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Disruption of superlattice phonons by interfacial mixing
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Molecular dynamics simulations and lattice dynamics calculations are used to study the vibrational modes and
thermal transport in Lennard-Jones superlattices with perfect and mixed interfaces. The secondary periodicity of
the superlattices leads to a vibrational spectrum (i.e., dispersion relation) that is distinct from the bulk spectra of
the constituent materials. The mode eigenvectors of the perfect superlattices are found to be good representations
of the majority of the modes in the mixed superlattices for up to 20% interfacial mixing, allowing for extraction
of phonon frequencies and lifetimes. Using the frequencies and lifetimes, the in-plane and cross-plane thermal
conductivities are predicted using a solution of the Boltzmann transport equation (BTE), with agreement found
with predictions from the Green-Kubo method for the perfect superlattices. For the mixed superlattices, the
Green-Kubo and BTE predictions agree for the cross-plane direction, where thermal conductivity is dominated by
low-frequency modes whose eigenvectors are not affected by the mixing. For the in-plane direction, mid-frequency
modes that contribute to thermal transport are disrupted by the mixing, leading to an underprediction of thermal
conductivity by the BTE. The results highlight the importance of using a dispersion relation that includes the
secondary periodicity when predicting phonon properties in perfect superlattices and emphasize the challenges
of estimating the effects of disorder on phonon properties.
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I. INTRODUCTION

Superlattices are nanostructures built from periodic al-
ternating layers of dissimilar materials. Semiconductor su-
perlattices, where phonons dominate the thermal transport,
offer potential benefits in thermoelectric energy conversion
applications because of the ability to tune their thermal
conductivities by controlling the layer thicknesses (i.e., the
secondary periodicity) without significantly affecting the elec-
tronic transport.1–5 The existence of a secondary periodicity
suggests that bulklike phonons will not exist in short-period
superlattices. Instead, phonons related to the secondary peri-
odicity, which we will refer to as superlattice phonons, are the
vibrational modes of interest. To design a superlattice with a
tailored thermal conductivity, a rigorous examination of the
interplay between the superlattice period thickness and the
interfacial mixing present in any experimental sample, which
may disrupt the secondary periodicity, is necessary. This need
provides the impetus for an analysis to elucidate the effects
of the secondary periodicity and interfacial mixing on the
properties of superlattice phonons.

Thermal transport in superlattices has been studied using
molecular dynamics (MD) simulations and the Boltzmann
transport equation (BTE). Previous MD studies used the
equilibrium Green-Kubo (GK)6 technique, the nonequilibrium
direct method,6–10 or imposed a spatial temperature perturba-
tion and monitored the relaxation to equilibrium11,12 to predict
thermal conductivity. Bottom-up studies using the BTE relied
upon the validity of bulk phonon properties in each layer13,14

and approximations for the specularity and conductance of the
internal interfaces.15 While these two approaches can predict
trends in cross-plane and in-plane thermal conductivity versus
period length, the effects of the secondary periodicity and
interfacial mixing on phonon properties cannot be directly
obtained.

The effect of interfacial mixing on the cross-plane thermal
conductivity, but not on individual phonon modes, of Si/Ge
superlattices modeled using the Stillinger-Weber potential was
examined by Landry and McGaughey.10 They showed that for
perfect Si/Ge superlattices, thermal conductivity decreased
with increasing period length before leveling out. For su-
perlattices with interfacial mixing, the thermal conductivity,
which was always lower than the corresponding perfect case,
increased with increasing period length before leveling out.
Savic et al. used Monte Carlo integration and lattice dynamics
calculations (harmonic and anharmonic) to predict the phonon
properties and cross-plane thermal conductivities of perfect
Si/Ge superlattices (i.e., inclusion of the secondary period-
icity without interfacial mixing) modeled using the Tersoff
potential.16 Their theoretical thermal conductivities overpre-
dicted experimental measurements. Garg et al. used density
functional perturbation theory (DFPT) and lattice dynamics
calculations (harmonic and anharmonic) to examine phonon
properties in perfect Si/Ge superlattices (i.e., inclusion of the
secondary periodicity without interfacial mixing).17 Similar
to Savic et al., their calculations overpredict experimentally
measured cross-plane thermal conductivities. They attributed
this discrepancy to the exclusion of interfacial mass-defect
scattering in their calculations, which is expected to be present
and important in experimental samples. In a follow-up study,
Garg and Chen adopted Tamura elastic mass defect scattering
theory18 to modify the DFPT-predicted lifetimes through the
Matthiesen rule for Si/Ge superlattices (i.e., inclusion of the
secondary periodicity and interfacial mixing).19 For short-
period superlattices, they found a tenfold decrease in the cross-
plane thermal conductivity, consistent with the predictions
from Landry and McGaughey.10 This same approach was
used by Luckyanova et al.20 in DFPT-driven calculations on
GaAs/AlAs superlattices. In a similar way, Hepplestone and
Srivastava used lattice dynamics calculations and perturbative
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methods to study the effects of mass defects and dislocations
at the interfaces in GaAs/AlAs and Si/Ge superlattices.21,22

They found that the phonon scattering in Si/Ge superlattices is
dominated by interactions with mass defects and dislocations,
but that phonon scattering in GaAs/AlAs superlattices is dom-
inated by phonon-phonon interactions. Thomas and Srivastava
used the perturbative method to vary the concentration of mass
defects, offering insight into experimental measurements of
the thermal conductivity of short-period Si/Ge superlattices.23

Chen et al. found, through a combination of experiment and
theory, that interfacial mixing is responsible for the reduction
in cross-plane thermal conductivity below the homogenous
alloy value in Si/Ge superlattices.24

In this paper, we explore the relationship between secondary
periodicity, interfacial mixing, and superlattice phonon prop-
erties. Molecular dynamics based normal mode decomposition
(NMD) is used to predict the full spectrum of phonon
properties in unstrained Lennard-Jones (LJ) superlattices with
a mass ratio of three for perfect and mixed interfaces.
Molecular dynamics has the advantage over reciprocal space-
based lattice dynamics techniques in that disorder can be
explicitly included. Furthermore, the trends in superlattice
thermal conductivity predicted from MD-based approaches
are the same as those obtained from density functional theory
based calculations.9,10,17,19,20

The rest of the paper is organized as follows. In Sec. II,
the superlattice geometry is defined and the NMD algorithm is
reviewed. In Sec. III, superlattice phonon dispersion, phonon
lifetimes, and thermal conductivities predicted from GK,
NMD, and Tamura theory are presented. In Sec. IV, the results
are put in context with the concept of phonon coherence.

II. MODELING FRAMEWORK

A. Superlattice structure and interactions

The superlattices are built by placing atoms on a face-
centered cubic lattice, with the two species only differentiated
by their masses. The atomic interactions are modeled using
the LJ potential,

φ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6
]

, (1)

for argon with an energy scale ε of 1.67 × 10−21 J, a
length scale σ of 3.4 × 10−10 m, and a mass scale m of
6.63 × 10−26 kg. This interaction is nonzero for any pair of
atoms with an interatomic distance of r less than or equal
to the cutoff of 2.5σ . The lighter species has a mass of m

and the heavier species has a mass of 3m. The temperature
of all simulations is 20 K, for which the zero-pressure lattice
constant a is 5.315 Å.25 We present results in dimensionless
LJ units unless otherwise noted.

Each superlattice is identified by its unit cell, which consists
of L/2 conventional four-atom unit cells of each species. The
unit cell therefore contains 4L atoms. As shown in Fig. 1(a),
one period of a 4 × 4 superlattice has eight monolayers (four
of each species). The Brillouin zone is a rectangular prism with
boundaries at 2π/(La) in the cross-plane direction and 2π/a

in the in-plane directions. We consider 2 × 2, 4 × 4, 8 × 8,
and 14 × 14 superlattices.
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Mixing Region

Cross-planeIn-plane

a

(a)

(b)
x
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z
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FIG. 1. (Color online) Atomic representation of a 4 × 4 superlat-
tice for (a) perfect and (b) 80/20 interfacial mixing cases. Orange
atoms have mass m and black atoms have mass 3m.

Interfacial mixing is introduced to a superlattice by flipping
the masses of randomly selected atoms in the monolayers
adjacent to the interfaces until the desired concentrations
are reached.10 A 4 × 4 superlattice with 80/20 interfacial
mixing (the notation corresponds to the concentration of
original/foreign species within the monolayers adjacent to the
interface) is shown in Fig. 1(b).

B. Thermal conductivity prediction

As in some previous superlattice studies,16,17,19,20 a solution
to the phonon BTE under the single mode relaxation time
approximation26 is used to predict the diagonal components of
the thermal conductivity tensor

kαα =
12L,N∑

ν,κκκ

cph

(
κκκ

ν

)
v2

g,α

(
κκκ

ν

)
τ
(
κκκ

ν

)
. (2)

Here, cph( κκκ

ν ) is the volumetric specific heat, vg,α( κκκ

ν ) is the
component of the group velocity vector in the α direction, and
τ ( κκκ

ν ) is the lifetime of the phonon mode with wave vectorκκκ and
polarization branch denoted by ν. The summation is over the
total number of polarization branches, 12L, and the number
of unit cells in the MD simulation, N . A quantity of interest
for nanostructure design purposes27 is the phonon mean-free
path (MFP), 
( κκκ

ν ), defined as the average distance traveled

between scattering events,26



(
κκκ

ν

)
=

∣∣∣vvvg

(
κκκ

ν

)∣∣∣τ(
κκκ

ν

)
, (3)

wherevvvg( κκκ

ν ) is the group velocity vector. To obtain the required
inputs for Eqs. (2) and (3), we follow the NMD procedure
outlined by McGaughey and Kaviany,25 Turney et al.,28 and
Larkin et al.,29 in which atomic velocities obtained from MD
simulation are projected onto the normal mode eigenvectors
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obtained from harmonic lattice dynamics calculations. The
mode-dependent specific heat is set to be kB/V , where kB

is the Boltzmann constant and V is the volume of the MD
domain, because MD simulations are classical and obey
Maxwell-Boltzmann statistics. As temperature increases, the
anharmonicity of the atomic interactions causes the specific
heat to deviate from kB/V , but the effect is small (less than
3%) for LJ systems at the studied temperature of 20 K.25

The unit cells for the perfect superlattices, as depicted in
Fig. 1(a), are used as inputs to the harmonic lattice dynamics
calculations, which are performed using GULP,30 to obtain
harmonic frequencies, ωH ( κκκ

ν ), and eigenvectors, eee( κκκ
ν ). The

calculations are conducted at the allowed wave vectors, which
are specified from

κκκ =
3∑

α=1

bbbα

nα

Nα

. (4)

Here, bbbα are the cubically orthogonal reciprocal lattice vectors.
To ensure that all wave vectors are in the first Brillouin zone,
−Nα

2 < nα � Nα

2 , where nα are integers and Nα are constant
even integers corresponding to the number of unit cells in the α

direction in the MD domain. Based on the convergence study
described in the Appendix, we use Nx = 8 and Ny = Nz = 6
(Nx = 10 is used for the 2 × 2 superlattices). Group velocities
are calculated using finite differencing about a given harmonic
frequency from26,31

vvvg

(
κκκ

ν

)
= ∇κκκωH

(
κκκ

ν

)
. (5)

The eigenvectors, from harmonic lattice dynamics, and
the atomic velocities, from MD simulations performed using
LAMMPS with a time step of 4.285 fs,32 are used as inputs
to obtain the trajectories of the time derivative of the normal
mode coordinates, q̇( κκκ

ν ,t), at time t from

q̇
(
κκκ

ν
,t

)
=

3,4L,N∑
α,b,l

√
mb

N
u̇α

(
l

b
,t

)
e∗

(
κκκ b

ν α

)

× exp

[
iκκκ · r0

(
l

0

)]
. (6)

In Eq. (6), u̇α( l

b ,t) is the α component of velocity of atom b

in the lth unit cell with equilibrium position r0( l

0 ) and e∗( κκκ b

ν α )
denotes the complex conjugate of the α-component for atom
b of the eigenvector for mode ( κκκ

ν ). While the harmonic lattice

dynamics calculations were performed using the unit cells of
perfect superlattices, we use the same set of eigenvectors to
obtain q̇( κκκ

ν ,t) for both perfect and mixed superlattices. The
effects of mixing are thus captured through the differences in
the atomic velocities between perfect and mixed MD domains.
The validity of this assumption for the mixed cases (i.e.,
projecting onto an approximation of the normal mode) will
be assessed in Sec. III.

By taking the Fourier transform of the autocorrelation
of Eq. (6), the mode kinetic energy power spectrum is
obtained:33

T
(
κκκ

ν
,ω

)
= lim

τ0→∞
1

2τ0

∣∣∣∣ 1√
2π

∫ τ0

0
q̇
(
κκκ

ν
,t

)
exp(−iωt)dt

∣∣∣∣
2

.

(7)

Before evaluating Eq. (7), the MD system is equilibrated
by velocity rescaling for 105 time steps followed by an
NVE (constant mass, volume, and total energy) ensemble for
2.5 × 105 time steps. The Fourier transform sampling window
τ0 was set to depend upon the superlattice system and the
mode frequency. The number of time steps for the Fourier
transform sampling window and total number of time steps
in the data collection period are given in Table I. The lag
between velocity samples is 25 time steps, which is sufficient
to capture the dynamics of the highest-frequency modes. The
power spectrum was averaged over the Fourier transform
sampling windows and over the number of independent MD
simulations, with the initial atomic velocities sampled from
a Gaussian distribution using a random seed (see Table I).
Further averaging was conducted by imposing the symmetry
of the irreducible Brillouin zone.

In accordance with anharmonic theory,34 the power spec-
trum given by Eq. (7) can be approximated to be a Lorentzian
function centered at ωA( κκκ

ν ) [which is shifted from ωH ( κκκ
ν ) on

average by less than 3% in bulk LJ systems at a temperature of
20 K28], with a full width at half-maximum �( κκκ

ν ) of the form

T
(
κκκ

ν
,ω

)
≈ C0

(
κκκ

ν

) �
(
κκκ

ν

)/
π

[
ωA

(
κκκ

ν

)
− ω

]2
+ �2

(
κκκ

ν

) , (8)

TABLE I. Number of time steps in the Fourier sampling window, number of time steps in the data collection period, and total number of

independent MD simulations. Using the �( κκκ

ν
) � ωH ( κκκ

ν
) condition as a heuristic guide, ωH ( κκκ

ν
) = 1 was found to be the transition frequency

necessary to obtain convergence for the lifetime predictions.

Superlattice

2 × 2 4 × 4 8 × 8 14 × 14

Fourier sampling window, τ0 (ωH ( κκκ

ν
) � 1/ωH ( κκκ

ν
) < 1) 216/216 216/216 216/220 216/222

Data collection period ωH ( κκκ

ν
) � 1/ωH ( κκκ

ν
) < 1) 220/220 220/220 220/220 220/222

Number of seeds (ωH ( κκκ

ν
) � 1/ωH ( κκκ

ν
) < 1) 5/5 5/5 5/10 5/10
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when �( κκκ

ν ) � ωH ( κκκ

ν ). Here, C0 is a fitting parameter. The

phonon lifetime is34

τ
(
κκκ

ν

)
= 1

2�
(
κκκ

ν

) . (9)

Fitting Eq. (8) to Eq. (7) was done by considering points within
three orders of magnitude of the maximum value. The initial
guess for �( κκκ

ν ) was 0.01 and for ωA( κκκ

ν ), the frequency at the

maximum value of T ( κκκ

ν ,ω) was used.
The GK method, which makes no assumptions about

the nature of the vibrational modes responsible for thermal
transport, was also used to predict the thermal conductivity for
both perfect and mixed superlattices. Landry et al. previously
applied the GK method to LJ superlattices, finding agreement
with predictions from nonequilibrium MD simulations and
an application of the Fourier law.10 Ten independent MD
simulations were performed for each superlattice. For the
2 × 2 and 4 × 4 superlattices, the total simulation length was
106 time steps with a correlation window of 5 × 104 time steps.
For the 8 × 8 and 14 × 14 superlattices, the total simulation
length was 106 time steps with a correlation window of 105

time steps. In order to minimize the uncertainty in the GK
predictions, the converged value of the thermal conductivity
was specified using the first-avalanche method described by
Chen et al.35

III. RESULTS

A. Dispersion and participation ratio

Phonon dispersion curves for the perfect 4 × 4 superlattice
are shown in Figs. 2(a)–2(c). Figure 2(a) corresponds to
the [100] (cross-plane) direction, Fig. 2(c) corresponds to the
[010] (in-plane) direction, and Fig. 2(b) corresponds to
the [111] direction. Frequency gaps emerge at the Brillouin

zone boundaries as a consequence of branch folding.36,37 The
flat branches for frequencies greater than 15 in Fig. 2(a)
indicate low cross-plane group velocities. The branches in
Figs. 2(b) and 2(c), on the other hand, vary strongly with
frequency at most wave vectors. From Eq. (2), we note
that differences between in-plane and cross-plane components
of group velocity are solely responsible for the directional
dependence of the thermal conductivity. Dispersion curves for
other superlattices show similar features, with more branches
and decreasing length of the cross-plane dimension of the
Brillouin zone as the period length increases (the length of
the Brillouin zone in the in-plane direction remains constant
at 2π/a). The superlattice density of states, plotted as the
solid blue line in Fig. 2(d), shares the ω2 dependence
at low frequencies with that of the bulk of the heavier
species (dotted black line). The high-frequency portion of the
superlattice density of states follows similar variations to that
of the density of states of the lighter species (dashed orange
line).

Spatial localization, which has previously been invoked to
explain the period-length dependence of superlattice thermal
conductivity,38 can be estimated by calculating the participa-
tion ratio, p( κκκ

ν ), defined as39

1

p
(
κκκ

ν

) =
∑
b,α

e
(
κκκ b

ν α

)4
, (10)

which is a measure of the number of atoms that participate
in a given mode. For completely delocalized modes, 1/p ∼
1/(4L), and for spatially localized modes, 1/p ∼ 1.39 The
inverse participation ratios plotted in Fig. 2(e), where the
vertical line corresponds to 1/(4L), indicate that there is no
spatial localization in the 4 × 4 superlattice. The frequency
dependence of the participation ratio and density of states was
not found to vary with superlattice period length.
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FIG. 3. (Color online) Partial inverse participation ratios for
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To further investigate the nature of the superlattice vibra-
tional modes, we adopt a modified version of the participation
ratio, which we call the partial inverse participation ratio
(PIPR). The PIPR is calculated by splitting the components
of the eigenvector into portions corresponding to the light (m)
and heavy (3m) species, renormalizing the resulting vectors
of length 6L, and then applying Eq. (10). The PIPR, plotted
for the perfect superlattices in Fig. 3, can be interpreted as
a measure of how much one species participates in a given
vibrational mode. For the 2 × 2 and 4 × 4 superlattices, the
light and heavy PIPRs are comparable to each other across
the entire frequency spectrum, indicating that both species
participate nearly equally in almost all vibrational modes.
For the 8 × 8 and 14 × 14 superlattices, however, the heavier

species dominates modes with frequencies less than the max-
imum frequency of the heavier bulk system (ω3m,max = 14.3),
while the lighter species dominates modes with frequencies
greater than ω3m,max. This observation suggests that as the
superlattice period length increases, some vibrational modes
may start to resemble the modes of the respective bulk
systems.

B. Power spectra

The power spectra, Eq. (7), for the nine labeled points in
Figs. 2(a)–2(c) are plotted in Fig. 4 for both perfect and mixed
(80/20 and 60/40) superlattices. While all peaks appear to
be Lorentzian centered about a single frequency, there are
minor signatures at other frequencies. For perfect superlattices,
the amplitude of these minor signatures are two orders of
magnitudes smaller than the main peak; the largest being found
for mode A. We attribute these minor signatures in the perfect
superlattices to the assumption that the normal modes of the
harmonic system are representative of the vibrational modes
of the true anharmonic system. In mixed superlattices, the
intensity of the minor signatures becomes amplified (notably
for modes B, E, and H), an indication of the mutual implica-
tions of elastic scattering from point defects (random masses
with linear springs) and anharmonicity (ordered masses with
nonlinear springs) on phonon scattering.40 Modes around a
frequency of 12 experience the largest disruptions for all
dispersion directions. We attribute this result to the large
density of states around this frequency [see Fig. 2(d)], such
that there are many channels available for elastic scattering
from point defects.18

Fitting a Lorentzian function [see Eq. (8)] to obtain the
lifetimes reported in Fig. 4 was deemed suitable for the 80/20
superlattices since the coefficient of determination value41 for
the most affected modes was 0.9. For completeness, the power
spectra and lifetimes of 60/40 superlattices are also included
in Fig. 4, in which the peaks for modes B, E, and H are
further disrupted to a point where the Lorentzian form begins to
disappear. This disruption is evidence that perfect superlattice
modes are not always good descriptions of modes in the mixed
superlattices. Since the same number of modes are present
in both perfect and mixed systems, the superlattice phonons
that emerge from the secondary periodicity are effectively
disrupted as the crystal symmetry is broken by the interfacial
mixing. For the remainder of this work, the 80/20 superlattices
are used to discuss the effects of interfacial mixing on phonon
properties.

C. Lifetimes

The phonon lifetimes are plotted as a function of the
harmonic frequencies in Fig. 5. As the period length increases,
we maintain the same number of unit cells, such that the
total number of atoms increases. Consequently, the minimum
frequency decreases and the longest lifetime increases with
increasing period length. Overall, the magnitudes of the
lifetimes for a given frequency do not vary significantly
from one superlattice to another. The lifetimes for all perfect
superlattices exhibit ω−2 scaling at low frequencies. This result
is consistent with theoretical predictions for phonon-phonon
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FIG. 4. (Color online) Power spectra for selected modes of the 4 × 4 perfect and mixed superlattices [indicated by the labeled gray square
markers in Figs. 2(a)–2(c)]. Dark blue corresponds to a perfect superlattice, red corresponds to mixing of 80/20, and light blue corresponds
to mixing of 60/40. Reported lifetimes calculated from the fitting of the Lorentzian functions (not shown) are also included. By removing a
single MD seed, the average uncertainty in the fitting was determined to be 7.5%.

scattering of modes in the Debye regime, where the density
of states scales as ω2 [see Fig. 2(d)].42 For the 8 × 8 and
14 × 14 superlattices, the perfect systems have two distinct
trends, which deviate from the ω−2 scaling at intermediate
frequencies and then terminate at the maximum frequencies
of the corresponding bulk systems (vertical lines in Fig. 5).
The lifetimes in these two regions are comparable to the bulk
lifetimes at the corresponding frequencies. This observation
is consistent with the emergence of bulklike modes for the
longer period superlattices as demonstrated by the PIPRs in
Fig. 3.

Under the Debye approximation, a ω−4 lifetime scaling is
predicted due to elastic phonon-point defect scattering.43–45

As mixing is introduced to the superlattices, a ω−4 scaling is
observed at intermediate frequencies for the 2 × 2 and 4 × 4
superlattices but not for the 8 × 8 and 14 × 14 superlattices.
The complicated dispersions of the superlattices, particularly
for the 8 × 8 and 14 × 14 structures, where there is a
significant amount of branch folding, are not Debye-like at
the intermediate frequencies, leading to a deviation from the

ω−4 scaling. The lifetimes of low-frequency modes for all
mixed superlattices are not affected and follow a similar ω−2

scaling as seen in the perfect superlattices.
The introduction of interfacial mixing broadens the power

spectra (see Fig. 4) and shifts the phonon lifetimes downward
(see Fig. 5), particularly at the intermediate and high frequen-
cies. For the 2 × 2 and 4 × 4 mixed superlattices, the lifetimes
of some high-frequency modes fall below the Ioffe-Regel limit,
τIR = 2π/ω, where a mode has a lifetime equal to its period
of oscillation. The normal modes of a perfect superlattice
have a plane-wave structure. Under the assumption that the
normal modes of a perfect superlattice are representative
of the mixed superlattice, reaching the Ioffe-Regel limit is
therefore not an indication of spatial localization but rather
of temporal localization. This statement is supported by the
inverse participation ratios, which, as shown in Fig. 2(e), are all
below the localization limit of unity. Modes that are below the
Ioffe-Regel limit can thus be considered to be nonpropagating
delocalized modes (i.e., diffusons).46,47 A similar trend in
the variation of lifetimes with frequency, dropping below the
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Ioffe-Regel limit at intermediate frequencies and then rising
above at higher frequencies, has also been predicted for LJ
alloys.48

D. Thermal conductivity

1. Perfect superlattices

The GK method does not require assumptions about the
nature of thermal transport or the types of modes present in
the superlattices.49 As such, we consider the GK estimate of
thermal conductivity to be a benchmark for comparison. With
reference to Tables II and III, the trends and magnitudes in
cross-plane and in-plane thermal conductivity predictions from
NMD and GK for perfect superlattices are in good agreement.
Justification for the reported uncertainties is provided in
the Appendix. The in-plane thermal conductivity increases
with increasing period length, while the cross-plane thermal
conductivity first decreases then increases with period length,
consistent with previous MD superlattice studies.6,9,11 The in-
plane thermal conductivity is nearly a factor of two larger than
cross-plane thermal conductivity for all superlattices because
of the larger group velocities across the entire frequency
spectrum for the in-plane direction [see Figs. 2(a) and 2(c)].

A thermal circuit model prediction for cross-plane thermal
conductivity using the relation6

kCP,circuit = La

2Rint + La
2km

+ La
2k3m

, (11)

is presented in Table II. The boundary resistance for a perfect
interface, estimated from the nonequilibrium direct method
(Rint = 1.4 × 10−8 Km2W−1),50 was combined with bulk
thermal conductivities, obtained from NMD, of the lighter
material (km = 1.2 W/m K) and the heavier material (k3m =
0.7 W/m K) through their respective layer thickness, to obtain
an effective thermal conductivity. The thermal circuit model
underestimates the thermal conductivity for all superlattices,
indicating that the bulk phonons of the constituent species
are not an accurate description of superlattice phonons. The
relative difference decreases with increasing period length,
however, suggesting that this model may become representa-
tive of the nature of thermal transport at large enough period
lengths. The diffusive limit for the in-plane direction for
superlattices with layers of equal length is6

kIP,diff = km + k3m

2
, (12)

and is presented in Table III. The in-plane thermal conduc-
tivity predictions are expected to approach this limit as the
superlattice period length is increased.

2. Mixed superlattices

From Tables II and III, the in-plane and cross-plane
thermal conductivity predictions for the 2 × 2 and 4 × 4 mixed
superlattices are reduced from their corresponding perfect
systems and approach the 50/50 alloy limit (0.21 W/m K
from GK using Nx,y,z = 6). The mixed 2 × 2 superlattice loses
much of its anisotropy between the in-plane and cross-plane
directions as there is mixing in all the atomic layers. From
Table II, the cross-plane predictions for mixed superlattices
from NMD (using perfect eigenvectors) and GK are in
good agreement and follow similar trends, with increasing
thermal conductivity with increasing period length. From
Table III, for mixed superlattices, with the exception of the
2 × 2 superlattice, NMD predicts a lower in-plane thermal
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TABLE II. Cross-plane thermal conductivity predictions (W/m K).

N × N superlattice

Cross-plane 2 × 2 4 × 4 8 × 8 14 × 14

Perfect NMD 0.29 ± 0.03 0.23 ± 0.02 0.32 ± 0.03 0.39 ± 0.04
GK 0.25 ± 0.02 0.22 ± 0.02 0.29 ± 0.02 0.39 ± 0.03

Thermal circuit 0.04 0.07 0.13 0.20
Mixed 80/20 NMD 0.19 ± 0.02 0.17 ± 0.02 0.28 ± 0.03 0.42 ± 0.04

GK 0.16 ± 0.01 0.18 ± 0.02 0.29 ± 0.02 0.45 ± 0.06
Tamura (NMD) 0.21 ± 0.02 0.15 ± 0.02 0.30 ± 0.03 0.37 ± 0.04

conductivity than GK. The largest underprediction is 25% for
the 14 × 14 superlattice.

To shed light on the discrepancy between the GK and NMD
in-plane predictions and to assess the assumption of using the
perfect superlattice eigenvectors for the mixed superlattices,
we also use Tamura elastic mass-defect scattering theory
to predict thermal conductivities.18–20 In this approach, the
lifetimes predicted for perfect superlattices, τperfect(

κκκ

ν ), are
modified using the Matthiesen rule

1

τeffective

(
κκκ

ν

) = 1

τperfect

(
κκκ

ν

) + 1

τdefect

(
κκκ

ν

) , (13)

where

1

τdefect

(
κκκ

ν

) = π

2N
ω2

(
κκκ

ν

)∑
κ ′κ ′κ ′,ν ′

{
δ

[
ω

(
κκκ

ν

)
− ω

(
κ ′κ ′κ ′
ν ′

)]

(∑
b,α

g2(b)

∣∣∣∣e∗
(
κκκ ′ b

ν ′ α

)
e

(
κκκ b

ν α

)∣∣∣∣
2
)}

.

(14)

Here, g2(b) is the coupling term for atom b in the unit cell that
defines the strength of the mass disordering,

g2(b) =
∑

μ

cμ(b)

[
1 − mμ(b)

m(b)

]2

, (15)

where the summation is over the possible species at that atomic
position in the unit cell with concentration cμ(b), mass mμ(b),
and average mass m(b). Given that there are two atom types in
the superlattice unit cell, the lighter atom can be considered to
be a mass defect of the heavier portion of the superlattice, and

vice versa. g2(b) is zero if atom b is unmixed (i.e., for atoms
that do not reside within one monolayer of the interface). The
δ function in Eq. (14) is broadened into a Lorentzian function
with width on the order of the frequency level spacing (≈0.1)
imposed by the finite size of the systems.46

The cross-plane and in-plane thermal conductivity predic-
tions from NMD and Tamura theory are in good agreement,
thus yielding a comparable discrepancy with the GK predic-
tions for the in-plane thermal conductivity [see Table III].
While the discrepancy manifests in the in-plane direction,
the effects occur at the mode level. This discrepancy is not
observed for the cross-plane thermal conductivities because
the most disrupted modes in the mixed superlattices (see
Figs. 4 and 5) exist at intermediate frequencies that have a
near-zero component of group velocity [see Fig. 2(a)]. The
in-plane difference between NMD and Tamura theory with GK
increases with period length because the number of branches
with nonzero components of group velocity increases. The
thermal conductivity predictions for the mixed superlattices
indicate that the use of eigenvectors from perfect superlattices
to represent modes in mixed superlattices in the NMD
approach is equivalent to the perturbative approximation of
Tamura theory. This perturbative approximation is not always
valid for mixed superlattices, particularly for modes with a
large density of states, where the most disruption is observed.

IV. SUPERLATTICE PHONONS

The term “coherence” has been used in two contexts in
relation to phonons. First, to describe the modes that emerge
from a secondary periodicity (i.e., in a superlattice20 or a thin
film with a periodic arrangement of holes51,52). Second, to
describe the excitation of long-wavelength phonons, usually by
femtosecond time-resolved pump-probe techniques,53,54 that
do not carry significant thermal energy and are not found in

TABLE III. In-plane thermal conductivity predictions (W/m K).

N × N superlattice

In-plane 2 × 2 4 × 4 8 × 8 14 × 14

Perfect NMD 0.52 ± 0.05 0.51 ± 0.05 0.56 ± 0.05 0.60 ± 0.06
GK 0.53 ± 0.03 0.54 ± 0.03 0.61 ± 0.05 0.66 ± 0.07

In-plane diffuse limit 0.95 0.95 0.95 0.95
Mixed 80/20 NMD 0.21 ± 0.02 0.25 ± 0.03 0.37 ± 0.04 0.47 ± 0.05

GK 0.19 ± 0.02 0.30 ± 0.01 0.43 ± 0.03 0.62 ± 0.07
Tamura (NMD) 0.22 ± 0.02 0.27 ± 0.03 0.38 ± 0.04 0.45 ± 0.05
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the MD simulations studied here. The first context and its
relation to thermal transport are the focus of this section.

In a crystalline solid, the phonons that carry thermal
energy belong to the dispersion relation of that material,
which depends on the geometry, the harmonic force constants,
and the constituent masses. The introduction of a secondary
periodicity modifies the dispersion such that modes emerge
that do not exist in the composing bulk materials. These
nonbulk phonons (in our case, superlattice phonons) propagate
and scatter in the periodic structure in a similar manner to what
a bulk phonon experiences in a bulk material.

The existence of superlattice phonons has been argued
based on modeling and experimental evidence. The predicted
minimum in cross-plane thermal conductivity as a function of
period length6,7,9,11,38,55 has been attributed to a transition of
thermal transport dominated by superlattice phonons in short-
period superlattices to thermal transport dominated by bulk-
like phonons in longer-period superlattices.56,57 A thickness-
dependent thermal conductivity of finite-size GaAs/AlAs
superlattices measured experimentally was explained in terms
of ballistic superlattice phonons.20

By using MD simulations, we do not impose any restrictions
on the phonon dynamics. The system is allowed to move
through its phase space naturally and thus all classical
effects, including coherence and the emergence of superlattice
phonons, should be captured. Our results indicate that using
the superlattice normal modes captures the physics of thermal
transport in a perfect superlattice, emphasizing the importance
of using the correct dispersion relation. One cannot use the
bulk material phonon properties to predict thermal transport in
these non-bulk-like systems. This effect is clearly present for
all the systems studied here, as evidenced by the discrepancy
between the bulk-based thermal circuit model and the NMD
and GK predictions (see Tables II and III). We note, however,
that the PIPRs plotted in Fig. 3 suggest that lengthening the
superlattice period length generates modes that are becoming
localized to the individual layers.

As a means to study how superlattice phonons contribute
to thermal conductivity, cross-plane and in-plane thermal
conductivity accumulation functions are plotted in Fig. 6. Also
plotted are the accumulation functions for the two bulk species.
The vertical coordinate of any point on the accumulation
function represents the thermal conductivity that comes from
phonons with MFPs less than the horizontal coordinate of that
point.58

The in-plane accumulation functions of the perfect and
mixed superlattices exhibit asymptotic flattening at longer
MFPs. The cross-plane accumulation functions of all super-
lattices contain steplike jumps at longer MFPs, a consequence
of the finite resolution of the Brillouin zone.59 These longer
MFPs correspond to the low-frequency modes that follow
the ω−2 lifetime scaling [see Fig. 5] and have a nonzero
group velocity component in the cross-plane direction [see
Fig. 2(a)]. The significant contributions of longer MFP modes
in the cross-plane direction suggest a mechanism for reducing
the cross-plane thermal conductivity through the finite size of
thin-film superlattices.20

The majority of the contribution (greater than 90%) to cross-
plane thermal conductivity for all superlattices, perfect and
mixed, is from modes with MFPs greater than the superlattice
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FIG. 6. (Color online) Thermal conductivity accumulation func-
tions for bulk species and perfect and mixed superlattices. MFP is
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period length. Furthermore, 40% (2 × 2) to 60% (14 × 14)
of cross-plane and in-plane conductivity is from modes with
MFPs greater than the system size in those directions (NxLa

for the cross-plane and Nya for the in-plane). For the bulk
materials, the entire contribution to thermal conductivity
comes from modes with MFPs greater than the lattice constant,
with 80% of the contribution from modes with MFPs greater
than the system length.60 In the perfect superlattices, MFPs

155311-9



HUBERMAN, LARKIN, MCGAUGHEY, AND AMON PHYSICAL REVIEW B 88, 155311 (2013)

greater than the period length cannot be interpreted any
differently than MFPs greater than the lattice constant of a bulk
crystalline structure. Based on the accumulation functions and
good agreement with GK thermal conductivity predictions, our
results indicate that, for the range of superlattices studied here,
perfect superlattice phonons and bulk phonons can be treated
in the same theoretical frameworks. In this case, the concept of
coherent effects can be argued to be purely interpretational and
is not required to model phonon transport in these superlattices.

Mixing shifts the in-plane thermal conductivity contribu-
tion to shorter MFPs for the 2 × 2 and 4 × 4 superlattices. Dif-
ferences between perfect and mixed accumulations functions
for cross-plane thermal conductivity manifest at intermediate
and longer MFPs. These differences for the in-plane and cross-
plane, however, become increasingly smaller with increasing
period length. Furthermore, mixing does not change the range
of MFPs. While the perfect and mixed accumulation functions
share similar trends, the discrepancy between the NMD and
GK in-plane thermal conductivity predictions indicates that
some of the mixed modes are fundamentally different than the
those of the perfect superlattices. The modes in the mixed
superlattices cannot be perfectly described by the modes
of perfect superlattices and, therefore, the mixed in-plane
accumulation functions are not complete representations of
the thermal conductivity.

V. SUMMARY

We used NMD to predict phonon properties at a temperature
of 20 K in perfect and mixed LJ superlattices with a mass
ratio of three. Differences between in-plane and cross-plane
components of group velocity are responsible for the differ-
ences between in-plane and cross-plane thermal conductivities
[see Figs. 2(a)–2(c) and Tables II and III]. By fitting the
mode power spectra to Lorentzian line shapes, we observe
a ω−2 lifetime scaling for low-frequency modes in perfect and
mixed superlattices in Fig. 5. In longer period-length perfect
superlattices (8 × 8 and 14 × 14), two distinct lifetime trends
that terminate at the maximum bulk frequencies were attributed
to the separation in the participation of these modes in the
layers of the superlattice (see Fig. 3). In mixed superlattices,
these trends become smeared and a ω−4 lifetime scaling
emerges at intermediate frequencies in the 2 × 2 and 4 × 4
superlattices, indicating elastic mass point defect scattering of
Debye-like phonons. We find that interspecies mixing disrupts
the secondary periodicity (see Fig. 4) and reduces phonon
lifetimes, manifesting in a discrepancy between the in-plane
thermal conductivity predictions for mixed superlattices from
GK with NMD and Tamura theory [see Table III]. The
discrepancy is the consequence of the use of eigenvectors
from perfect superlattices to describe the modes in mixed
superlattices.

Our results demonstrate that further effort is required in
order to improve our understanding of the effects of mixing
on superlattice phonons. A crucial step is obtaining detailed
experimental characterization of the quality of these interfaces,
which can then be used as input into the modeling frameworks
presented here. Due to the computational cost of DFT-based
approaches, MD simulation will continue to be a valuable tool

TABLE IV. Size-dependent cross-plane NMD predictions of
thermal conductivity (W/m K).

Cross-plane perfect Superlattice

Nx × Ny × Nz 2 × 2 4 × 4 8 × 8 14 × 14

6 × 6 × 6 0.23 0.22 0.28 0.36
8 × 6 × 6 0.28 0.23 0.32 0.39
10 × 6 × 6 0.29 . . . . . . . . .

in establishing models of phonon transport in superlattices
where the perturbative approach to mixing breaks down.
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APPENDIX: SIZE EFFECTS

Due to their large unit cells, mode-by-mode studies of
superlattices are computationally expensive and accounting for
size effects in thermal conductivity prediction is challenging.
For example, Broido et al. were limited to a maximum
period length of 8 × 8 using an iterative solution to the
BTE for Si/Ge.61 In other studies, the phonon properties for
short period Si/Ge superlattices obtained from DFPT were
presumed to hold for larger period superlattices.17,20 Similarly,
Savic et al. extrapolate the phonon lifetimes of low-frequency
modes of Si/Ge superlattices from a power law fitted to data
obtained from a Monte Carlo integration of the BTE.16

A comparison of the thermal conductivity predictions
for superlattices with different system sizes is presented in
Tables IV (cross-plane) and V (in-plane). The NMD predic-
tions for both the cross-plane and in-plane thermal conductivi-
ties varied by 10% when increasing Nx from six to eight along
the cross-plane and fixing Ny and Nz at six (Nx was set to
ten for the 2 × 2 superlattices to resolve the lifetime scalings).
Due to the scaling of the NMD algorithm [O(NxNyNzL)],
further increasing the Brillouin zone resolution (Ni) was
computationally prohibitive. As a result of these size effects,
the reported thermal conductivity predictions from NMD are
presumed to carry an uncertainty of 10%. Uncertainty in the
GK prediction was specified by systematically removing one
seed before calculating the thermal conductivity.

We note that one approach to estimating size effects in NMD
thermal conductivity predicitions is to conduct simulations for

TABLE V. Size-dependent in-plane NMD predictions of thermal
conductivity (W/m K).

In-plane perfect Superlattice

Nx × Ny × Nz 2 × 2 4 × 4 8 × 8 14 × 14

6 × 6 × 6 0.53 0.51 0.56 0.59
8 × 6 × 6 0.52 0.51 0.55 0.58
10 × 6 × 6 0.52 . . . . . . . . .
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a range of system sizes, plot the inverse of thermal conductivity
versus the inverse of the system length, fit a line through the
data, and then take the vertical axis intercept as the bulk
value.62 This method was not used in previous superlattice

studies16,17,20 and is not used here. The complicated dispersion
[see Figs. 2(a)–2(c)] does not guarantee that this approach is
valid and, as such, understanding size effects in superlattices
warrants further work.
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