+ B̃

q

√
gρ

gσ

(b†ρq + bρq)(b†σq + bσq)

]
, (B1)

where Umin = (2l + 1)
√

π/2. We can apply a canonical
transformation to the topological part:

�1 = φ̂0
ρ + θ̂0

σ − Umin, N1 = [(J + χ ) + κM]/(1 + κ),

�2 = √
κφ̂0

ρ − θ̂0
σ

/√
κ, N2 = √

κ[(J + χ ) − M]/(1 + κ),

(B2)

with κ = vσ /(vρgρgσ ). By further introducing ladder opera-
tors η1 and η

†
1,

�1 = �−1/4(η1 + η
†
1)/

√
2,

(B3)
N1 = i �1/4(η†

1 − η1)/
√

2,

with � = 4B̃L2/[π (gρvρ + vσ /gσ )], the topological part of
Eq. (B1) is reduced to

HTOPO =
√

B̃

π

(
gρvρ + vσ

gσ

) (
η
†
1η1 − 1

2

)
+

gρvρ + vσ

gσ

4L
N2

2 .

(B4)

The nontopological excitations can be diagonalized using the
Bogolubov-Hopfield transformation, and we will briefly out-
line the main procedures below. This term can be diagonalized:

HNT =
∑
q>0

�bq · HNT,q · �bT
q

=
∑
q>0

�cq · Diag{E1q,E2q,E1q,E2q} · �cT
q , (B5)

where �bq = (b†ρq,b
†
σq,bρq,bσq) and the eigenvector after

diagonalization is �cq = (c†1q,c
†
2q,c1q,c2q ). The transformation

matrix Q, i.e., �bT = Q · �cT , can be obtained by the relation
Q = K · M† · K , where K = Diag{I2×2, − I2×2}. The matrix
M† is obtained by solving the eigenvalue problem

(HNT,qK)M† = M† Diag{E1q,E2q,−E1q,−E2q}. (B6)

One can simply diagonalize the nontopological part numer-
ically. After the diagonalization, one can obtain the time
evolution of the mode expansion for Eq. (5) of the main text in
terms of their new eigenmode and eigenenergies. The TDOS
is then computed numerically.
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