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Chiral Luttinger liquids and a generalized Luttinger theorem in fractional quantum Hall edges
via finite-entanglement scaling
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We use bosonic field theories and the infinite system density matrix renormalization group method to study
infinite strips of fractional quantum Hall states starting from microscopic Hamiltonians. Finite-entanglement
scaling allows us to accurately measure chiral central charge, edge-mode exponents, and momenta without
finite-size errors. We analyze states in the first and second levels of the standard hierarchy and compare our results
to predictions of the chiral Luttinger liquid theory. The results confirm the universality of scaling exponents in
chiral edges and demonstrate that renormalization is subject to universal relations in the nonchiral case. We prove
a generalized Luttinger theorem involving all singularities in the momentum-resolved density, which naturally
arises when mapping Landau levels on a cylinder to a fermion chain and deepens our understanding of non-Fermi
liquids in one dimension.

DOI: 10.1103/PhysRevB.88.155314 PACS number(s): 73.43.−f, 71.10.Pm

I. INTRODUCTION

The incompressible liquids of two-dimensional electrons
that underlie the fractional quantum Hall effect (FQHE) are
believed to support excitations with fractional charge and any-
onic statistics. For the “Abelian” states, including the Laughlin
states at fractional filling ν = 1/m of the lowest Landau level,1

the quasiparticles pick up an exchange phase factor that is
neither bosonic nor fermionic, as allowed in two-dimensional
(2D) systems.2 Experiments on these quasiparticles typically
involve edge3–7 or dot8 geometries. While it is clear that the
gapless excitations at an FQHE edge are different from those
of a Fermi liquid, it has been challenging to obtain quantitative
agreement between microscopic models and predictions of the
effective theory.

We aim to answer two long-standing questions about
fractional quantum Hall edge physics by combining recent
analytical and numerical advances in mapping the 2D Landau
level of an infinitely long cylinder to an unusual one-
dimensional (1D) fermion chain. First, we address whether
electron correlation functions along an unreconstructed9 edge
have the universal behavior predicted by the chiral Luttinger
liquid (χLL) theory.10,11 If universal, the edge correlation
functions are an experimentally accessible probe of the
topological order characteristic of the FQHE phase. For the
interactions studied here (truncated dipolar for ν = 1

3 , hollow
core for ν = 2

5 and 2
3 ), we find unambiguous evidence that

for maximally chiral edges with excitations moving in only
one direction, the equal-time electron correlation functions
show universal exponents resulting from the bulk topological
order, while nonchiral edges have exponents depending on
the intraedge interactions. In both cases, the subleading edge
exponents obey the relations obtained from χLL theory.

Second, since our method involves mapping the Landau
level of a cylinder to a 1D fermion chain, we address
how the critical states that arise when studying FQHE edge
physics fit into standard descriptions of 1D metals. For a 1D
metal, the Luttinger theorem12 can be taken to mean that the
volume of the Fermi sea, as determined by the nonanalytic

points in the electron occupation nk , is not modified by
interactions (although we note that there is continuing debate
over the validity of Luttinger’s original formulation in the pres-
ence of nonperturbative effects13). Haldane conjectured14,15 a
“Luttinger sum rule” that extends the Luttinger theorem to
FQH strips in the Abelian hierarchy, which was motivated by
a simplified picture of the density profile of the hierarchy states.
We unambiguously state and prove a “generalized Luttinger
theorem” which constrains the momenta of singularities in
the Green’s function of any Abelian FQH state. In the
K-matrix description of the χLL it takes the simple form
kT t = πνT , where νT is the filling fraction of the cylinder,
which agrees with Haldane’s conjecture for the hierarchy
states. We prove the constraint using the Lieb-Shultz-Mattis
theorem,16,17 and confirm it numerically for some one- and
two-component edges. We then clarify why any strip of an Mth
level hierarchy state is, in the 1D picture, an M-component
Luttinger liquid, which implies that any two states at level M

can be adiabatically transformed into each other.
We use a geometry [Fig. 1(a)] in which the edges are

infinitely long, which we study using the infinite system
density matrix renormalization group (iDMRG).18,19 Since
the problem is translation invariant along the infinite direc-
tion, the approximation in matrix product state numerics is
not finite size but rather finite matrix dimension or “finite
entanglement.”20 An advantage of this geometry is that corre-
lation functions in the long direction can be obtained over much
greater lengths than possible using exact diagonalization,
leading to unambiguous scaling behavior. Recent work on how
entanglement scales at conformally invariant quantum critical
points20–23 also allows us to extract the central charge of the
edge [Fig. 1(c)]. The finite circumference does not cut off
the correlation length of the edge, and we find that the edge
exponents become well quantized at circumferences where
there is still significant nonuniformity of the electron density
of the bulk.

Tunneling experiments, which probe the frequency and
temperature dependence of the edge Green’s function, have
measured a tunneling exponent of α ∼ 2.7 for the 1

3 edge, while
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FIG. 1. (Color online) (a) Geometry: An infinitely long cylinder
of circumference L with a trapping potential V (x) squeezing the fluid
into a strip of width W . Coordinate x runs around the circumference,
and y along the infinite length. The Landau orbitals are localized in y.
(b) Real-space edge correlation functions |C(y)| = 〈ψ †(x,y)ψ(x,0)〉
for ν = 1

3 (green), 2
5 (yellow), and 2

3 (red). x lies near the edge of the
strip. Guiding dashed lines indicate η = 3 and 1.14 power laws. In the
2
5 case, oscillations are present due to two η = 3 contributions with
different momenta. (c) Central charge c from finite-entanglement
scaling. The correlation length ξ and the entanglement entropy S

are measured for increasingly accurate MPS, and are found to scale
as S = c

6 ln(ξ ) + s0. The markers are the measured data points; the
undashed lines show the scaling relation for c = {1,2,2} for the
ν = { 1

3 , 2
5 , 2

3 } states, respectively; the dashed lines indicate slopes for
c ± 1

4 .

the unreconstructed χLL prediction is α = 3.3 Numerical
studies have since investigated the equal-time correlation
functions and made comparison with χLL theory.24–33 There
is general agreement that the “model” wave functions obtained
from a conformal field theory (CFT), such as the Moore-
Read and Laughlin wave functions, must have the exponents
predicted by the associated CFT.24,34 The situation is much
less clear both for the hierarchy states and for longer-range
interactions. For the 1

3 edge there is some evidence, using
finite-sized disks, that η3 in fact depends on the interactions
(Refs. 25,35 found η3 ∼ 2.5 for the Coulomb interaction r−1

and η3 ∼ 2.6 for a Yukawa interaction r−1e−r/	B ).

II. MODEL AND METHODOLOGY

We first map the continuum problem to a translationally
invariant fermion chain.36–38 We start with an infinitely long
cylinder of circumference L [Fig. 1(a)]. Letting x be the
coordinate around the cylinder, and y along it, we choose
the Landau gauge A = B(−y,0) so that each lowest Landau
level (LLL) orbital φn(x,y) is localized in the vicinity of
yn = na with a = 2π	2

B/L, and can be ordered sequentially.
Interactions and potentials which are translation invariant
along y result in a translation-invariant Hamiltonian for the
fermion chain. The interaction matrix elements are nonzero
up to infinite distances, but are exponentially suppressed
over a characteristic length O(L/	B) sites. The mapping is
exact, but we must truncate the interaction terms in order to
use the iDMRG, which limits the economically accessible
circumference to L � 24	B .39

After fixing a filling fraction νT for the cylinder, a trapping
potential V (x) is projected into the LLL, resulting in hopping

terms in the 1D picture. The trap squeezes the Hall fluid into
a denser strip of width W . For example, to obtain the ν = 1

3

strip, we set the overall filling of the cylinder to νT = 1
4 and use

a trap of width W = 3
4L. Rather than realistically modeling a

cleaved edge,27 the trap potentials were chosen to stabilize the
desired phases and avoid edge reconstruction, by using a box
of depth t and width W convoluted with a Gaussian of width
d ∼ 	B to smooth the edge. For the 1

3 state, we use a truncated

dipolar interaction r−3e−(r/7	B )2
. For the 2

5 , 2
3 states, we use only

the hollow-core Haldane pseudopotential interaction V1.36,40

A. iDMRG and finite-entanglement scaling

To find the ground state, we use the iDMRG method
as adapted to the QH problem.39,41,42 The iDMRG algo-
rithm is a variational procedure within the space of infinite
matrix product states (iMPS). An iMPS has finite bipartite
entanglement, while the entanglement of the critical edges
diverges logarithmically, so the iMPS ansatz cuts off the
correlations at a length ξMPS depending on the dimension
χ of the matrices used. The finite-size effects have been re-
moved, but finite-entanglement effects introduced. Analogous
to finite-size scaling, the finite-entanglement ansatz introduces
only one length scale, and a finite-entanglement scaling
(FES) procedure has been developed for extracting critical
properties.20,43–45 One advantage of FES is that the complexity
to obtain a correlation length ξMPS scales as O(ξ 3κ

MPS) for an
exponent κ that depends on the central charge.20 In contrast,
to find the ground state of a disk of circumference L in
exact diagonalization (ED) scales as O(αL2

), we obtain states
with ξMPS ∼ 200	B , an order of magnitude larger than the
largest disk circumferences obtained from ED, and somewhat
larger than the disk circumference obtained through composite
fermion ED. For the largest simulations used here, χ ∼ 1400,
which required about 30 CPU hours.

The output of the iDMRG calculation is an iMPS repre-
sentation of the approximate ground state, from which we can
efficiently measure any desired observable.

B. Obtaining the edge exponents

The electronic edge exponents are encoded in power-law
contributions to the equal-time electron correlation function
C(x; y) = eixy	−2

B 〈ψ†(x,y)ψ(x,0)〉. Here, ψ(x,y) is the elec-
tron operator in the FQH model, and the phase factor is chosen
for convenience.

We first review the expected form of C in χLL theory. The
low-energy effective theory of a generic Abelian FQH edge is
described using the K-matrix formalism11:

S = 1

4π

∫
dy dt(KIJ ∂tφI ∂yφJ − VIJ ∂yφI ∂yφJ ). (1)

K specifies the topological order, while V depends on the
microscopic details and sets the edge velocities and their
density-density interactions. We suppress the indices in what
follows. A generic quasiparticle excitation is characterized by
an integer vector m, ψm(y) = eimT φ+imT k y/a . The quantum
numbers of the excitation are specified by the “charge
vector” t and “momentum vector” k. The momentum of
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ψm is km = kT m, with the convention k ∈ [−π,π ] regardless
of L. The charge of ψm is qm = tT K−1m. As we only probe
electronic excitations, we restrict to qm = 1.

As the bulk is gapped, the dominant long-range contribu-
tions to C are power laws from each charge 1 operator in the
edge theory11,46:

C(x; y) = i
∑

m:qm=1

cm(x)eikmy/a 1

yK(m)

1

|y|ηm−K(m)
+ · · · .

(2)

Here, K(m) = mT K−1m is an odd integer, while ηm is the
equal-time scaling exponent of the excitation m, and depends
on both K and V . A consequence of the projection into the
LLL is that each cm(x) is a Gaussian peaked at xm = Lkm/2π ;
hence, the momenta km indicate the depth x at which the mode
propagates.

It is easiest to perform the FES collapse in k space. After
Fourier transforming in y to obtain C(x; k), the power-law
behavior results in nonanalytic dependence on k at the discrete
set of momenta {km}. To proceed, we express C(x; k) in the
lowest Landau level. Letting ψn denote the field operators of
the Landau orbitals, we form the Fourier-transformed opera-
tors ψk = 1√

N

∑
n e−iknψn, where we temporarily consider a

finite number of orbitals N. Note that ψk are also the creation
operators for orbitals in the A = B(0,x) gauge convention,
localized at x = Lk/2π . For large L/	B , we find

C(x; k) =
∫

dy e−iky/aeixy	−2
B 〈ψ†(x,y)ψ(x,0)〉 (3)

= 1√
π	B

nke
−	−2

B (Lk/2π−x)2
, (4)

where nk ≡ 〈ψ†
kψk〉 is the k-space occupation number in the

1D chain. The Gaussian factor implies that the correlations
at x are dominated by the behavior near k ∼ 2πx/L. In the
vicinity of each nonanalytic point, nk takes the form36

nk ∼ θ (k − km) |k − km|ηm−1[a0 + a1(k − km) + . . .] + . . . ,

(5)

where the higher powers of k arise from more irrelevant
“descendent” operators. To determine ηm numerically, we use
a modified version of a fractional derivative defined by

Dν[nk] = F[|r|νF−1[nk]], (6)

where F is the Fourier transform. We expect

Dηm−1[nk] ∼ θ (k − km) [b0 + b1(k − km) + . . .] + . . . ,

(7)

which can be used to check for the correct choice of ηm.
However, the finite-entanglement effects cut off the cor-

relation functions at a scale ξMPS, and hence round out the
nonanalytic behavior. On dimensional grounds, the smearing
must take the form

θ (k − km) → s[ξMPS(k − km)], (8)

where s is some smoothed version of a step function. For the
correct choice of ηm, we can collapse the data by plotting
Dηm−1[nk] as a function of ξMPS(k − km), up to irrelevant
corrections and the smooth background, as can be seen in

Fig. 3. The collapse gives a very precise measurement of both
km (to better than one part in 10−5) and ηm (to about one part
in 10−2).

III. EDGE UNIVERSALITY AT ν = 1
3 , 2

5 , AND 2
3

A. ν = 1
3 edge

We first study the filling ν = 1
3 , a first-level hierarchy state

whose edge theory supports a single chiral mode. If the edge
is described by a χLL, the dominant electronic edge exponent
is predicted to be quantized to η3 = 3 when the two edges of
the strip do not interact.11

We start with a “thick” strip of width W = 3
4 17	B on a

cylinder of circumference L = 17	B , with a cylinder filling
fraction of νT = 1

4 . For the interaction we use truncated dipolar

repulsion V (r) = r−3e−(r/7	B )2
, which was used in favor of the

Coulomb interaction as a compromise between the increased
numerical cost of longer-range interactions and the need to
ensure the interaction is significantly perturbed from the model
Hamiltonian. Consequently, the interaction between the two
edges should be very weak. The distribution nk is shown in
Fig. 2(a), including a comparison to the profile when only V1

is used.
The dominant singularity of the ν = 1

3 edge is observed
to occur at |k3| = 3

8 2π ± 10−6, corresponding to the naive
“edge” of the strip as would be obtained from assuming nk to
be a box of height 1

3 , an example of the Luttinger sum rule.
The results of the FES collapse assuming η3 = 3 are shown in
Fig. 3, showing excellent agreement. To check the precision
with which we can determine η3, we repeat the collapse for
various η3 as shown in Fig. 4. The exponent is best fit by
η3 = 3.005 ± 0.02.

(a)

(b)

(c)

FIG. 2. (Color online) The occupation number nk , which is the
Fourier transformation of the orbital correlation function 〈ψ †

nψ0〉 or,
equivalently, the occupation of Landau orbitals for the gauge in
which they are localized in x. The gray dashed lines indicate the
“wedding cake” caricature of the hierarchy states. Three states are
shown: (a) ν = 1

3 for W = 3
4 17	B , both for the model “hollow-core”

interaction (red dashed line) and for a truncated version of the r−3

dipole interaction (solid line). (b) ν = 2
5 at W = 5

8 19.2	B . (c) ν = 2
3

at W = 3
4 20	B .
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FIG. 3. (Color online) Analysis of a ν = 1
3 strip of width W =

3
4 17	B . The measured D2[nk] is plotted for increasingly accurate
MPSs, parametrized by their correlation length ξMPS. The crossing
of the lines at k3 = 3

8 2π indicates a singularity at k3, corresponding
to the edge of the droplet. Inset. Scaling collapse supports a true
singularity with the predicted exponent η3 = 3. If η3 = 3, then the
singular part of D2[nk] is dimensionless near k3, so no vertical scaling
is necessary. The combination ξMPS(k − k3) is also dimensionless, so
the data should collapse when plotted as a function of ξMPS(k − k3).

B. Renormalization of edge exponents for thin strips

To verify that the measurement of η3 = 3 is not a bias
of the approach, we let the edges interact so that η3 = 3
renormalizes upwards. Using the same interactions and trap
profile as before, but using a L = 11	B,W = 9

10 11	B strip,
the edges now interact across the vacuum. As shown in Fig. 4,
the exponent indeed renormalizes upwards to η3 = 3.135.

For thin strips, the 1
3 state contains multiple electron

operators, which correspond to inserting, for example, charge
2
3e on one edge and 1

3e on the other, which we label m = (2,1).

The amplitude for such a process decays as e−(W/	B )2/4. χLL
theory predicts a fixed relationship between η3 and η(2,1) even

FIG. 4. (Color online) Comparing collapse of the ν = 1
3 strip

for different ansatz η. The correct η is distinguished by two
features: the tightness of the collapse for various ξMPS, and the
degree of undershoot/overshoot to the form of a step function. The
trial collapses at different η are shifted apart vertically for clarity.
Left panel: a thick strip, W = 3

4 17	B . We find η3 = 3.005 ± 0.02,
consistent with no interedge interactions. Right panel: a thin strip,
W = 9

10 11	B . Because the edges are close to one another, interedge
interactions renormalize η upwards to η = 3.13 ± 0.02.

if η3 has renormalized away from 3, which can be derived in
the K-matrix formalism.

A single edge of the 1
3 state is described by K = (3),

t = (1), but if the two edges of the strip are in proximity
we can not neglect interactions between them. The full edge
theory is K ′ = K ⊕ (−K), t′ = t ⊕ (−t), k′ = k ⊕ (−k), and
V , restricted by mirror symmetry, has two independent
components. Two singularities we observe correspond to
m = (3,0) and m = (2,1),36,47,48 and their exponents should
satisfy the relation

η̃3 = 5η(2,1) − 4
√

η2
(2,1) − 1. (9)

To verify Eq. (9), we use a thin cylinder (L = 4	B) so
that both excitations are observable. Keeping the interactions
as before, we vary the strength of the trap t relative to the
interaction strength U . In Fig. 5, for each t we extract η3,η(2,1)

and check their predicted relation. We find agreement with
χLL theory to better than 0.5%.

In summary, the behavior of the ν = 1
3 edges is well

described by χLL theory, both for thick and thin strips.
For thick strips, the edge exponent approaches the quantized
value η3 = 3. While we have not simulated the full Coulomb
interaction, the interaction is sufficient to significantly perturb
the bulk density profile and measurably renormalizes the
exponents when the two edges are close. It would be interesting
to determine whether the quantization η3 = 3 is nevertheless
a peculiarity either of the r−3 interaction or its cutoff at
∼ 7	B . We leave enhancing our method to include Coulomb
interaction to future work.

FIG. 5. (Color online) Checking the predicted χLL exponent
relations as the ν = 1

3 trap is squeezed. On a small enough strip
(here L = 4	B ), two electronic excitations are visible, corresponding
to injecting either e into one edge (m = 3) or 2e/3 into one edge and
e/3 into the other [m = (2,1)]. We plot the measured exponents η3

and η(2,1) as the strength of the trap t/U is increased, as well as the
predicted η̃3 given the measured value of η(2,1) using Eq. (9). At very
low t/U , η3 = 3, the universal ν = 1

3 value. As the trap is squeezed,
the predicted relation of χLL theory is satisfied to within 0.5%. Note
η(2,1) moves towards 1, the exponent of a noninteracting Luttinger
liquid.
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C. ν = 2
5 edge

The second-level hierarchy state at ν = 2
5 has a rich

edge structure resulting from the presence of two modes
on each edge. The 2

5 edge is maximally chiral in the sense
that both edge modes propagate in the same direction, so
intraedge interactions are not expected to renormalize the
scaling exponents. In contrast to the ν = 1

3 case, there are
multiple ways of inserting charge into a single edge, which
appear as a set of singularities. Using the convention

K−1 = 1

5

(
2 1

1 3

)
, t =

(
1
0

)
, (10)

the two most relevant operators are m1 = (2,1)T and m2 =
(3, − 1)T with η1 = η2 = 3.

We simulate a strip of width W = 5
8 19.2	B on a cylinder of

circumference L = 19.2	B , at νT = 1
4 , using only the hollow-

core V1 pseudopotential. Adding a small perturbing V3 was not
observed to change the exponents. Our data are consistent with
negligible interedge interactions, but there is a small amplitude
for inserting an electron as a fractional part in both edges. We
can identify a number of small contributions of this type.

Over two dozen singularities are visible in nk; a summary
of the most singular exponents is included in the inset of
Fig. 6. In all cases where the singularity is strong enough
to extract η, it is consistent with the universal values predicted
by the χLL theory. The dominant exponents m1 = (2,1) and
m2 = (3, − 1) are observed to be η1 = 3.00 ± 0.02 and η2 =
2.995 ± 0.015, respectively.

(a) (b) (c) (d) (e) (f) (g) (h)

FIG. 6. (Color online) The zoo of electron excitations of a ν = 2
5

strip. Bottom panel: Occupation number nk; vertical dashed lines
indicate locations of singularities, only some of which are directly
visible in nk . Dotted line indicates the naive wedding cake density
profile. Top panel: After applying Dη−1, the singularities appear
as step functions. For the closeup of the mth singularity, Dηm−1

is applied, some of the regular background is removed, and the
vertical axis is rescaled for better visibility. The two most prominent
singularities (e) and (f) have exponents η = 3 ± 0.02, consistent with
no interedge interactions. The rest of the singularities are found at
momenta predicted by the first two. Approximate η and m values for
the singularities: ηa = 4.8, ma = (2, − 1,2, − 2); ηb = 5.8, mb =
(1,1,0,2); ηc = 5.2, mc = (1,2,0,1); ηd = 4.2, md = (3, − 2,1, −
1); ηe = 3, me = (2,1,0,0); ηf = 3, mf = (3, − 1,0,0); ηg = 7,
mg = (4, − 3,0,0); ηh = 4.2, mh = (3,0, − 1,1).

The hierarchy picture of the 2
5 strip is a 1

3 droplet with an
additional condensate of quasielectrons of excess density 1

15
in the interior. We can not directly detect the singularity at the
edge of the 1

15 condensate, m3 = (0,5), as the exponent η3 =
15 is too large. Nevertheless, k can be determined from the
momenta k1 and k2 of the two most relevant singularities. The
locations of the remaining km are all in agreement with km =
kT m. Assuming the unobserved 1

15 edge is at k3 = kT m3, we
find that 1

3k2 + 1
15k3 = νT π ± 10−5. This is in agreement with

the Luttinger sum rule: assuming the 2
5 state has a wedding

cake density profile of nk = 2
5 for |k| < k3 and nk = 1

3 for k3 <

|k| < k2, the total electron density is 1
3k2 + 1

15k3 = πνT . If the
trap potential is modified, the km change but the constraint is
always satisfied. It is quite remarkable that the naive result
is correct to better than one part in 10−5, as the true density
profile has strong oscillations with no actual discontinuities at
the km, as shown in Fig. 6.

D. ν = 2
3 edge

The ν = 2
3 state is also a second-level hierarchy state, but

the edges are not chiral, and hence the edge exponents are not
universal even in the limit of a wide strip. It has been argued
that disorder49,50 or long-range Coulomb interaction11 makes
the exponents flow to the universal Kane-Fisher-Polchinski
(KFP) fixed point. Including disorder would require breaking
translational invariance along the edge, which would greatly
increase computational effort, thus we restrict the current
study to clean edges with short-ranged interaction. Using the
convention K = diag(1, − 3), t = (1, − 1), at intermediate
intraedge interactions the two most relevant excitations of a
single edge are m1 = (1,0) and m2 = (2, − 3).

We simulate a W = 15	B strip on a cylinder of circum-
ference L = 20	B at νT = 1

2 , using only the hollow-core V1

pseudopotential. In agreement with χLL theory, η1 is not
observed to be quantized. In order to access different V

FIG. 7. (Color online) Renormalization of edge-mode momenta
and exponents as a function of the edge sharpness d (large d is
soft edge). Top panel: change of momentum k1 (circles) and k2

(squares) with respect to an arbitrary reference. (k1 + k2)/3 − π/4
(crosses) stays 0 to 10−5 accuracy, confirming the Luttinger sum rule.
Bottom panel: Exponents η1, η2 from iDMRG, and η̃2 calculated
from η1 assuming χLL with no interedge interaction. The significant
disagreement between η2 and η̃2 is likely due to interedge interactions.
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matrices, we can change the sharpness of the edge d. Under
the assumption of vanishing interedge interactions, η1 and η2

should satisfy the χLL prediction η2 = 7η1 − 4
√

3
√

η2
1 − 1,

which they do only to within about ∼ 10%, as shown in Fig. 7.
While the disagreement is likely due to interedge interactions,
we can not accurately measure enough of the ηm to fully
determine the two-edge V to check for consistency. We again
observe a Luttinger sum rule (k1 + k2)/3 = π/4. As the trap
is modified the km change, but the Luttinger sum rule remains
satisfied to one part in 10−5 accuracy, as shown in Fig. 7.
It is interesting to note that for softer edges (large d), the
exponents are observed to renormalize towards the KFP point
η1 = η2 = 2 (Fig. 7), even with clean edges and hollow-core
interaction.

IV. EDGE STATES IN THE 1D PICTURE

Our numerics demonstrate robust χLL exponents, yet are
ultimately realized in a 1D fermion chain. What can be
learned from the 1D point of view? First, we apply the
Lieb-Schultz-Mattis theorem to the 1D fermion chain to
explain the constraint on the km. Second, we clarify why strips
of different ν, which at first seem to be different phases of
matter, can in fact be smoothly deformed to each other.

A. A generalized Luttinger theorem for Hall droplets

For all three filling fractions, the locations of the singu-
larities km obey a stringent constraint to better than a part
in 10−5. In the hierarchy picture, the constraint arises from
a caricatured version of nk which jumps discontinuously to
a quantized filling as each level of the hierarchy is added,
although nk looks nothing like this wedding-cake-type profile,
as can be seen in Fig. 2. Letting the jump in filling at the ith
level of the level-M hierarchy state be �νi at momentum ki ,
the total filling fraction νT is observed to be

νT = 2
M∑
i=1

�νiki/2π. (11)

To our knowledge, this “Luttinger sum rule” was first conjec-
tured by Haldane, and taken as the axiomatic starting point of a
bosonized description of the excitations.14 However, Eq. (11) is
somewhat unsatisfactory as it appears to single out a particular
set {mi} of the edge singularities out of infinitely many. There
is a natural choice for the hierarchy states, but given a generic
K-matrix description of an Abelian edge, what constraints are
placed on the momenta km of the singularities?

To state the generalized Luttinger theorem more precisely,
we show that Eq. (11) has the basis-independent formulation
kT t = πνT . We consider only the right edge, as the left has an
identical constraint. The set of singularities {mi} appearing in
Eq. (11) are distinguished as a linearly independent set of M

electron operators with trivial mutual statistics

mT
i K−1mj = δijDi, mT

i K−1t = 1. (12)

However, there are in fact multiple sets {mi} satisfying this
constraint, so we must show that the hypothesis is independent
of the choice. Interpreting �νi = D−1

i , the hypothesis reads
as

∑
j D−1

j mT
j k = πνT . Since mT

i K−1(
∑M

j D−1
j mj ) = 1,

while {mT
i K−1} is a linearly independent set, we must have∑M

j D−1
j mj = t. Hence, the generalized Luttinger theorem

takes the basis-independent form kT t = πνT .
To prove that kT t = πνT , we first take a 1D point of view.

Temporarily consider the system on a torus, so that the edges
have finite length Ly (in real space). According to Ref. 17,
under conditions satisfied by our 1D fermion chain, there
exists a low-energy (E ∼ 1/Ly) neutral excitation at crystal
momentum 2πνT . The nonperturbative proof is an adaption of
the Lieb-Schultz-Mattis theorem,16 using the “twist operator”
U = e2πi

∑
l ln̂l /N , where n̂l is the occupation of orbital l

and N is the number of orbitals. As will become clear,
we can interpret this excitation as a transfer of charge ν

(the filling fraction of the strip) from the left to right edge,
with m vector (t, − t). Accepting this interpretation gives
a nonperturbative proof that (kT , − kT ) · (t, − t) = 2πνT , or
kT t = πνT . Hence, the Luttinger theorem for the 1D fermion
chain implies the generalized Luttinger theorem for the
Hall fluid.

To motivate the identification of the k = 2πνT excitation,
we reinterpret this result in terms of the 2D continuum prob-
lem. The twist operator U acts on the real-space coordinates as
translation around the circumference (x,y) → (x + 	2

B/Ly,y).
The interaction energy is unchanged, but the trapping energy
goes as

δV =
∫

dx dy
[
V (x + 	2

B/Ly) − V (x)
]
ρ(x,y) (13)

∼ 	2
B

2Ly

∫
dx 	2

BV ′′(x)ρ(x) = O(1/Ly), (14)

where we have relied on the reflection symmetry x → −x.
Hence, the k = 2πνT neutral excitation is simply a small
translation of the fluid, which transfers charge from the right to
left edge. To show that the desired excitation is (t, − t) in the
K-matrix formalism, recall that threading a 2π flux through
the cycle y of the torus translates the state by 	2

B/Ly in x, due
to the Hall response of the fluid. In the bulk, threading 2π flux
is, by definition, the excitation m = t. Since threading flux
through y is equivalent to dragging a flux from the left to right
edge, the excitation is (t, − t), as desired.

For bilayer states, there is a conserved U (1) charge for each
component a. A simple extension of the above argument leads
to a constraint for each component; if ta,νT ;a is the charge
vector and filling of component a, then kT ta = πνT ;a .

This result is intuitively clear in the composite fermion or
the parton picture. Our derivation demonstrates, however, that
it is not necessary to assume a mapping to weakly interacting
quasiparticles and the theorem is rigorously true whenever
there is a K-matrix description of the edge states including,
for example, reconstructed edges or strongly interacting
composite fermions.

B. Adiabatic continuity between Abelian edges

In the χLL theory, edge theories with different K matrices
[modulo an SL(M,Z) equivalence relation] are understood
to be distinct phases of matter. Viewed as a 1D problem, this
would seem to imply the existence of distinct classes of metals,
even at central charge c = 1. We clarify why this is not the
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case for any finite-width strip; in principle, all Mth hierarchy
states can be adiabatically continued to one another. In the 1D
picture, this implies they can all be adiabatically transformed to
an M-component noninteracting metal. Microscopically, this
adiabatic path might require shrinking the cylinder, as for thick
strips coupling between the edges is exponentially suppressed.

The restriction to SL(M,Z) transformations in the K-
matrix formalism of a single edge is enforced to preserve
the compactification lattice of the bosons, which determines
the allowed excitations. On a geometry with one edge, the
edge Hilbert space must contain fractional excitations because
we can create a quasiparticle-quasihole pair and bring one
particle to the edge while bringing the other infinitely deep
into the bulk. However, if there are two edges, all excitations
can be considered edge excitations, and the total topological
charge of the two edges together should be trivial. The
restriction to trivial topological charge means a larger class
of SL(2M,Z/|K|) transformations can be applied, and the
distinction between states at the same hierarchy level is lost.

The Laughlin states, for example, can all be deformed to
the noninteracting IQH state. In the ν = 1/q phase, K =
diag(q, − q), t = (1, − 1)T , k = (k, − k)T . By applying an
SL(2,Z/q) transformation

S = 1

2

(
q + 1 q − 1
q − 1 q + 1

)
, (15)

we find K̃−1 = SK−1ST = diag(1, − 1), while k and t are
unchanged and all the original electronic excitations are
spanned by m = Sm̃ with m̃ ∈ Z2. This is the K-matrix
description of a Luttinger liquid, which implies that any
electronic excitation m at ν = 1/q can be identified as an
excitation of a Luttinger liquid. For example, the usual m =
(3,0) excitation of the 1

3 state is the 3kF excitation of a Luttinger
liquid, i.e., m = (3,0) ↔ m̃ = (2, − 1). Likewise, the m =
(2,1) excitation of the 1

3 state is the usual kF of a Luttinger
liquid, i.e., m = (2,1) ↔ m̃ = (1,0). By tuning V with the
appropriate interactions, we can ensure Ṽ = diag(ṽ, − ṽ), so
that the exponents will agree with those of noninteracting
electrons.

We have constructed similar explicit transformations for
some second- and third-level hierarchy states. For certain
bilayer states, a similar correspondence is possible only if
we restrict to excitations with integral charge in each layer
separately, which signifies that such states are only realized
with two distinguishable species of fermions satisfying sepa-
rate charge conservation conditions.

Adiabatic continuity of this form has already been demon-
strated for the thin strip investigated in Fig. 5. For small t/U ,
η3 and η(2,1) are close to their quantized ν = 1

3 values; as t/U

increases and the edges interact, we find η(2,1) → 1, which is

the exponent of the (1,0) excitation of a free Luttinger liquid.
Throughout the deformation, the functional form of η3

(
η(2,1)

)
is as predicted for the ν = 1

3 state, and is the same as the
relation η̃(2,−1)

(
η̃(1,0)

)
of a Luttinger liquid.

V. CONCLUSION AND FUTURE DIRECTIONS

In this work, we demonstrated the potential of iDMRG to
access the edge physics of FQH phases in a clean infinite
strip geometry starting from a microscopic Hamiltonian. We
calculated scaling exponents for multiple edge excitations in
the ν = 1

3 , 2
5 , and 2

3 states and found that the predictions of
χLL theory are very accurately met, including the universality
of scaling exponents in the maximally chiral 2

5 edge and
their renormalization in nonchiral edges or in the presence
of interedge interactions.

The mapping of the Landau level Hamiltonian onto a
fermionic chain offers a 1D point of view on our results.
The occupation number nk has multiple nonanalytic features,
which can be identified with edge excitations in the FQH
picture. We demonstrated and analytically proved a long-
standing conjecture regarding the k values where these features
occur, the generalized Luttinger theorem, and demonstrated
the adiabatic continuity between finite-width FQH states and
multicomponent Luttinger liquids.

The techniques used here suggest a number of future
directions. Of particular interest would be the calculation of
exponents in the presence of a point contact, the geometry
relevant to interferometry experiments.51 MPS techniques
allow one to introduce a localized defect to the Hamiltonian
(a constriction of the trapping potential) while maintaining
the infinite boundary conditions of the gapless edge away
from the defect.39,52 One could then calculate the interedge
correlation functions in the presence of an interferometer. A
second direction would be to investigate more exotic FHQ
states, such as the Moore-Read state at filling ν = 5

2 , for which
significant questions remain regarding the stability of the edge
and the interplay between the trap potential and particle-hole
symmetry breaking.53,54 Finally, one can apply iDMRG and
FES techniques to lattice models on a strip in order to study the
edge excitations of other candidate topological phases, either
symmetry protected or intrinsic; currently, little is known about
the microscopics of such edges.
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