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Resistance asymmetry of a two-dimensional electron gas caused by an effective spin injection

D. I. Golosov,* I. Shlimak, and A. Butenko
Jack and Pearl Resnick Institute of Advanced Technology, Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

K.-J. Friedland
Paul-Drude Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117, Berlin, Germany

S. V. Kravchenko
Physics Department, Northeastern University, Boston, Massachusetts 02115, USA

(Received 23 July 2013; revised manuscript received 16 September 2013; published 17 October 2013)

We have performed conductivity measurements on a Si-MOSFET sample with a slot in the upper gate, allowing
for different electron densities n1 and n2 across the slot. Dynamic longitudinal resistance was measured by a
standard lock-in technique, while maintaining a large dc current through the source-drain channel. We find that
in a parallel magnetic field, the resistance of the sample R(Idc) is asymmetric with respect to the direction of
the dc current. The asymmetry becomes stronger with an increase of either the magnetic field or the difference
between n1 and n2. These observations are interpreted in terms of the effective spin injection: the degree of spin
polarization is different in the two parts of the sample, implying different magnitudes of spin current away from
the slot. The carriers thus leave the excess spin (of the appropriate sign) in the region around the slot, leading to
spin accumulation (or depletion) and to the spin-drift-diffusion phenomena. Due to the positive magnetoresistance
of the two-dimensional electron gas, this change in a local magnetization affects the resistivity near the slot and
the measured net resistance, giving rise to an asymmetric contribution. We further observe that the value of R(Idc)
saturates at large Idc; we suggest that this is due to electron tunneling from the two-dimensional n-type layer into
the p-type silicon (or into another “spin reservoir”) at the slot.
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I. INTRODUCTION

The objective of this work was to probe the influence of
strong parallel magnetic field on the electron transport across
an interface between regions with different electron densities
n1 and n2 in a single Si-MOSFET sample. The sample has a
narrow slot of 90 nm in the upper gate, which allows us to apply
different voltages to separate gates. Previously, longitudinal
conductivity of a slot-gate Si-MOSFET sample was measured
in a perpendicular magnetic field, in the quantum Hall effect
(QHE) regime.1 It was shown that for sufficiently large electron
concentrations on the two sides of the narrow slot, the presence
of the slot does not give rise to a measurable resistance
increase. This implies that the slot does not act as a potential
barrier for electrons.

The effect of a parallel magnetic field on the conductance of
a two-dimensional electron gas (2DEG) in spatially uniform
Si-MOSFET samples has been investigated earlier2–4 in the
context of metal-insulator-transition studies. The conductance
asymmetry with respect to the direction of the electric current
(parallel or antiparallel to the magnetic field), reported here,
is a novel effect associated with the nonuniform proper-
ties of our slot-gate sample. Phenomenological interpretation
of our results (involving current-induced spin accumulation
or depletion near the slot) suggests that this asymmetry
is directly related to the physical mechanism underlying
the positive magnetoresistance of a Si-MOSFET in parallel
magnetic fields.2

When a uniform 2DEG is placed in a parallel magnetic field,
applying a source-drain voltage gives rise to both charge and
spin currents, and the ratio of the two depends on the carrier
spin polarization and therefore on the carrier density. In our

case, two 2DEG systems of different densities are connected
in series (by the region underlying the slot in the gate). Then,
the magnitudes of spin current far away from the slot (where
the system can be viewed as uniform) are different on the
two sides of the slot. Therefore, the carriers leave the excess
spin (of the appropriate sign depending on the direction of the
electrical current) in the region of the slot, giving rise to the
effective spin injection (cf. Ref. 5). This results in changing
the net carrier spin in the vicinity of the slot. The latter in turn
affects the resistivity of the 2DEG, and thus the conventional
resistance measurements contain information about the local
carrier spin polarization. The sign of the measured correction
to the dynamic resistance depends on whether the carrier spin is
accumulated or depleted (i.e., on the sign of the current), hence
the observed resistance asymmetry. Thus, in our experiment
we perform the effective spin injection while also measuring
its rate.

With increasing electrical current, the asymmetric contri-
bution to the resistance appears to saturate. We suggest that
this is a consequence of spin-current “leakage” at the slot,
due to the tunneling into, e.g., the underlying p-type silicon.
With increasing dc current, spin accumulation or depletion
in the slot region become more pronounced. This, in turn,
leads to an increased rate of the “leakage,” thereby restricting
further increase of spin accumulation/depletion and that of the
associated resistance asymmetry.

The paper is organized as follows: After describing the
experimental procedure in Sec. II, we give an overview of the
data and summarize the basic theoretical ideas in Sec. III. This
is followed by a more detailed discussion of the theoretical
model (Sec. IV), and a comparison with experimental results
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FIG. 1. (Color online) Schematic view of the sample.

is found in Sec. V. Preliminary results were published in
Ref. 6.

II. EXPERIMENT

The sample used in our experiments (see Fig. 1) was
studied earlier in Ref. 1. The width of the 2DEG channel
is 30 μm. Narrow slot (∼90 nm) was made in the upper
metallic gate, allowing us to apply different gate voltages
to different parts of the gate and thereby to independently
control the electron density in the two areas of the sample.
The distance between the slot and the contact V1 (V2) is
30 μm (150 μm). By measuring the transverse Hall resistivity
ρxy and longitudinal resistivity ρxx as functions of the gate
voltage UG in a perpendicular magnetic field, we obtained
the dependence of electron density n on UG, viz., n = 1.43 ×
1015(UG − 0.64) V m−2, with electron mobility 1.46 m2/V s
at n = 1.62 × 1016 m−2.

For the present experiment, the sample was mounted along
the magnet axis, so that the current flow would be parallel to

the magnetic field. The misalignment between the two was
estimated with the help of Hall effect measurements. Whereas
the Hall voltage must vanish for the ideal planar geometry, the
small value registered corresponds to a minute out-of-plane
misalignment of about ∼0.1◦.

Our experimental scheme enables one to pass a large
dc current Idc of about 1 μA through the source-drain
channel, while measuring the dynamic resistance at 12.7 Hz
frequency by means of a standard lock-in technique with an ac
current of 10–50 nA. Sample temperature was maintained at
0.3 K.

In the first series of measurements, we fix different gate
voltages applied to the different areas of the sample across
the slot: in area 1, UG(1) = 7 V, which corresponds to
n1 = 0.9 × 1016 m−2, and in area 2, UG(2) = 18 V, which
corresponds to n2 = 2.5 × 1016 m−2. Then, we measure the
dynamic resistance of the sample as a function of dc current
at zero magnetic field and in parallel fields B = 7 and 14 T
(Fig. 2). One can see the following features:

(1) At zero Idc, a positive magnetoresistance2–4,7–12 (PMR)
is observed: resistance increases with magnetic field.

(2) At B = 0, resistivity slightly increases with the dc
current, and R(Idc) is almost symmetric with respect to the
direction of Idc.

(3) At B = 7 and 14 T, the dependencies R(Idc) are clearly
asymmetric. This asymmetry, which increases with |B|, does
not depend on the direction of the magnetic field: the shape
of the curves is identical for B = 14 and −14 T. This
excludes Hall voltage (which may arise due to a slight
misalignment of the sample) as a possible origin of the
asymmetry.

7 T

0 T

14 T

7 T

0 T

14 T

(a)

(b)

(c)

FIG. 2. (Color online) (a) Dynamic resistance as a function of dc current at B = 0, 7, and ±14 T. UG(1) = 7 V, UG(2) = 18 V, corresponding
to carrier densities n1 = 0.9 × 1016 m−2 and n2 = 2.5 × 1016 m−2. Panels (b) and (c) show normalized symmetric and antisymmetric parts of
the data shown in (a).
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FIG. 3. (Color online) Top panel: dynamic resistance as a function
of dc current for varying values of the gate voltage UG(1) = 6, 7, 8, 9,
and 12 V (corresponding to n1 = 0.83 × 1016, 0.95 × 1016, 1.2 ×
1016, 1.25 × 1016, and 1.7 × 1016 m−2). UG(2) is fixed at 18 V (n2 =
2.5 × 1016 m−2), and B = 14 T. The systematic relative increase of
the resistance asymmetry with increasing n2 − n1 is highlighted by
the bottom panel.

In the second series of measurements, dependencies ρ(Idc)
were obtained at B = 14 T for the case when one gate voltage
was maintained at a constant value UG(2) = 18 V, while the
other varied from UG(1) = 12 V to UG(1) = 6 V (Fig. 3).
One can see that asymmetry increases with the increase of
the difference between n1 and n2.

III. EXPERIMENTAL RESULTS AND BASIC
INTERPRETATION: AN OVERVIEW

The positive magnetoresistance (PMR) effect in parallel
magnetic fields in Si-based two-dimensional systems has been
observed earlier.2–4,7–12 It was shown in Refs. 7 and 8 that
the metalliclike conductivity of Si-MOSFET first decreases
with increase of in-plane magnetic field and then saturates to
a new constant value when electrons become fully polarized.
This effect is variously attributed to the reduction of screening
of charge impurities in a Fermi liquid caused by the loss of
spin degeneracy13 or to a combined effect of spin polarization,
interaction, and multiple impurity scattering.14 The reader is
referred to Ref. 15 for further discussion. What is important
for us presently is that the PMR effect is of spin origin, i.e., the
conductivity depends on spin polarization (or, equivalently,
on magnetization), which in turn is affected by the applied
magnetic field.

In this paper, we are interested in the asymmetry of the
measured resistance R(Idc) with respect to the sign of Idc.
Figures 2(b) and 2(c) show the result of decomposition of
R(Idc) into symmetric RS and antisymmetric RA parts:
RS(I) = [R(Idc) + R(−Idc)]/2, and RA(Idc) = R(Idc) −
RS(Idc). For convenience, we show normalized values
RS,A/R(Idc = 0). The profile of R(Idc) at B = 0 is almost
symmetric. This symmetric increase is presumably due to
the conductivity being strongly affected by the Joule heating
(of the electron system), proportional to (Idc)2. In our case,
both electron concentrations n1 and n2 correspond to the
metallic side of the metal-insulator transition in 2D electron
systems, when dR/dT > 0, so increasing the temperature
must lead to a resistance increase, explaining the experimental
observation. The small asymmetry observed at B = 0 (about
2.5×10−4 of the net resistance at maximal current) can be
explained by an additional voltage bias Vdc induced by the dc
current: Vdc = IdcR. In MOSFETs, Vdc is added to the gate
voltage UG with an appropriate sign (cf. “pinch-off” effect16).
For our sample geometry, Vdc at Idc = 0.4 μA reaches 1 mV
which is, indeed, about 10−4 of the UG. This leads to a small
increase or decrease (depending on the sign of Idc) of the
electron density and corresponding asymmetric contribution
to the sample resistance.

It follows from Fig. 2 that in strong parallel magnetic
fields (B = 7 and 14 T), the Joule heating due do the dc
current Idc does not influence the resistance significantly.
This is in agreement with observation reported in Ref. 4
that in strong parallel fields dR/dT ≈ 0 and conductivity
of Si-MOSFET is temperature independent. As a result, the
symmetric part of resistance almost disappears. On the other
hand, the asymmetric part RA(Idc) is enhanced and can no
longer be explained by the influence of Vdc. Indeed, the latter
effect is too weak and the associated term in RA should be
linear in Idc and (almost) independent of the magnetic field.

As already mentioned in the Introduction, we suggest that
the observed resistance asymmetry of a slot-gate Si-MOSFET
in a parallel magnetic field should be understood in terms of the
current-induced electron spin accumulation/depletion near the
slot. Indeed, at Idc = 0, the magnetization density is uniform
and takes the value

M0 ≡ 1
2 (n↑ − n↓) = 1

2gμBν0B (1)
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FIG. 4. The 2DEG in a slot-gate MOSFET at equilibrium
(Idc = 0), schematic representation. In each of the two areas, the
energy E0 of the conduction band bottom is controlled by the
corresponding gate voltage. Chemical potential μ is uniform; applied
magnetic field gives rise to the Zeeman splitting (μ↑,↓, dashed lines).

(in units of Bohr magneton μB per unit area). Here, g is the
gyromagnetic ratio, n↑ (n↓) is the spin-up (spin-down) electron
density, and

ν0 = γm∗/(2πh̄2) (2)

is the electron density of states per spin projection, taking
into account the presence of γ equivalent valleys (for a Si-
MOSFET, γ = 2); m∗ is the effective mass.

Different electron concentrations across the slot imply
different degrees of spin polarization P = 2M0/n in the
presence of a magnetic field. Within the Drude approach, one
obtains a simple relationship between electric (j ) and spin (s)
current densities away from the slot, where the state of the
system remains uniform:

s ≡ −eEτp

2m∗
(n↑ − n↓) = −Pj/2e . (3)

Here, E is the local in-plane electric field, τp is the momentum
relaxation time, and −e is electron charge. Consider the
case of Idc > 0, corresponding to the flow of (appropriately
spin-polarized) electrons from area 1 with high degree of
spin polarization to area 2, where relative spin polarization
is smaller (Fig. 4). Since j = Idc/d (where d is the width of
the sample) is constant, it follows from Eq. (3) that the flow of
the spin density (flowing from right to left in Fig. 4) is larger
in area 1 than in area 2, with the excess spin being deposited
in the region around the gap. Hence, we observe that such
a current causes a local increase of spin polarization near the
slot, resulting in an increase of the overall resistance (due to the
PMR effect). Conversely, an electron flow from area 2 to area
1 results in a spin depletion and therefore in a decreased resis-
tance. While relegating a self-contained theoretical discussion
to the next section, here we quote an expression obtained
in the simplest case when the degree of spin polarization is
small everywhere and the spin current is continuous at the
slot. While these assumptions are at best inexact, the result

is instructive in terms of initial understanding of the data.
We find

RA = 2|B|Idc

ed2

n−1
1 − n−1

2√
n1τp,1/τs,1 + √

n2τp,2/τs,2

×
[√

n1τp,1τs,1
∂ρ(n1,B)

∂B
+ √

n2τp,2τs,2
∂ρ(n2,B)

∂B

]

+ 8m∗M2
0 Idc

e3d2

(
n−1

1 − n−1
2

)3

(
√

n1τp,1/τs,1 + √
n2τp,2/τs,2)2

, (4)

where τp is the momentum relaxation time, which can be
roughly estimated from mobility (Ref. 12). The accumulated
excess spin diffuses away from the slot with the rate controlled
by the spin-relaxation time τs (also denoted T1 in the context
of resonance measurements). Both τp and τs depend on the
carrier density, and in Eq. (4) we used shorthand notation,
viz., τp,1 ≡ τp(n1), etc.

The first term in Eq. (4) describes the effect of spin accu-
mulation or depletion on τp via the PMR phenomenon. The
PMR effect is parametrized by the derivatives ∂ρ(n1,2,B)/∂B,
which can be determined from the data of Ref. 12 using
a linear fit in the carrier density. Studies of spin relax-
ation in Si/Si-Ge quantum wells were reported in Ref. 17,
confirming that τs is proportional to τp, as expected for
Dyakonov-Perel’ mechanism18 of spin relaxation. The ratio
τs/τp was measured17 as 106. Subsequent measurements
yielded τs/τp ∼ 3 × 105 for Si/Si-Ge quantum wells19 and
τs/τp ∼ 2 × 105 for a Si-MOSFET (Ref. 20) (in the latter
case, the values of carrier density and mobility differed
strongly from those in our measurements). We therefore
conclude that the ratio τs/τp is not known precisely, leaving
us with a certain freedom in the choice of the value of this
parameter.

In addition to these PMR-related effects, there is also
another contribution to the resistivity, due to the spin diffusion
per se. Indeed, maintaining a nonequilibrium value of spin
density in the region near the slot requires a steady flow of
energy to this region, resulting in an overall resistance increase
[cf. Eq. (32)]. The second term in Eq. (4) is the antisymmetric
part of this additional resistance. In our range of parameter
values, this term is an order of magnitude smaller than the
first one.

We find that a perfect fit to the experimental RA(Idc) at
small Idc is obtained if we assume τs/τp = 1.7 × 105 (see
Fig. 5), slightly below the reported range. We also note the
pronounced deviation of experimental curves from the linear
form of Eq. (4) at larger Idc. This suggests the importance
of an additional, nonlinear mechanism for dissipating excess
spin (of either sign) in a slot-gate MOSFET. Such a mechanism
will be introduced in Sec. IV A. We will then continue with
the analysis of our experimental data in Sec. V.

IV. THEORETICAL MODEL

A. From the Boltzmann equation to spin dynamics

We begin with modeling our system microscopically with
the help of a simple Boltzmann equation. Analysis of the

155313-4



RESISTANCE ASYMMETRY OF A TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 88, 155313 (2013)

R
  

(B
)−

R
  

(B
=

0)
 (

   
) 

I      (  A)

14 T

7 T

DC

Ω
A

A

μ

1

0

−1

0.40.20−0.2−0.4

FIG. 5. (Color online) Antisymmetric parts of B = 7 and 14 T
data shown in Fig. 2, averaged over noise. The values of RA(Idc) at
B = 0 were subtracted in order to eliminate the contribution of the
“pinch-off” effect. Dashed lines correspond to the crude theoretical
result [Eq. (4)].

resultant macroscopic equation for magnetization is relegated
to the next section.

We make use of the fact17 that the spin-relaxation time τs

is much larger than the carrier scattering time τp. It is this
latter time which characterizes the momentum relaxation of
the system to a “quasistationary” state with the distribution
function

fα( 
p,x) =
[

exp

(
ε 
p − ζα(x)

T

)
+ 1

]−1

,

(5)

ε 
p = p2

2m∗
+ E0(x),

characterized by the effective chemical potentials ζ↑,↓(x).
Here, E0 is the energy of the bottom of the band, which depends
on the coordinate x (along the sample) and is determined
primarily by the gate voltage. Strictly speaking, it is also
affected by the source-drain bias (cf. pinch-off effect in
field-effect transistors16). The latter effect gives rise to a small
correction �R0(Idc) to the measured resistance. This �R0

and the larger term due to spin-transport effects (which is
of interest to us here) are additive. We will estimate �R0

phenomenologically in Sec. V, while presently assuming that
the value of E0(x) is independent of the source-drain voltage.
The “quasistationary” values of the chemical potential for the
corresponding spin species ζ↑,↓(x) (which also include the
Zeeman energy) are related to the local carrier density and
magnetization density (the latter in the units of μB per unit
area) according to

n = ν0(ζ↑ + ζ↓ − 2E0), M = 1
2ν0(ζ↑ − ζ↓) (6)

(see Fig. 6), where ν0 is given by Eq. (2). The quantities ζα relax
to their true equilibrium values of μ↑,↓ = μ ± 1

2μBgB (here
μ is the chemical potential) with a large characteristic time τs .
In the following, we shall see that on a smaller time scale (or
when there is a current passing through the system), the values
of ζα may depend on x. As a consequence, magnetization M(x)
may deviate from its uniform equilibrium value M0, given by
Eq. (1).

μ

ζ

ζ

μ

ζ

α

area 2 area 1

0 x

x
n,Mn

M(x)
M

2

0

1n

FIG. 6. (Color online) Schematic profiles of ζ↑,↓(x), n(x), and
M(x) around the slot. The width of the slot is assumed negligible,
and the direction in which ζ↑,↓(x) deviate from the equilibrium values
μ↑,↓ corresponds to Idc > 0 (see Fig. 9).

We describe the relaxation of the system to the “interme-
diate” equilibrium [Eq. (5)] via the Drude-type Boltzmann
equation

∂δf↑,↓
∂t

+ ∂f↑,↓
∂px

{
1

nτdr

P↓,↑ − eE − ∂E0

∂x

}
+ ∂f↑,↓

∂ζ↑,↓

×
{

∂ζ↑,↓
∂x

− ∂E0

∂x

}
px

m∗
= −δf↑,↓

τp

− n↓,↑δf↑,↓
nτdr

. (7)

Here, δfα(t,x, 
p) is the nonequilibrium part of the distribution
function, τp is the momentum relaxation time (assumed to
be spin independent), and τdr the spin-drag time. The terms
containing ∂E0/∂x cancel, corresponding to zero current in the
absence of the source-drain electric field E . The quantities nα

and Pα are the electron density and the net 2DEG momentum
density for the corresponding spin species

nα = (ζα − E0)ν0, Pα = γ

∫
pxδfα

d2p

(2πh̄)2
. (8)

The latter is related to the two-dimensional charge and spin-
current densities via

j = − e

m∗
(P↑ + P↓), s = 1

2m∗
(P↑ − P↓) , (9)

where spin is again measured in units of Bohr magneton. The
Coulomb spin-drag effect21,22 gives rise to a “drag” force
appearing on the left-hand side of Eq. (7), and to another
channel of momentum relaxation corresponding to the second
term on the right-hand side.

In the steady state at low T , multiplying Eq. (7) by px and
integrating yields(

eE + ∂ζ↑,↓
∂x

− P↓,↑
nτdr

)
n↑,↓ = − 1

τp

P↑,↓ − n↓,↑
nτdr

P↑,↓ . (10)
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Using n↑,↓ = 1
2n ± M , we next find(

eE + ∂E0

∂x
+ 1

2ν0

∂n

∂x
± 1

ν0

∂M

∂x

) (
1

2
n ± M

)

= m∗
τp

(
1

2e
j ∓ s

)
∓ m∗

nτdr

(
ns + 1

e
Mj

)
. (11)

Summing the two equations (11) yields an expression

eE = m∗
neτp

j − 1

2ν0

∂n

∂x
− 2

nν0
M

∂M

∂x
+ ∂E0

∂x
(12)

for the electric field E . In principle, this should be solved
together with the appropriate Poisson equation and with the
spin-dynamics equations to determine n(x), M(x), and E(x)
self-consistently.

We note that our experimental setup is reminiscent of the
one previously considered in the literature,23,24 whereby the
doping level in a (three-dimensional) semiconducting sample
is varied abruptly as a function of x, resulting in the carrier
density jump at x = 0. Electrical current is passed along the x

axis, and while there is no external magnetic field, spin current
is injected into the semiconductor from a ferromagnetic tip
located away from the x = 0 plane. It was suggested23–25 that
taking into account the nontrivial x dependence of the electric
field and of the carrier density (as dictated by the Poisson
equation) is essential for correctly describing the system. Here,
we wish to argue that the latter complication does not arise in
the present case.

When supplemented with the Poisson equation, Eq. (12)
leads to a drift-diffusion equation for the electric field E . Our
current densities are well within the diffusive regime of this
equation. Furthermore, we find that in our case, the associated
diffusion length is of the order of a few nm, which is much
smaller than any relevant length scale. The “smearing” of n(x)
is therefore insignificant. We conclude that in the range of
parameter values of interest to us, one can neglect the feedback
effect of ∂E/∂x on n and M and omit the Poisson equation
altogether. This amounts to assuming

n(x) =
{
n1 , x > 0

n2 , x < 0
(13)

where n1 and n2 are the 2DEG densities as set by selecting the
appropriate gate voltages at j = 0 and B = 0. The width of the
slot, 90 nm, is much larger than the Fermi wavelength h̄/pF

for our values of n1,2, hence the changes in E0 and n affect
the quantum-mechanical carrier motion only adiabatically.
Accordingly, one can assume that the carriers pass across the
slot region in a ballistic fashion [as opposed to tunneling;
treating the slot as a tunnelling barrier with a finite spin-
dependent conductance yields only a quantitative change in the
resultant R(Idc) dependence]. Note also that we do not attempt
to model the profile of n(x) [and E0(x)] within the slot since
the slot width is smaller than the characteristic length scale of
the spin dynamics (spin-diffusion length). The ∂E0/∂x term
in Eq. (12) is compensated over short distance by the density
variation ∂n/∂x (as described by the Poisson equation and
independently of the source-drain bias) and both terms can be
dropped. Equation (12) then merely yields the value of E as
a function of current density j (a constant playing the role of
experimental control parameter) and magnetization M(x). The

latter is determined by the spin dynamics, to which we will
turn now.

Subtracting the two equations (11) from each other, we find
the following expression for the spin current (in units of μB):

s = −Mj

en
− τ

2m∗nν0
(n2 − 4M2)

∂M

∂x
, (14)

where

1

τ
= 1

τp

+ 1

τdr

. (15)

Thus, the effect of the Coulomb spin drag on spin dynamics in
our case consists in a mere relaxation time renormalization.22

The precise value of 1/τdr is not known, but is expected21 to
be small at low temperature T . Therefore, when comparing
our theoretical results with the experimental data in Sec. V,
we will assume τ ≈ τp. We also note that the last (diffusive)
term in Eq. (14) vanishes in a uniform system (∂M/∂x = 0)
or for the case of complete spin polarization (n = 2M).

The continuity equation for magnetization reads as

∂M

∂t
= − ∂s

∂x
− M − M0

τs

. (16)

The spin-relaxation time τs is due primarily to the Dyakonov-
Perel’ mechanism.17,18 It does depend on n, but an increase
of temperature (which might occur due to Joule heating) does
not affect the value of τs as long as T is small compared to the
Fermi energy.18 Likewise, the effect of the electrical current on
τs is negligible if the carrier drift velocity is much smaller than
the Fermi velocity. Since the latter two conditions are certainly
met in our experiments, we can assume that τs is determined
solely by the carrier density n.

In order to proceed with solving Eqs. (14) and (16) in the
steady state (see the next section), we need to specify the
boundary condition for M at the point of density jump x = 0.
This can be done by replacing the step in Eq. (13) with a
smooth density change from n2 to n1, occurring in the range
|x| < x0, and taking the limit x0 → 0. Equation (14) is valid
for smooth n(x) and M(x), and must yield a finite value of
spin current s. Since it includes ∂M/∂x, but not ∂n/∂x [which
is divergent at x0 → 0 and might have compensated for a
jump in M(x) in this limit], we conclude that magnetization
M(x) must be continuous at x = 0 (cf. Ref. 26). One can
arrive at the same conclusion by noticing that the two chemical
potentials ζ↑,↓ must be continuous at the slot. This would be
modified when a finite tunneling conductance through the slot
is assumed, resulting in a current-dependent magnetization
step. As noted above, this modification does not affect our
results in a qualitative way, hence infinite slot conductance
will be assumed forthwith.

We further emphasize that M(x) must be continuous at
x = 0 only as long as the spin polarization on both sides of
the slot remains incomplete M2 < n2/4. This is due to the
fact that the second term in Eq. (14) vanishes at |M| = n/2.
Whenever full polarization is attained on either side of the slot,
the magnetization can suffer a jump at x = 0, and the limiting
value of M on the opposite side is determined by the boundary
condition for spin current at the slot (see following). Presently,
however, we shall be interested in the case of incomplete
polarization only.
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Our data imply that in addition to the Dyakonov-Perel’
mechanism [which is linear, see Eq. (16)], another route of
spin dissipation is involved, accounting for the saturation
of the antisymmetric resistance RA at larger Idc, as seen in
Figs. 2 and 5. This additional mechanism must be nonlinear.
While in principle it could arise from a sublinear correction
to the transport and spin-relaxation equations considered
above, this would require much higher values of Idc. We
conclude that a strongly nonlinear “leakage” of spin near
the slot into a “spin reservoir” must be present. Assuming
that the current does not flow through this reservoir, the
chemical potentials for spin-up and -down electrons within
the reservoir would retain their equilibrium values μ↑,↓.
There are several possible realizations of this mechanism, and
in the remaining part of this section we will describe two
examples.

We notice that in the vicinity of the slot, due to the absence
of the gate potential, the region of p-type Si approaches
the surface of the sample, thus potentially enabling electron
tunneling between the 2DEG and the bulk. In the absence of
Idc, carriers in the bulk are at equilibrium with the 2DEG,
which means that the chemical potentials for spin-up and
-down electrons have the same respective values μ↑,↓. At
Idc = 0, these bulk values of chemical potentials do not change,
whereas those of 2DEG acquire the respective quasistationary
values ζ↑,↓(x). Since the carrier density in 2DEG does not
change, one finds ζ↑(x) − μ↑ = μ↓ − ζ↓(x). For the tunneling
current density j (t)

α of electrons with spin α = ↑,↓ from the
2DEG into the bulk we write

j (t)
α = Gα · [μα − ζα(0)] , (17)

where the conductance

Gα = G0 + K · [μα − ζα(0)]2 (18)

is assumed to have a spin-independent value G0 in the Ohmic
limit. The corresponding tunneling processes are shown
schematically in Fig. 7. In writing Eqs. (17) and (18), we
make use of the continuity of ζ↑,↓(x) at the slot, ζ↑,↓(−0) =
ζ↑,↓(+0). We denote the corresponding limiting value ζ↑,↓(0),
as the width of the slot is negligible from the viewpoint of
macroscopic equations analyzed below. We see that j

(t)
↑ and

j
(t)
↓ cancel each other, yet there arises a spin current from the

2DEG into the bulk, with the density

s(t) = [M(0) −M0],  = G0

eν0
+ K

eν3
0

[M(0) − M0]2 (19)

[cf. Eq. (6)]. Thus, the boundary condition for spin current at
the slot takes the form

s(+0) = s(−0) − s(t), (20)

where the limiting values s(±0) of the 2DEG spin current
density to the right and to the left of the slot are given by
Eq. (14).

We note that the physics associated with Eqs. (17)–(19) is
not restricted to the specific case of tunneling into the p-type
Si, as described above. Another alternative possibility is related
to the fact that the current flow within 2DEG (and especially
near the slot) is not necessarily uniform; instead, there might

ζ

ζζ

ζ

ζ

μ
μ

α

x

gate 2 gate 1

2DEG 2DEG

SiO

carrier depletion area

2 0

p−type silicon

FIG. 7. (Color online) Electron tunneling processes at the slot.
Direct tunneling between the two areas of 2DEG is shown by thick
horizontal arrows. In addition, we include tunneling between the
2DEG and p-type Si (slanted arrows), which arises due to a difference
between the quasistationary electrochemical potentials ζ↑,↓ for the
spin-up and -down electrons in 2DEG and the corresponding values
μ↑,↓ in the bulk. This difference, in turn, is due to a nonzero current
Idc through the 2DEG; schematic profiles of ζ↑,↓(x) in the figure
correspond to M(x) > M0 near the slot, such as for n1 < n2 and
Idc > 0 (see Fig. 9).

exist sizable regions of 2DEG which do not participate in
conduction; these “puddles” would be separated from the
“stream”, where the current is flowing, by relatively low
tunneling barriers (see Fig. 8). Due to the absence of current,
the respective chemical potentials for the two spin species in
the “puddles” retain their unperturbed values μα . Hence, the
puddles would play exactly the same role of “spin reservoir”
as the p-type Si in the previous scenario. What is essential
for us here is that there is a “leakage” of spin current from
the source-drain current flow into the reservoir, and that this
leakage depends on μα − ζα(x) in a strongly nonlinear fashion
[cf. Eqs. (18) and (19)]. The reservoir must be sufficiently large
to allow for efficient relaxation of the incoming excess spin.

slot

FIG. 8. (Color online) Inhomogeneities in the 2DEG (schematic
view from above): hatched areas correspond to the 2DEG; dashed-
dotted lines, to potential barriers. Solid lines show the electron
flow corresponding to the source-drain current (“stream”), dashed
double-arrowed lines to tunneling to/from isolated areas of the 2DEG
(“puddles”).
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B. Spin-drift-diffusion phenomena, and the effect
on the sample resistance

Our first objective here is to find the steady-state profile
of magnetization M as a function of the coordinate x for
given values of current j and carrier densities n1,2. Combining
Eqs. (14) and (16) yields the spin-drift-diffusion equation

α
∂

∂x

[(
1

4
n2 − M2

)
∂M

∂x

]
+ 1

2
j
∂M

∂x
− β(M − M0) = 0,

(21)

where

α = eτ

m∗ν0
, β = en

2τs

. (22)

We note that spin-drift-diffusion equations were derived
earlier by Yu and Flatté for nondegenerate semiconductors27

and by D’Amico for the degenerate case;28 an interface
problem similar to the present one was considered in Ref. 26.
In all these cases, the linearization in δM = M(x) − M0 was
performed, resulting in a linear drift-diffusion equation. On the
other hand, the first term of our Eq. (21) is explicitly nonlinear.
In addition to enforcing a physical constraint, |M(x)| < n/2,
this nonlinearity affects the subleading (in j ) terms even for
small |δM| � n, which will be important for us here.

At j = 0, Eq. (21) is solved by δM ≡ 0; other solutions
may exist, but these appear irrelevant for the case at hand. As
mentioned above, within the present macroscopic description
the carrier density n [see Eq. (13)], as well as τ and τs which
depend on n, suffer a jump at x = 0. In the following, the
subscript 1 (2) refers to the quantities characterizing the x > 0
(x < 0) part of the sample.

We are interested in the diffusive regime of small current
densities |j | � jcr,i , for i = 1,2, where

(jcr,i)
2 = 4αiβi

(
n2

i − 4M2
0

) = 2e2niτi

m∗ν0τs i

(
n2

i − 4M2
0

)
. (23)

We estimate that for our system, j = jcr,i would correspond
to a net current Idc which is an order of magnitude larger than
our operational values.29

In the diffusive regime, δM(x) is small everywhere, and
Eq. (21) is easily solved by iterations. Keeping terms of up to
second order in j , one finds the appropriate solution, decaying
exponentially at large |x|,

δM =
{

C1 exp(λ1x) + A1 exp(2λ1x) , x > 0

C2 exp(λ2x) + A2 exp(2λ2x) , x < 0
(24)

where

λi = ∓2

√
βi

αi

(
n2

i − 4M2
0

) (
1 ± j

jcr,i

)
(25)

and

Ai ≈ 16

3
M0C

2
i

1

n2
i − 4M2

0

. (26)

Expressions for Ci are found from the boundary conditions
for spin current and magnetization, as discussed in the previous
section. To leading order in j/jcr,i , we find C1 = C2 = C0

where the quantity C0 is the solution of

C0 = 2M0j

(
1

n1
− 1

n2

)(
jcr,1

n1
+ jcr,2

n2
+ 2G0

ν0
+ 2K

ν3
0

C2
0

)−1

.

(27)

To the required accuracy, we can substitute Ci → C0 in
Eq. (26). The subleading terms in Ci are given by

Ci − C0

= C0

[
8C0M0jcr,1

3n1
(
n2

1 − 4M2
0

) + 8C0M0jcr,2

3n2
(
n2

2 − 4M2
0

) + j

(
1

n1
− 1

n2

)]

×
[
jcr,1

n1
+ jcr,2

n2
+ 2G0

ν0
+ 6K

ν3
0

C2
0

]−1

− Ai. (28)

Next, we must use Eq. (12) to express the potential
difference between the voltage contacts (located at x = −L2

and x = L1 with L1,2 � |λ1,2|−1) as

V ≡
∫ 0

−L2

E(x)dx +
∫ L1

0
E(x)dx

= j

{∫ 0

−L2

ρ [n2,M(x)] dx +
∫ L1

0
ρ [n1,M(x)] dx

}

+ 1

eν0

(
1

n1
− 1

n2

) {
[M(x = 0)]2 − M2

0

}
. (29)

Here, the first term on the right-hand side corresponds to the
Ohm’s law, and in writing it we take into account the fact that
the well-known positive magnetoresistance of the 2DEG in a
parallel magnetic field B is of spin origin. In other words, ρ

depends on B via the field dependence of magnetization M ,
viz., ρ = ρ[n,M(B)], or ∂ρ/∂M = 2(ν0μBg)−1 ∂ρ(n)/∂B.
The last term in Eq. (29) originates from the third term in
Eq. (12); essentially, this is the additional voltage required to
maintain the (nonequilibrium) nonuniform profile of chemical
potentials ζ↑,↓(x) which results in a nonzero δM(x) [see
Eq. (6)].

Dynamic resistance can be found as a derivative R =
dV/dIdc of the voltage [Eq. (29)] with respect to the net dc
current Idc = jd (where d is the width of the sample). We
first consider the case of very small current densities j � jsat,
where

8KM2
0 j 2

sat ∼ ν3
0

(
jcr,1

n1
+ jcr,2

n2
+ 2G0

ν0

)3 (
1

n1
− 1

n2

)−2

.

(30)

We will have to assume that the quantity K [parametrizing the
nonlinearity of tunneling into the p-type Si, see Eq. (18)] is
large, so that this condition is more restrictive than j � jcr,i

[cf. Eq. (23)]. Nevertheless, with j � jsat one can neglect the
K terms on the right-hand side of Eqs. (27) and (28), enabling
analytical calculation. The dependence of δM(x) on Idc in this
regime is shown schematically in Fig. 9.

Substituting Eq. (24) into (29) and expanding to quadratic
terms in the net dc current Idc = jd, we obtain

V = IdcR(0) + 1

2
I 2

dc
∂R

∂Idc
, (31)
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FIG. 9. Schematic behavior of δM(x) for different values of Idc,
assuming n2 > n1. Curves 1 to 3 correspond to increasing values of
Idc > 0, whereas curves 4 to 6 illustrate the effect of increasing |Idc|
for Idc < 0. Slight difference in the shape of the curves for different
values of Idc reflects the presence of a small current-dependent
correction in Eq. (25).

where the differential resistance at zero current is

R(0) = 1

d
[ρ(n1,M0)L1 + ρ(n2,M0)L2]

+ 4M2
0

eν0d

(
1

n1
− 1

n2

)2 (
jcr,1

n1
+ jcr,2

n2
+ 2G0

ν0

)−1

.

(32)

We see that the resistance of two 2DEG areas connected
in series is increased due to spin effects, as implied by the
presence of the second term. It originates from the third
(spin-diffusion) term in Eq. (12), and corresponds to a linear
increase of |δM(x = 0)| in the diffusive regime (cf. Fig. 9).
This nonequilibrium distribution of M(x) is maintained by the
current flow, which increases the net resistance. In addition,
a deviation from the Ohm’s law is obtained, viz., R(Idc) =
R(0) + Idc∂R/∂Idc, where

∂R

∂Idc
= M0

d2

(
1

n1
− 1

n2

) (
jcr,1

n1
+ jcr,2

n2
+ 2G0

ν0

)−1

×
(

jcr,1

β1

∂ρ(n1,M0)

∂M
+ jcr,2

β2

∂ρ(n2,M0)

∂M

)

+ 16M2
0

3ν0ed2

(
1

n1
− 1

n2

)3 (
jcr,1

n1
+ jcr,2

n2
+ 2G0

ν0

)−3

×
(

3n2
1 − 4M2

0

n2
1 − 4M2

0

jcr,1

n1
+ 3n2

2 − 4M2
0

n2
2 − 4M2

0

jcr,2

n2
+ 6G0

ν0

)
.

(33)

Here, the first term is due to the positive magnetoresistance of
the 2DEG [caused by the magnetization change M0 → M0 +
δM(x), as explained above]; the second term is the sublinear
contribution of the third term in Eq. (12). In the appropriate
limit of M0 � n1,2 and G0 → 0, Eq. (12) yields Eq. (4). For
our range of parameter values, the first term (which is roughly
linear in M0 and hence in B) dominates. This agrees with the
experimental RA(B) at small Idc, as shown in Fig. 2.

We see that the resistance indeed acquires an asymmetric
contribution, as seen in Fig. 2. When the net current is small,
this contribution is linear in Idc, as per Eq. (33). When |Idc|

becomes comparable to jsatd [cf. Eq. (30)], the increase of
|δM(x)| with |Idc| slows down and becomes sublinear. This
is the origin of saturation in the asymmetric contribution to
resistance as seen in the experimental data (Fig. 2). The value
of the resistance R in this region can be calculated as

R(Idc) = ∂V (Idc)/∂Idc , (34)

where V (Idc) is given by Eq. (29), and its evaluation involves
numerically solving Eq. (27) for C0. Typical profiles of the
resultant RA(Idc) will be shown in the next section, where
these will be compared against the experimental results.

The sublinear behavior of R(Idc) is due to the nonlinear
tunneling to the “spin reservoir” [Eqs. (17) and (18)], which
results in a slower growth of the “effective spin injection” rate
with current at larger |Idc|. One can readily see this analytically
in the limiting case of jsat � |j | � jcr,i , when the last term in
the denominator of Eq. (27) dominates, leading to C0 ∝ j 1/3.
In this regime, we find that to leading order, the antisymmetric
part of the resistivity RA(Idc) is proportional to I

1/3
dc .

V. COMPARISON WITH THE EXPERIMENTAL DATA

Here, we attempt a detailed comparison of our experimental
data (Sec. III) with the theory developed in Sec. IV. Our
focus will be on the antisymmetric part of both theoretical
and experimental results. This is because the symmetric
part can be affected by additional physical mechanisms,
which are unrelated to spin transport and are therefore of
no interest to us here. These include the nonlinearity in the
slot transmission coefficient, and the Joule heating (although,
as mentioned above, the effect of heating on resistivity is
strongly suppressed when a magnetic field is applied). The
antisymmetric part, on the contrary, is due mostly to the
spin-transport processes as discussed theoretically in Sec. IV,
with a smaller antisymmetric contribution due to the effect
of the source-drain potential on the 2DEG carrier density
(pinch-off).

The latter contribution, present also at B = 0, can be
evaluated based on the electrical connection scheme, shown
in Fig. 10. At Idc = 0, the carrier densities in the 2DEG are
determined by the respective gate voltages, yielding the values
of resistivity in the two parts of the sample ρ1,2 = ρ[UG(1,2)].
At Idc = 0, the resultant electrical potential φ(x) within the
2DEG layer is added to the gate voltage, and the resistivity
acquires a weak dependence on the coordinate x, viz.,

source

gate 2

2DEG
drain

U  (1)
U  (2)

V

L L L

G
G

0 2 1

slot
gate 1

FIG. 10. (Color online) Electrical connections of the sample, with
L0 = 250 μm, L2 = 150 μm, and L1 = 30 μm. At Idc = 0, the 2DEG
carrier density under gate 1 (gate 2) equals n1 (n2). When a source-
drain bias is applied, these density values vary slightly, resulting in a
change of the corresponding resistivities.
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FIG. 11. (Color online) Antisymmetric parts of the data obtained for different values of UG(1), as shown in Fig. 3. The dashed lines
correspond to the theoretical result [Eqs. (33) and (34)], supplemented by the correction [Eq. (35)], and assuming τs/τ = 4 × 105. Tunneling
parameters G0/ν0 in units 10−16 A m and K/ν3

0 in units 10−40 A m5: for UG(1) = 6 V: 0.09 and 0.007; for UG(1) = 7 V: 0.5 and 0.045; for
UG(1) = 8 V: 0.6 and 0.1; for UG(1) = 9 V: 1.6 and 0.25, and for UG(1) = 12 V : 1.7 and 2.0.

ρ̃1,2(x) = ρ[UG(1,2) + φ(x)] ≈ ρ1,2 + φ(x)∂ρ1,2/∂UG. The
overall resistance change between the voltage contacts is
linear in Idc:

�Rpo = −Idc

d2

{(
L2

2 + 2L2L0
)
ρ2

∂ρ2

∂UG

+ [
2(L0 + L2)L1ρ2 + L2

1ρ1
] ∂ρ1

∂UG

}
, (35)

and must be added to Eqs. (33) and (34) when comparing the
latter with the experimental data. We note that in the B = 0
case, Eq. (35) accounts for the entire antisymmetric part of
the resistance, and indeed a rather accurate fit to the B = 0
data in Fig. 2(c) is obtained.

In Fig. 11, we show the antisymmetric part of measured
resistivity for different values of the gate voltage UG(1),
as plotted in Fig. 3. When attempting to fit these curves
theoretically by means of Eqs. (33) and (34) (dashed lines
in Fig. 11), we find that there is a considerable freedom in
the choice of the suitable parameter values. Indeed, there is
no independent data on the values of the tunneling parameters
G0 and K [see Eqs. (17) and (18)], nor on their dependence
on the carrier density n. While the value of K determines
the saturation current density jsat [see Eq. (30)], and therefore
the bending of the theoretical curve for RA(Idc), the effect
of increasing G0 is rather similar to that of decreasing τs ,
hence the values of the latter two parameters are not uniquely
determined by the profile of an experimental curve. In the
fit shown in Fig. 11, we assumed that the ratio τs/τ does
not depend on the carrier density and equals 4 × 105. The
latter choice appears not unreasonable, as it is close to the
values reported earlier for Si/Si-Ge quantum wells17,19 and for
Si-MOSFETs.20 It differs from the value we used in fitting
Fig. 5 above (τs/τ = 1.7 × 105) because presently we include
an additional mechanism (tunneling to a spin reservoir, with
G0 = 0). Note that this adjustment of the value of τs/τ is not
an order of magnitude change: the value we use here remains
within the experimental range (see discussion in Sec. III).

The dependencies of the tunneling parameters used in
Fig. 11 on the gate voltage are shown in Fig. 12. As expected,

both G0 and K increase with increasing UG(1), as the barrier
height becomes lower relative to the Fermi energy. Indeed,
the entire potential energy landscape (including the tunneling
barriers) is pushed down in energy by increasing gate voltage.

Our assumption that the ratio τs/τ is independent of n was
experimentally verified17 for the case of the Si/Si-Ge quantum
wells, where it is indeed an expected property of Dyakonov-
Perel’ spin-relaxation mechanism. The case of Si-MOSFETs
might be different, but the experimental data on the dependence
of τs on n and/or τ in a Si-MOSFET are lacking. As explained
above, in fitting the experimental data in Fig. 11 we could have
used different values of τs/τ for each UG(1); still, perfect fits
would have been obtained by appropriately choosing G0 in
each case.

We conclude that our theory appears capable of a perfect
description of the measured antisymmetric part of the resis-
tance. A more definitive verification of our theoretical picture
(and perhaps identification of the underlying microscopic
mechanisms) should be possible once the experimental values
of the relevant system parameters become available.

G
  /

   
  a

nd
 K

/  
0ν

G

0
03

ν

U  (1)  (V)

1

0.1

0.01

121086

FIG. 12. Tunneling parameters G0/ν0 (triangles; in units
10−16 A m) and K/ν3

0 (squares; in units 10−40 A m5) for different
values of the gate voltage UG(1).
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VI. CONCLUSION

The observed asymmetric behavior of the resistance R(Idc)
of the 2DEG in a slot-gate Si-MOSFET in a parallel magnetic
field is clearly due to the spin-transport properties of this
system. We suggested a phenomenological model which
features effective spin injection into the slot region; the rate of
this spin injection is controlled by the dc current.

Indeed, the area where the carrier density is smaller is
characterized by a stronger spin polarization (cf. Fig 4).
Hence, an electron flow (electrical current) in this area is
accompanied by a transfer of larger spin per unit time (spin
current) than in the case of the same electrical current flowing
through the area with larger density. It follows that when
electrons flow from the area with smaller carrier density into
the area with higher density via the slot region, they must
leave excess spin in the vicinity of the slot (spin injection).
This translates into an increase of local magnetization in this
region (spin accumulation; cf. Fig. 9). This increase is, of
course, not unlimited but rather moderated by spin-relaxation
and diffusion processes. Similarly, when the electrons flow
in the opposite direction, local magnetization near the slot
decreases (spin depletion).

The resultant deviation of local spin polarization of the
2DEG from equilibrium affects the sample resistance, the
linkage being provided for the most part by the well-
known positive magnetoresistance phenomenon. Since this
phenomenon is of spin origin, the resistivity depends on
the magnetic field via magnetization. An increase of the
local magnetization thus leads to an increased resistivity in
the region near the slot, and hence to an increased overall
resistance. Similarly, spin depletion near the slot results in a
decrease in resistance. Our theory yields a good quantitative
description of the resistance asymmetry for relatively small
values of the dc current, where the antisymmetric part RA

of the resistance is linear in Idc. Therefore, it appears certain
that we have captured the correct physical mechanism, pro-
viding an adequate explanation for the resistance asymmetry
in general.

At the same time, the dependence of RA on Idc at stronger
currents becomes sublinear (“saturation”). This implies the
presence of an additional, nonlinear route for dissipating
the nonequilibrium magnetization density near the slot. We
suggest that this is due to tunneling into a “spin reservoir,”
which could be exemplified by the underlying p-type
silicon, although other options are also possible. With such a
nonlinear tunneling added to our model, we are able to fit the
experimental curves for RA(Idc) throughout the entire range of
current values. This raises the problem of identifying the
precise nature of the spin reservoir and directly measuring the
tunneling parameters. In addition, systematic measurements
of the dependence of spin-relaxation rate on carrier density
in a conventional Si-MOSFET (without a slot in the gate)
still have to be performed, providing another important input
parameter for our theory.

From a broader prospective, we describe and interpret
an unusual magnetotransport phenomenon, taking place in a
2DEG with abruptly varying carrier density, in the presence of
a parallel magnetic field. The specific realization of this system
(slot-gate Si-MOSFET) can be viewed as incidental. The
observed resistance asymmetry highlights new and interesting
features of low-dimensional spin and charge transport, and
may point to additional possibilities for spin manipulation in
microtechnology. It is generally recognized that the efficiency
of spintronic devices is limited by finite spin lifetime, due to
usual spin-relaxation mechanisms. The observed saturation of
resistance asymmetry at stronger current suggests that there
are other, significantly nonlinear, effects which may have to
be taken into account.
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