PHYSICAL REVIEW B 88, 155310 (2013)

Two-dimensional metal-insulator transition as a potential fluctuation driven
semiclassical transport phenomenon

S. Das Sarma,' E. H. Hwang,"? and Qiuzi Li'

'Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742, USA
2SKKU Advanced Institute of Nanotechnology and Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea

(Received 11 June 2013; published 10 October 2013)

We theoretically consider the carrier density tuned (apparent) two-dimensional (2D) metal-insulator transition
(MIT) in semiconductor heterostructure-based 2D carrier systems as arising from a classical percolation
phenomenon in the inhomogeneous density landscape created by the long-range potential fluctuations induced
by random quenched charged impurities in the environment. The long-range Coulomb disorder inherent in
semiconductors produces strong potential fluctuations in the 2D system where a fraction of the carriers gets trapped
or classically localized, leading to a mixed two-component semiclassical transport behavior at intermediate
densities where a fraction of the carriers is mobile and another fraction immobile. At high carrier density, all the
carriers are essentially mobile, whereas at low carrier density, all the carriers are essentially trapped since there
is no possible percolating transport path through the lake-and-mountain inhomogeneous potential landscape.
The low-density situation with no percolation would mimic an insulator, whereas the high-density situation with
allowed percolating paths through the lake-and-mountain energy landscape would mimic a metal with the system
manifesting an apparent MIT in-between. We calculate the transport properties as a function of carrier density,
impurity density, impurity location, and temperature using a two-component (trapped and mobile carriers)
effective medium theory. Our theoretically calculated transport properties are in good qualitative agreement
with the experimentally observed 2D MIT phenomenology in 2D electron and hole systems. We find a high-
(low-) density metallic (insulating) temperature dependence of the 2D resistivity, and an intermediate-density
crossover behavior which could be identified with the experimentally observed 2D MIT. The calculated density-
and temperature-dependent resistivity in our theory mimics the phenomenology of 2D MIT experiments with
reasonable parameter values for the background disorder.

DOI: 10.1103/PhysRevB.88.155310

I. INTRODUCTION

The carrier density tuned two-dimensional (2D) metal-
insulator transition (MIT) phenomenon is ubiquitous in semi-
conductor heterostructures at low temperatures.'~® At “higher”
carrier density, the measured resistivity manifests “metallic”
temperature dependence, whereas at “lower” carrier density,
the 2D resistivity manifests “insulating” temperature depen-
dence with a complex density-dependent crossover behavior
in the “intermediate” density regime where the system makes
a “transition” from being a high-density effective metal to
a low-density effective insulator. In Fig. 1, we show, purely
to provide a context for the current theoretical work, a
set of representative 2D MIT experimental transport data’~
for 2D electrons in Si MOSFETSs, 2D electrons in GaAs
heterostructures, and 2D holes in GaAs quantum wells, taken
from the experimental publications of several different groups
over the years. (These three systems are by far the most
extensively studied experimental systems in the 2D MIT
studies over the last 15 years.”%)

The current theoretical work presented in this paper de-
scribes a simple and intuitively appealing semiclassical model
as a plausible explanation for the 2D MIT phenomenon. After
developing the model in depth, we carry out numerical calcula-
tions for the density- and temperature-dependent 2D resistivity
which can be compared with the experimental observations
(Fig. 1). The qualitative agreement between our theoretical
results and the experimental 2D MIT data is prima facie
evidence that our proposed physical mechanism is likely to
be playing a role (perhaps even a major role) in the underlying
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physics of 2D MIT phenomena.’~!%!5:18:19.21-23.26-29 'Wwe can

not, however, rule out (certainly, not conclusively) the possi-
bility of alternate physical mechanisms also playing some role
in the 2D MIT phenomena since our model is based only on
the single physical mechanism described in this work.

The physical mechanism we consider is disorder-induced
density inhomogeneity necessarily present in semiconductors
at low carrier densities where screening effects are sufficiently
weak so that the long-range Coulomb disorder introduced
by random quenched charged impurities invariably present
in the semiconductor environment leads to strong potential
fluctuations in the system.>> These potential fluctuations
are screened out at high carrier densities, but at low carrier
densities they create highly inhomogeneous “lakes-and-hills”
type potential landscape in which the carriers move around
within the physical sample.’® In addition to creating the
lakes-and-hills (or equivalently “valleys-and-mountains”) in-
homogeneous potential landscape, the charged impurities,
of course, also cause momentum scattering of the carriers,
leading to the measured resistivity. Since 2D MIT typically
is a low-density phenomenon where screening is weak, the
“lakes-and-hills” potential landscape is expected to play a key
role in the phenomenon.

The key ingredient of our model is that we treat the carrier
system as an effective two-component (or equivalently two-
phase) system: bound and unbound carriers or, equivalently,
trapped (i.e., immobile) and mobile (i.e., free) carriers (we
use the latter terminology throughout), where all classically
trapped carriers in the potential well (or valley) regions are

©2013 American Physical Society
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FIG. 1. (Color online) (a) Temperature dependence of the observed resistivity for 2D electrons in GaAs heterostructure. Adapted from
Ref. 7. (b) Temperature dependence of the observed resistivity for p-type GaAs quantum well system. Adapted from Ref. 8. (c) Experimental
resistivity as a function of temperature for Si MOSFETs. Adapted from Ref. 9.

assumed to be localized without contributing to the conductiv-
ity (= the inverse of resistivity) at zero temperature (7 = 0).
Thus, the “trapped” carriers in the classically forbidden region
(with E < 0) do not contribute to the T = 0 conductivity (or,
equivalently, have infinite resistivity at 7 = 0), and the 7 = 0
conductivity is determined entirely by the mobile carriers (with
E > 0) which are classically free. Our basic two-component
transport model is thus a classical (or semiclassical) model
with the carriers being divided into bound or trapped or immo-
bile carriers and unbound or free or mobile carriers because of
the “lakes-and-hills” potential fluctuation landscape induced
by the random charged impurities. It is obvious that in the
absence of Anderson localization (which we neglect) and in the
absence of background potential fluctuations (or for very small
fluctuations), all the carriers contribute to the 7 = 0 “metallic”
conductivity since there are no effective potential wells or
barriers to trap the carriers; the same is essentially true when
the net carrier density is very high so that the chemical potential
or the Fermi energy is very large compared with the typical
magnitude of the potential fluctuations. On the other hand,
when the Fermi energy is very small (i.e., low carrier density),
most of the carriers are immobile, leading to exponentially
small (and “insulating” or activated) conductivity.

We assume that the mobile carriers undergo standard
disorder scattering limited diffusive transport and as such can
be treated by the semiclassical Boltzmann transport theory
(taking into account the screening of the Coulomb disorder by
the carriers themselves so that the resistive scattering mech-
anism is the finite-temperature screened Coulomb disorder
arising from the quenched random charged impurities®*>").

At finite temperatures (but not at 7 = 0), the trapped carriers
also contribute to the conductivity through the activation
process as the bound carriers can be thermally excited over the
disorder-induced potential fluctuations to become effectively
mobile. (We neglect all quantum tunneling and phonon-
assisted hopping effects.) Thus, there are two independent
transport channels in the problem: Diffusive transport by the
mobile electrons/holes and activated transport by the trapped
electrons/holes. We use a two-component effective medium
theory (EMT),***? the two components being the fractions
of trapped (“activated transport”) and mobile (“diffusive
transport”) carriers, to describe the transport behavior in the
system. Obviously, high-density transport, when the fraction
of mobile carriers is very high, would appear diffusive and
metallic, and low-density transport, when the fraction of
trapped carriers is very high, would appear activated insulating
with a crossover at some disorder-dependent intermediate
carrier density.

We emphasize that our basic two-component (trapped
and mobile carriers) model is classical as is our two-
component EMT transport calculation®® in the sense that
quantum interference (i.e., localization) effects are neglected.
We calculate the carrier resistivity itself using the semiclassical
Boltzmann transport theory which treats carrier momentum
scattering by disorder in a quantum mechanical manner. In
this sense, our theory is semiclassical. All quantum tunneling
and quantum interference (and electron-electron interaction
beyond screening) effects are ignored in our theory since
the problem becomes intractable otherwise. Also, the two-
component classical transport model is inconsistent with
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FIG. 2. (Color online) 2D density plot of our simulated V (r) measured from Ey for randomly distributed impurities with zo = 10 nm
and k¥ = 10. (a) n; = 10" em™2. (b) n; = 10" cm™2. (c) n; = 10'2 cm™2. Since this figure is just for schematic purposes, we do not include

screening effects in our simulations.

quantum tunneling and interference (since in the presence
of tunneling, the two-component concept does not apply),
and our goal here is to study the physically motivated
semiclassical two-component transport model as completely
as possible without the very difficult additional complications
of quantum tunneling and interference. The basic idea here
is that the strong potential fluctuations in the semiconductor
system arising from random charged impurity disorder and
the associated lakes-and-hills energy landscape necessarily
lead to the zeroth-order carrier transport properties being
dominated by the two-component behavior through the dif-
fusion of mobile carriers and the activation of trapped carriers
with all other effects (tunneling, interference, interaction)
being weak perturbations in the strongly fluctuating highly
inhomogeneous 2D system. The two-component transport is
relevant only when the Fermi energy of the carrier system and
the typical scale of the potential fluctuations are comparable so
that a highly inhomogeneous density and potential landscape
dominates the transport properties (Figs. 2 and 3). This is
the typical situation for 2D semiconductor systems in the
presence of random charged impurity disorder where 2D MIT
phenomena occur.

We mention that there is a very long history in the
literature discussing transport in disordered semiconductor
systems using the inhomogeneous two-component model of

38,4349

trapped and mobile carriers in the lakes-and-hills landscape
of potential fluctuations. The problem has a strong for-
mal similarity to the problem of classical percolation in a
highly inhomogeneous medium,*-%37 and occasionally the
metal-insulator transition in electronic materials, particularly
in disordered semiconductors, has been studied using the
classical percolation approach.”® The key physical point
here is that the strong potential fluctuations induce strong
density inhomogeneity with the electrons (or holes) forming
spatial puddles separated by potential barriers.”® We mention
here that a large number of 2D experimental’~!0-18-24.26-29
and theoretical’®**?°4%* works in the literature have already
suggested the two-component percolation transport as the
underlying mechanism for the 2D MIT phenomena.

In Sec. II, we describe our theory in details, providing the
numerical results for the calculated 2D transport properties for
various situations in Sec. III. We provide a thorough discus-
sion, emphasizing limitations of our theory and corrections
to existing theoretical and experimental results in Sec. 1V,
concluding in Sec. V with a discussion on the comparison
with experiment and a summary.

II. THEORY

‘We use a minimal model to describe the 2D semiconductor
system as a 2D electron (or hole) gas (2DEG) of 2D density n
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FIG. 3. (Color online) Schematic diagram of V(r) for s = 0.05 meV to show the lakes-and-hills inhomogeneous potential landscape.
(a) EF = 0.0l meV. (b) Er = 0.05meV. (c) Er = 0.1 meV. (d) Er = 0.2 meV.

characterized by an effective mass of m, a valley degeneracy
factor of g,, and a background effective dielectric constant
k (which is taken as the average of the lattice dielectric
constant for the semiconductor and the insulator defining the
2D heterostructure, i.e., Si-Si0», GaAs-AlAs, etc.). We assume
a spin-degenerate system with a spin degeneracy g, =2
throughout (except when discussing the effect of an in-phase
magnetic field which could lift the spin degeneracy changing g
from two at zero magnetic field to one at high magnetic field).
We neglect the thickness (in the z direction perpendicular
to the 2D layer) of the 2DEG in describing our theory and
equations since this has only quantitative, but no qualitative,
effect for the 2D MIT physics of interest in this work. Adding
a finite 2D layer thickness effect is straightforward, and would
only quantitatively modify the relative strength of the disorder
in the theory. All our numerical results shown in the figures
include the full effects of quasi-2D finite thickness in a realistic
manner.

Disorder is included in our model through random charged
impurities of concentration (i.e., 2D density) n; which are
located a distance zy from the 2DEG in the z direction
perpendicular to the layer. We assume that n; and z together
define completely the resistive scattering of the carriers with
the disorder potential being modeled by the screened Coulomb
interaction.

Finally, we need to specify the potential fluctuations
dominating the low-density behavior of the carrier sys-
tem leading to the basic two-component/two-phase model

underlying our theoretical approach. In principle, the charged
impurity distribution characterized by n; and zy and the 2D
carrier system (characterized by n, m, g,, gs, k) should
suffice to define the disorder potential fluctuation distribution
P (V) through the self-consistent (and simultaneous) solutions
of the Poisson equation for the charged impurity induced
electrostatic potential V (r) and the many-electron Schrodinger
equation for the response of the interacting 2D electron gas
to the external disorder potential. Conceptually, one needs
to use a general density functional approach where the
disorder-induced potential V(r) serves as the inhomogeneous
potential and the ground-state inhomogeneous carrier density
n(r) must minimize the appropriate (free) energy functional
E{n(r)}. Given that the charged impurities are modeled by
averaged quantities (e.g., n;, zo) since their precise locations
are unknown, one must average over many different config-
urations of the impurity distribution after carrying out the
full density functional self-consistent calculations for each
configuration. Obviously, such a numerical density functional
solution of the self-consistent problem [which would not
only be nonlinear,*®! but also nonlocal since there is no a
priori reason to assume a local density approximation (LDA)
to apply] is completely out of question because it will be
computationally far too prohibitive (particularly since our goal
is to obtain theoretical results for the 2D resistivity as a function
of carrier density and temperature for different values of n;,
20, M, &y, k, etc.). In fact, even the ground-state problem of
obtaining just the inhomogeneous n(r) for the disordered 2D
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system at 7 = 0 in the presence of random quenched charged
impurities in the background has only been attempted only a
few times in the literature®?-%® within restrictive approximation
schemes such as Hartree, LDA, and Thomas-Fermi theories.
In spite of the simplified approximation schemes used in
these theoretical works, it would be impossible to utilize
any of these completely numerical nonlinear self-consistent
approaches to obtain the potential fluctuation distribution
function for our purpose because combining such self-
consistent calculations of disorder potential distributions with
the requisite two-component/two-phase transport calculations
is simply beyond the computational power of currently
available machines.

Instead, we use the theoretically appealing approach of
using a parametrized distribution function for the potential
fluctuation function P(V'), which has recently been successful
in developing a theoretical description for monolayer and
bilayer graphene transport®*#1:9%70 at Jow carrier densities
around the Dirac point in the presence of electron-hole puddles
induced by charged impurity disorder. In this theoretical
approach, the disorder-induced spatial potential fluctuation is
approximated by a Gaussian function P(V) which is assumed
to be the same throughout the sample. Thus, V(r) at different
r is assumed to be uncorrelated and described by a Gaussian
function. The great advantage of this theoretical approach is
its simplicity and conceptual clarity: the potential distribution
P(V) can be completely characterized by a single energy “s”
which is the variance or the root-mean-square fluctuation in
the impurity induced disorder potential.”! We assume, with
no loss of generality, equal numbers of positive and negative
random quenched point charges (+e) to be contributing to
the impurity disorder so that there is no average (or net)
potential contributed by disorder. Assuming uncorrelated
random Poisson distribution in the impurity locations (all
impurities located at random 2D positions in a layer z, away
from the 2DEG), it is straightforward (but somewhat messy)
to show that “s” is related to the impurity and the 2DEG
parameters [see Eq. (2)] if linear Thomas-Fermi screening
holds in the problem (which certainly does not hold at low
carrier density). We do not, however, assume any relationship
between n;, zo on the one hand and s on the other hand, taking
n;, 2o, and s together to define a minimal three-parameter
description for the random disorder, where s (relative to
the Fermi energy Er) defines the strength of the potential
fluctuations and n;, zo together give the strength of diffusive
resistive scattering of the mobile carriers. For s = 0, all the
carriers are mobile, and for infinite s all the carriers are
trapped.

The probability P(V)dV of finding the local electronic
potential energy within a range dV around V is a Gaussian
form

P(V) = exp(—V?/2s?), (1)

1
N 2ms?

where s denotes the standard deviation of potential fluctua-
tions. Generally, larger s means more impurity disorder (and
more inhomogeneity) in the system. The potential fluctuation
is directly related to the charged impurity density,**7>"3 and
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within the linear Thomas-Fermi screening theory

62 wn;
§=—=—, 2

V2kz0g71r
where n; is the density of charged impurity density, « is
the arithmetic average of the semiconductor and insulator
— gvgﬁ"'e

dielectric constant, grp = (gs and g, are the spin
and valley degeneracies, respectlvely) is the Thomas-Fermi
2D linear screening wave vector, m is the effective mass of
the carriers, and z( is the average distance of the charged
impurity to the interface. We choose s as a free parameter
in the calculations (along with n; and z() below as explained
above, the reason being that linear screening in general breaks
down at low carrier density.

The density of states D(E) in the presence of potential
fluctuations P(V) is given in terms of the ideal 2D density of
states Dy in the absence of disorder:

E Y E
D(E) = f SN )
oo 27H? V2s
where Dg is the ideal disorder-free 2D density of states
given by

Dy
P(V)dV = Terfc< 3)

8s8vM

2wh?
At T = 0, the carrier density in the band tail, i.e., the trapped
or immobile carrier density, is given by the following formula:

[ [i(- e
(%)

Note that Eq. (5) defines the classically trapped fraction of
the carrier density being in the classically forbidden negative
energy states.

The total carrier density is given by [with w being the
finite-T chemical potential with Er = w(T = 0)]

n = / " b dE , ©)
P B E - 11

where w is determined by the conservation of the carrier
density:

Dy = “

n(T =0)=

n

® o dE
/W ( )eXP[,B(E—M)]+1

Er
=/ D(EYdE at T =0

o0

_ EF EF S E%‘
_ DO[Terfc< _ E) + e ( - ﬁﬂ ™)

The trapped electron density at finite temperatures n,(T)
is determined by the potential fluctuation strength, but also
depends on the temperature and is given by

o[ [5ene( - o5 ) s ®
M 2% T A explpE— 1+ 1

The effective mobile or free carrier density n,, =n — n,
depends on the temperature, the Fermi energy Ep, and
the standard deviation of potential fluctuation s. At zero
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temperature 7 = 0, the effective mobile carrier density is
given by

N

(T = 0) = Do[ﬁerfc< - E) +
2 V2s 2
Xexp<—E—%)— a i| ©)]
252 27

Thus, n = n,, + n, is the total carrier density with n,,, n,
being the temperature-dependent fractions of mobile and
trapped carrier densities. These are the two phases (n,, and n,)
coexisting in the disordered 2DEG, and we must now develop a
two-component transport theory to obtain the 2D conductivity.
The activated conductivity of the trapped immobile carriers is
given by

04(V) = g exp[B(EF — V)], (10)

where o = "% with 7 as the transport scattering time.

We note that the variable range hopping should also be
included in the conductivity of the trapped carriers, but we
neglect it for two reasons. First, the variable range hopping
is a phonon-assisted quantum tunneling phenomenon for the
localized carrier, and our neglecting this is consistent with
our neglect of all quantum tunneling processes in the theory.
Second, including a hopping conduction would simply add
more unknown parameters to the theory without adding any
physical clarity.

For the mobile carriers, we simply have the diffusive
conductivity from the Boltzmann theory

_ 2 2
oy = ) ml) an

m m

where the finite-temperature averaged (z) is given by*>3774

_ [ de D(e)et(e)(—df/de)
B [ de D(e) f(€)

Here, we use D(e) = D, for the mobile carriers. f(€) is the
Fermi-Dirac distribution function

1
fle)= 1 + eBle—10)

with o as the finite-temperature chemical potential for the
homogeneous system, which is determined by

()

12)

13)

E
po=Ep+kpTIn(1—e 57). (14)
The energy-dependent scattering time is given by
K |V
= 27n; . D" 11 cos0] s(ew—er).  (15)
T(ek) (2m)* | e(q)

where V(gq) = zf—qeze’q“’ is the scattering potential strength and

elqg)=1- 2/’(’—;2 I1(g,T)is the finite-temperature 2D screening

function.'7>-77

We define the fractional occupancy as given by

Er
p=[ P(V)dv. (16)

[e¢]

In the two-component effective medium theory, we have the
conductivity o} and o, for the two phases “1” and “2”. In our
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case, phase 1 consists of mobile carrier
01 = 0y. (17)

The conductivity (0, = 0,) of phase 2 corresponds to the
activated conduction of the trapped carriers

oy = l/oo o,(V)P(V)dV
q JEr

=—¢ 2 Ferfec| —— +—= ) =04, (18)
2q V2s V2 ‘
where g =1 — p.

The total conductivity is given by (according to the effective

medium theory?%7%)

_2p—1 ) 4
o= 3 (01 —02) + [(01 —02)* + malffz
(19)

with oy = 04 and 0, = 0,,.

In the next section, we give numerical results for p = 1/o
in terms of system parameters.

Before presenting our numerical results for the carrier
density and temperature-dependent 2D resistivity in terms of s,
n;, zg, we mention that in spite of the conceptual simplicity of
the two-component effective medium theory description of the
two-phase transport of the 2DEG in the presence of potential
fluctuations, the results arise from a complex interplay of
many distinct physical mechanisms which are not easy to
grasp because of the large number of parameters defining
the 2D MIT phenomena. First, there is a strong density and
temperature dependence of oy, i.e., the diffusive conductivity
of mobile carriers, itself arising from the variation in gtp/2k g
(“screening”) and kgT/EF (“degeneracy”) as discussed al-
ready in details in the literature.>>=77* This screening and
degeneracy dependence of 2D “metallic” transport is included
in our theory and is actually enhanced by the fact that p < 1
by virtue of s # 0. Thus, the potential fluctuations enhance
the temperature dependence of o, (or o7) indirectly. More
importantly, however, the activated conduction inherent in
0y (=0,) strongly enhances the temperature dependence of
the conductivity, particularly at lower carrier densities (i.e.,
larger values of s/Er) where the trapped carrier fraction
is large. Since the two contributions to the conductivity
(i.e., o4 and o, or equivalently o, and o,) have opposite
temperature dependencies at low temperatures, it is possible
for the system to exhibit a very weak temperature dependence
at some intermediate carrier density mimicking a quantum
critical density between a metal and an insulator, whereas in
reality, within our theory, it is simply a two-phase crossover
behavior where the 2D metallic phase at high density (and large
E ) consisting mainly of mobile/diffusive carriers is crossing
over to a low-density (and small Er) 2D system consisting
primarily of trapped/insulating 2D carriers. Our theory by
construction is a crossover two-component theory.

III. TRANSPORT IN THE TWO-COMPONENT MODEL

In providing the numerical results for the 2D transport
properties in the two-component effective medium theory
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approximation developed in Sec. II, we mention that the
quantitative results would depend strongly on the 2D material
(since the relevant system parameters such as grp and Ep
depend on materials parameters such m, g,, and «) as well as
on the nature of the 2D impurity disorder. In particular, whether
the dominant disorder arises from near impurities (relatively
small values of zp) or far impurities (large zo) has a strong
effect on the results. Another possibility we will consider is
a background 3D impurity distribution in the 2D quantum
well itself for which an integration would have to be carried
out over a range of zp values, and the theory of Sec. II has
to be generalized for a finite 2D layer thickness (“a”’) which
is straightforward to do assuming a square-well quantum 2D
confinement in the z direction with a layer thickness of a.

We provide our numerical results only for 2D GaAs-
AlGaAs hole system (corresponding to Ref. 8) since typically
this system exhibits the strongest 2D MIT behaviors although
we have produced transport results for many different 2D
systems used in various experimental studies obtaining qual-
itatively similar results. Following, we discuss and present
our numerical transport results corresponding to Ref. 8 by
considering individual models for impurity disorder arising
from 2D interface impurities (Sec. IIT A), remote 2D impurities
(Sec. I1I B), background 3D impurities (Sec. III C), and remote
3D impurities (Sec. III D) We mention that, in reality, all four
disorder mechanisms are likely to be present with varying
quantitative magnitudes.

A. Interface 2D impurity model

We show in Fig. 4 our calculated p(T') for various values
of total carrier density n for s = 0.05 meV for 2D holes in
GaAs/AlGaAs quantum wells of width a = 200 A assuming
2D interface impurity density of 1.5 x 108 cm™2. This is
a rather clean system corresponding to n,(T = 0) = 0.25 x
10" cm™2. The system corresponds to the 2D hole system

10" pr e
E 0025510 "em” 3
r H0.27><10mcm- 1
[ P0.33x10 em ) |
0‘46><10]Ocm';
10°E A—40.61x10.cm "
E 107 23
E ¥7v0.92x10 "em 4
5 L
5 e
= 10°F - it R::8:; B
< i ,;EZZ.D,--W"D”D B3 pbpopp iy
[ &>
4
10 F
3L [ [ [
10°g 0.5 1 L5 2
T (K)

FIG. 4. (Color online) Calculated p(T') for various values of total
carrier density n for 2D holes in GaAs/AlGaAs quantum wells of
width ¢ = 200 A assuming 2D interface impurity density of 1.5 x
10% ¢cm~2. The dotted and solid lines are for s = 0 and 0.05 meV
[corresponding to 1,(T = 0) = 0.25 x 10'° cm™2], respectively. The
theoretical parameters in Figs. 4-20 (i.e., all our presented results)
are chosen to correspond to the experimental data in Ref. 8.
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n (1010 cmiz)

FIG. 5. (Color online) Calculated o (n) at T = 50 mK for differ-
ent values of potential fluctuations s for 2D holes in GaAs/AlGaAs
quantum wells of width @ = 200 A assuming 2D interface impurity
density of 1.5 x 10% cm™2.

studied in Ref. 8. In Fig. 5, we show the corresponding o (T)
plots (with 0 = p~! by definition) at 7 = 50 mK for different
values of s =0, 0.05, 0.1, and 0.2 meV. Results shown
in Figs. 4 and 5 indicate that the two-component effective
medium approximation, assuming conduction by diffusive
mobile carriers and activated trapped carriers, qualitatively
reproduce the observed features of the 2D MIT phenomena.
In particular, p(7) mimics a metal-insulator transition around
n,, and the critical density for the 2D MIT crossover depends
strongly on the magnitude of the potential fluctuations with
the crossover “critical” density increasing with increasing “s.”

In Fig. 6, we plot the numerical value of the effective

conductivity exponent “8” defined as either § = _?; ‘1':1(’1’ or
8= lr?(]:fn jasa function of carrier density for s = 0.05 meV,

showing that § and § are also consistent with experimen-
tal findings.® In particular, § itself becomes very large as
density decreases but 8" ~ 1.5 consistent with a percolation
picture.3%-21:23

We emphasize that there is no point in demanding strict
quantitative agreement between theory and experiment since
n;, zo, and s are all unknown experimentally (and a minimal
model involving only three parameters is unlikely to capture all
the complexity of the actual disorder in the realistic samples).

5.0 ] ] " o T 7
PECARES 1 19p(®) 0= /]
' /
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‘ci'g 17k /
. \ /
2.5 L6\ /
\ /
2.0 1.5} N _/ ]
0.2 i 0 03 1 10

n (10 cm™) n-n, (10" cm™?)

FIG. 6. (Color online) Numerically calculated effective conduc-
tivity exponent “§” at 7 = 50 mK for s = 0.05 meV for 2D holes
in GaAs/AlGaAs quantum wells of width ¢ = 200 A assuming 2D
interface impurity density of 1.5 x 108 cm™2.
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FIG. 7. (Color online) Calculated p(T') for various values of total
carrier density n for 2D holes in GaAs/AlGaAs quantum wells of
width @ =200 A assuming remote 2D impurity density of 3.5 x

10® cm™2 and zo = 300 A. The dotted and solid lines are for s = 0
and 0.05 meV [corresponding to n,(T = 0) = 0.25 x 10'° cm™2],
respectively.

B. Remote 2D impurity model

In Figs. 7-9, we show our calculated results for remote
2D impurity scattering, again for 2D holes in GaAs/AlGaAs
quantum wells. Results are very similar for the near impurity
case (Figs. 4-6) except that the temperature dependence in the
metallic phase forn > n, is weaker than the interface impurity
case of the last section because 2k scattering is suppressed in
the remote impurity case.

C. Background 3D impurity model

Here, the impurities are distributed randomly throughout
the quantum well with some 3D average impurity density,
often in very high mobility ultrapure 2D systems, unintentional
3D background charged impurities at some low concentration
dominate transport properties. In Figs. 10-12, we show our

P ——s=0meV
2| - $=0.25meV i
10 s =0.1 meV
[ —-=5s=0.2meV 7 ]
-3 : 1
_107F // 4
2 F . ]
<) [ / ]
/

4
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TS | R ]
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FIG. 8. (Color online) Calculated o (n) at T = 50 mK for differ-
ent values of potential fluctuations s for 2D holes in GaAs/AlGaAs
quantum wells of width @ =200 A assuming remote 2D impurity
density of 3.5 x 10® cm2 and z¢ = 300 A.
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FIG. 9. (Color online) Numerically calculated effective conduc-
tivity exponent “§” at T = 50 mK for s = 0.05 meV for 2D holes in
GaAs/AlGaAs quantum wells of width @ = 200 A assuming remote
2D impurity density of 3.5 x 10% cm~2 and zo = 300 A.

numerical results for transport limited by 3D background
impurities. Again, the results are qualitatively similar to those
in Figs. 4-9 except that the metallic temperature dependence
of the high-density resistivity is somewhat stronger in this case
since the impurities reside in the 2D layer itself.

D. Remote 3D impurity model

Here, the charged impurities are distributed randomly in
three dimensions over a remote spacer layer located away
from the 2D quantum well. These results are shown in
Figs. 13—15, and are similar to the results in Figs. 4—12 except
for quantitative differences.

We conclude this section on our numerical results by
emphasizing that we can easily produce results for transport
limited by different combinations of impurity scattering (i.e.,
combinations of 2D near and far scatters and/or of 3D back-
ground and remote scatters), but the qualitative behavior would
remain the same. Therefore, we do not see any compelling
reason to present additional numerical results including all
four disorder models together which will, in principle, involve
12 unknown disorder parameters. For the same reason, we
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FIG. 10. (Color online) Calculated p(T) for various values of
total carrier density n for 2D holes in GaAs/AlGaAs quantum wells of
width @ = 200 A. The impurities are distributed randomly throughout
the quantum well with 3D average density 7.5 x 10'3 cm~3. The
dotted and solid lines are for s = 0 and 0.05 meV [corresponding to
n, (T = 0) = 0.25 x 10'° cm~2], respectively.
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FIG. 11. (Color online) Calculated o (n) at T = 50 mK for differ-
ent values of potential fluctuations s for 2D holes in GaAs/AlGaAs
quantum wells of width ¢ = 200 A. The impurities are distributed
randomly throughout the quantum well with 3D average density
7.5 x 108 em =3,

refrain from providing numerical transport results for other
2D systems since the qualitative physics would remain the
same and the results would look very similar with obvious
quantitative differences.

Instead, in Figs. 16-18, we show the effect of having
different values of potential fluctuations (by varying “s”) on
our calculated 2D MIT phenomenology. These figures show
that increasing s, i.e., having stronger disorder, suppresses the
metallic temperature dependence, explaining why the strong
metallicity (i.e., strong metallic temperature dependence of
the 2D resistivity) necessitates having cleaner samples which
presumably have smaller values of s.

IV. DISCUSSION

The main point established through our numerical results
(Figs. 4-18) presented in this paper is that a theory based on
a two-component transport mechanism involving a two-phase
coexistence of both mobile (diffusive) and trapped (activated)
carriers in the inhomogeneous “lakes-and-hills” landscape of
disorder-induced potential fluctuations provides a reasonable
qualitative description of the phenomenology associated with

1.6
N (b) § = 2o
\( ) dn(n—ng)
150
) \ ;
“ \ /
1.4f \ /
/
\ /
1.3t \ /
\ _7 ]
0.3 i 10 0.3 1 10

n (1010 cm_z) n—n; (1010 cm"z)

FIG. 12. (Color online) Numerically calculated effective conduc-
tivity exponent “§” at T = 50 mK for s = 0.05 meV for 2D holes in
GaAs/AlGaAs quantum wells of width @ = 200 A. The impurities are
distributed randomly throughout the quantum well with 3D average
density 7.5 x 10" cm~3.
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FIG. 13. (Color online) Calculated p(T') for various values of
total carrier density n for 2D holes in GaAs/AlGaAs quantum wells
of width @ =200 A. The 3D remote impurities are distributed
randomly from z; = 300 A to z, = 350 A with 3D average density
7 x 10 cm™3. The dotted and solid lines are for s = 0 and 0.05 meV
[corresponding to n,(T = 0) = 0.25 x 10'° cm~2], respectively.

the experimental 2D MIT observations. In particular, the
metal-to-insulator low-density crossover and the associated
temperature dependence of the resistivity in the experimental
observations are similar to our theoretical results.

Following, we provide some critical remarks in the context
of a series of questions which might arise with respect to any
theory purporting to provide a complete qualitative answer
to the substantial (and long-standing) puzzle which goes by
the name of 2D MIT. The answers to these questions are all
qualitative, but our theory, as shown in Sec. III, is capable of
providing detailed quantitative transport results if the impurity
disorder is known in quantitative depth (which is, of course,
an impossibility in real laboratory samples).

(i) Is there a true phase transition in the theory? The
answer is “no”: our theory is by construction a pure crossover

SIn i

10 F ——s=0meV
P 8=025meV
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—~ 1050 ]
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(S} E ]
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FIG. 14. (Color online) Calculated o (n) at T = 50 mK for differ-
ent values of potential fluctuations s for 2D holes in GaAs/AlGaAs
quantum wells of width @ = 200 A. The 3D remote impurities are
distributed randomly from z; = 300 A to z, = 350 A with 3D average
density 7 x 10" cm=3.

155310-9



S. DAS SARMA, E. H. HWANG, AND QIUZI LI

200 T ] N P
(a) 6= 2ms 270 (b) ¢ =ies 7
/
2.5 /’
«w /
2.3t /
———_
2.1t
03 i 10 0.3 1 10

n (10" ecm™2) n-n, (10" cm™2)

FIG. 15. (Color online) Numerically calculated effective conduc-
tivity exponent “§” at T = 50 mK for s = 0.05 meV for 2D holes in
GaAs/AlGaAs quantum wells of width a = 200 A. The 3D remote
impurities are distributed randomly from z; = 300 Atoz, =350 A
with 3D average density 7 x 10'* cm™3.

theory where in the “higher-density” metallic phase diffusive
conduction by the mobile carriers dominates, whereas in the
“low-density” insulating phase-activated conduction by the
trapped carriers dominates. But, the crossover can be very
sharp, and depending on the situation, could easily mimic a
sharp metal-to-insulator phase transition. In Fig. 19, we show
our numerical results for o(n) for different values of T for
a fixed s, clearly showing that the o (n) curves for different
temperatures do not go through a single value of critical
transition density, but are bunched in a small crossover density
regime.

(i) How does the crossover (or transition) density depend
on the disorder strength? The transition density always
increases with increasing the potential fluctuation strength
s. Thus, more disordered systems will behave insulating at
higher carrier density. This is obvious from the results shown
in Sec. III. A corollary of this finding, which is also apparent
in the results of Sec. III, is that for larger disorder with
higher-s values, the temperature dependence of the resistivity
in the metallic phase will be strongly suppressed since the
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FIG. 16. (Color online) Calculated p(T) for various values of
total carrier density n for 2D holes in GaAs/AlGaAs quantum wells
of width a =200 A. The 2D interface impurity density is 1.5 x
108 cm~2. The 3D remote impurities are distributed randomly from
z1 = 1600 A to z, = 1650 A with 3D average density 7 x 10'* cm 3.
The dotted and solid lines are for s = 0 and 0.05 meV [corresponding
to n,(T = 0) = 0.25 x 10'° cm2], respectively.
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FIG. 17. (Color online) Calculated p(T) for various values of
total carrier density n for 2D holes in GaAs/AlGaAs quantum wells
of width a =200 A. The 2D interface impurity density is 1.5 x
10® cm~2. The 3D remote impurities are distributed randomly from
71 = 1600 A to z, = 1650 A with 3D average density 7 x 10" cm™>.
The dotted and solid lines are for s = 0 and 0.1 meV [corresponding
to n, (T = 0) = 0.5 x 10" cm™2], respectively.

temperature dependence of the diffusive p(T) for the mobile
carriers is determined by the parameters T/ Tr and grgr/kp,
both of which decrease with increasing density. Thus, very
low-disorder 2D systems with small values of s are necessary
for the experimental observation of the 2D MIT phenomena.
(iii) Is there a temperature dependence of the crossover
density? The answers to questions (i) and (ii) and a careful
reading of our presented results in Sec. III show that indeed
there is a weak temperature dependence of the crossover
density, thus, the crossover density depends both on the
disorder strength and the temperature scale of the experiment.
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FIG. 18. (Color online) Calculated p(T) for various values of
total carrier density n for 2D holes in GaAs/AlGaAs quantum wells
of width @ =200 A. The 2D interface impurity density is 1.5 x
108 cm~2. The 3D remote impurities are distributed randomly from
z1 = 1600 A to z, = 1650 A with 3D average density 7 x 10'* cm—3.
The dotted and solid lines are for s = 0 and 0.3 meV [corresponding
ton, (T =0) = 1.5 x 10'° cm~2], respectively.
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FIG. 19. (Color online) Calculated o(n) for different values
of T with a fixed s = 0.05 meV for 2D holes in GaAs/AlGaAs
quantum wells of width a =200 A. The 2D interface impurity
density is 1.5 x 10® cm™2. The 3D remote impurities are distributed
randomly from z; = 1600 A to z, = 1650 A with 3D average density
7 x 10" em=3.

In particular, the transition density increases with increasing
temperature (and it also increases with increasing disorder).
The reason for this is a bit trivial since it arises from the fact
that at higher temperatures (and in the absence of phonon
scattering), p(T) shows monotonically slowly decreasing
behavior with increasing temperature up to rather high density,
thus making it appear that the metallic phase is pushed up
to higher density as temperature increases since activated
conduction becomes increasingly important at higher 7'. This
trend of an apparent increase of the crossover density with
increasing temperature (or, equivalently, an apparent decrease
of the “critical” density with decreasing temperature) has been
experimentally observed.” A recent experimental work?® also
shows the dominance of activated conduction at higher tem-
peratures leading to a p(T") decreasing at higher temperatures
consistent with our two-phase coexistence model.

(iv) What about the in-plane magnetic field dependence
of the 2D resistivity? We now comment on an important
class of experiments where an in-plane magnetic field is
applied parallel to the 2D system®3? with the consequent
finding that the effective metallic (insulating) phase is strongly
suppressed (enhanced), i.e., the crossover density increases
with increasing in-plane magnetic field. This phenomenon
can be explained in our theory simply as a magnetic-field-
induced enhancement of the trapped immobile carrier density
in the system through an increase of the potential fluctuation
parameter s due to the increasing spin polarization of the
system (induced by the applied in-plane field). In particular, for
a large enough magnetic field, the 2DEG becomes completely
spin polarized, thus reducing the screening wave vector grtg by
a factor of 2, which then enhances s by a factor of 2, in turn
leading to a factor of 2 increase in the trapped carrier density
[see Eq. (5)] even for exactly the same disorder configuration.
This factor of 2 increase in the trapped carrier density then
leads to a large increase in the crossover density for the metal
to the insulator transition. Such an enhancement (roughly by a
factor of 2) in the “critical” density for 2D MIT in the presence
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of a strong in-plane applied field has been reported in many
experiments. 3387

(v) What is the relationship between the random charged
impurities (defined by n; and zo) and the potential fluctua-
tions [defined by the variance s of the Gaussian probability
distribution function P (V') for the disorder-induced potential
fluctuations]? In principle, s is related to n;, zo since the
random charged impurities give rise to the potential fluctu-
ations. In our theory, we have used a simple minimal model
where n;, zo, and s are three independent parameters defining
the impurity disorder, but in principle they are related. This
relationship is, however, in general unknown since the precise
impurity distribution (modeled in our theory by only two
parameters n; and zo) is unknown (and would, in principle,
require an infinite number of parameters to define). In addition,
even for a given n; and zp, the real calculation of s is
numerically intractable and impractical because one must
carry out a nonlinear and self-consistent density functional
theory where the carrier density distribution n(r) and the
potential fluctuations V(r) determine each other. Within a
linear screening theory (which surely does not apply at
low carrier density) we find s = ezﬂ /(«/EKZ()L]TF) with
qrr = gsgome® /(ch?), andn, = /n;/(4mz0) = (557 ) ().
In Fig. 20, we show our calculated 7, as a function of n; for
2D GaAs holes for different values of zg. These relationships
also tell us how the 2D material (i.e., Si or GaAs, electrons or
holes, etc.) enters the theory through the system parameters m,
K, &s, 8. For example, 2D electrons in GaAs quantum wells
have m = 0.07m, in contrast to 2D holes with m = 0.3m,
with all the other parameters being the same. This implies that
for the same disorder parameters the effective s in 2D holes is
four times smaller than in 2D electrons, leading to much more
prominent 2D MIT behavior in 2D GaAs holes than in 2D
GaAs electrons in the same carrier density and temperature
regime as observed experimentally.”%?* By contrast, 2D Si
electrons have m = 0.19m,, but g, = 2 with a “k(=8)” which
is somewhat smaller than in GaAs (x = 12). Thus, for the same
disorder parameters, 2D GaAs holes will manifest somewhat
stronger 2D MIT phenomena than 2D Si electrons, as observed
experimentally.’
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V. CONCLUSION

Our physically motivated two-component transport theory
based on the coexistence of two phases of carriers in the
2D disordered system, trapped/activated carriers, and mo-
bile/diffusive carriers provides a qualitative description of the
experimentally observed features of the 2D MIT phenomenol-
ogy. The basic model of the two-phase coexistence (“trapped”
and “mobile”) is classical, somewhat akin to coexisting solid
(“trapped”) and liquid (“mobile”) phases in the lakes-and-hills
fluctuating potential landscape, although we calculate the 2D
conductivity using a semiclassical Boltzmann transport theory
where carrier scattering is treated quantum mechanically.
In our theory, the basic metal-to-insulator transition is a
crossover phenomenon where with lowering carrier density,
the relative activated contribution of the trapped carriers to the
net conductivity in the two-component model increases with
respect to the diffusive contribution of the mobile carriers,
reflecting eventually in an apparent change in sign of dp/dT
at low temperatures and densities. The overall temperature and
density (as well as in-plane magnetic field) dependence of the
transport properties arises from a complex interplay among
potential fluctuations, screening, and activated transport.

The main effects left out of the theory are quantum tunnel-
ing, quantum interference, and electron-electron interaction
[beyond random phase approximation (RPA) screening]. We
do not see an easy way of including these effects in our
model. Tunneling can be included®®®® within a Landauer-
Buttiker—type approach, but then many realistic effects such
as screening and diffusive impurity scattering must be left
out. In principle, at T = 0 all states in 2D systems become
localized, but experimentally this limit seems difficult to reach.
The advantage of our theory is that one can do concrete
microscopic calculations for the density-, temperature-, and
disorder-dependent 2D conductivity for different 2D materials.
The disadvantage is that it is not easy to see how to
include quantum effects such as localization/tunneling and
interaction, which must eventually play a role at low enough
temperatures.

It may be useful to emphasize two aspects of our theory.
First, the results presented in this work are not only in excellent
qualitative agreement of the existing experimental results,
they are, in fact, in good quantitative agreement with the
experimental 2D MIT data in the literature. In particular,
the theoretically calculated temperature dependence of the 2D
metallic resistivity at higher carrier density agrees well with
the existing experimental data by virtue of our inclusion of
the full temperature- and density-dependent screening of the
underlying Coulomb disorder as already discussed extensively
in the earlier works®> 37748082 \here it was established that
the strong linear metallic temperature dependence of the
2D metallic resistivity arises from temperature dependence
of the 2D screening function around 2kg. Similarly, the
strong exponential insulating temperature dependence for
lower carrier density is guaranteed in our effective medium
approximation by the activated conduction of the trapped
carriers. Experimentally, of course, the quantitative details
vary enormously from system to system since the relevant
disorder parameters (e.g., n;, zo, §, etc.) vary strongly among
different 2D systems. For example, in Si MOSFETs, zq is
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typically around 1 nm whereas n; is typically 10! cm~2,

which leads to n, ~ 10'' cm™2, which is in good quantitative
agreement®!! with the so-called 2D MIT critical density
in Si-based 2D systems. In modulation-doped 2D GaAs
systems, where the background charged impurity density is
negligibly small, the main scattering mechanism is provided
by the remote dopants, leading to zo ~ 100 nm or larger
with n; ~ 10'© cm~2. This leads to n, ~ 10° cm~2, which
is in agreement with the observed critical density’® in high-
mobility 2D GaAs systems. In Fig. 20, we explicitly show
the dependence of n, on n; and zp, which can be directly
compared with experiments. One serious problem in this
context is, of course, that the precise values of n; and zo are
unknown in experimental samples, and therefore any direct
quantitative comparison is not very meaningful (which is the
reason for emphasizing qualitative rather than quantitative
agreement with the data throughout this paper) since the theory
depends sensitively on the precise values of these disorder
parameters. We emphasize, however, that to the extent the
disorder parameters in the experimental samples are known,
our results provide a reasonable semiquantitative agreement
with the experimental data. Second, our theory should at best
be thought of as a zeroth-order semiclassical two-component
description of the reality because of our neglect of many
important physical effects invariably present in nature (e.g.,
Anderson localization, electron-electron interaction, quantum
tunneling). A complete theory including both the effects of
long-range Coulomb disorder (the main ingredient included
in our theory) and localization/interaction/tunneling is at this
stage not only beyond the scope of our work, it is in fact
essentially impossible.

Our work is motivated entirely by the belief that the
zeroth-order physics for 2D MIT is captured well by con-
sidering the long-range Coulomb disorder (leading to the
model of trapped and mobile carriers) effects and leaving
out other effects. All we can say at this stage, other than
emphasizing the qualitative agreement between our results
and experiments, is that earlier works in many different 2D
systems®10:1819:21.23.24.27,29,54,59.62-643889 have already claimed
the applicability of a two-component classical percolation
model to the 2D MIT phenomenon, and our work simply
carries out a quantitatively complete transport calculation
using the two-component model so that the actual theoretical
transport results can be explicitly obtained using the effective
medium theory. More work would obviously be needed to
complete the story of 2D MIT phenomenon in figuring out
the precise roles played by quantum tunneling Anderson
localization, and electron-electron interaction in the transport
physics of 2D disordered systems.

A relevant question in this context is what one can learn
about the experimental 2D MIT phenomena from our two-
component theoretical analysis and our presented transport re-
sults in this work. After all, our theory is explicitly constructed
as a crossover theory with both mobile and trapped carrier
contributing to the conduction (with their relative contributions
changing in a complicated manner depending on disorder
parameters, carrier density, and temperature), and as such, our
work obviously can not conclusively theoretically establish 2D
MIT to be a crossover phenomenon since we do not compare
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and contrast our crossover theory to any quantum critical
theory treating 2D MIT to be a true quantum localization
transition. (We comment as an aside that no detailed theoretical
transport results are available in the literature based on
a quantum critical model of 2D MIT.) The key message
of our analyses is that the two-component semiclassical
percolation theory requires very reasonable system parameters
to theoretically reproduce the experimentally observed 2D
resistivity p(n,T) over a very wide range of carrier density
and temperature without any fine tuning of the generally
unknown disorder parameters (n;, zo, and s in our theory
for the specific impurity disorder mechanism). In particular,
the same set of unique values for (n;, zo, §) reproduces
the approximate “critical” carrier density regime for the
metal-to-insulator crossover transition in p(7T') as well as the
approximate (and often strong) temperature dependence for
o(T) in the nominally metallic phase. In addition, the same
set of n;, zp, and s (which reproduces the correct crossover
density scale) also reproduces the absolute magnitude of
po(T,n) both in the metallic and in the insulating regimes. This
is obviously a rather nontrivial theoretical accomplishment,
indicating that the temperature dependence of p(7,n) on the
metallic side is closely connected with both the actual density
for the metal-to-insulator transition as well as the behavior
of p(T) on the insulating side. This can be easily inferred
by comparing our Fig. 4 with Fig. 1 in the corresponding
experimental work.® Both our Fig. 4 and Fig. 1 in Ref. 8
indicate a crossover carrier density around 3-5 x 10° cm~2,
and the measured p(n,7) in the metallic regime in Ref. 8
is precisely in the same range as our calculated values in
Fig. 4. The change in p(7T') on the metallic side agrees well
between our theory and the data in Ref. 8. In addition,
our calculated effective conductivity exponent §’ &~ 1.6 in
Fig. 6 agrees well with the experimentally measured exponent
given in Fig. 5 of Ref. 8. What is important here is not
the precise quantitative agreement, but the fact that very
reasonable agreement between several different independent
experimental quantities and our theoretical calculations are
achieved using a single set of reasonable parameter values
for n;, s, and zp. This seems to indicate that the qualitative
agreement between the two-component crossover theory and
experimental data is unlikely to be a coincidence (since we are
not fine tuning unknown parameters), and the experimental
2D MIT phenomenon is likely to be strongly affected by the
percolation physics presented in this work. This is the key
message of our work.

A direct corollary of the above discussion about the
agreement between out percolation theory and 2D MIT
experiments (without the fine tuning of disorder parameters)
is that any experiment finding a sharp separatrix (i.e., a
sharp value of a temperature-independent critical density 7,
corresponding to a sharp temperature-independent critical
resistance p.) distinguishing the low-density (n < n.) insu-
lating phase from the high-density (n > n.) metallic phase
with a characteristic critical resistance p. = p(n = n.) is in
fundamental qualitative disagreement with our theoretical
approach. If a sharp temperature-independent separatrix exists
distinguishing the metallic phase from the insulating phase,
then our theory is inapplicable and the physics is likely
to be a quantum critical phenomenon (and not a crossover
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as we have assumed in our model). In the early days of
2D MIT physics, such a sharp separatrix and an associated
critical density/resistance for 2D MIT phenomenon were often
claimed to be true experimentally.!" But, it is now well
established that most 2D MIT experiments do not have any
sharp separatrix (or an associated critical resistance), and this
was already emphasized by Hanein et al. as far back as 1998.1
In fact, the experimental results presented in Fig. 1 of this
paper clearly show that the typical characteristic resistance
associated with 2D MIT crossover varies from ~8 k2 in
Fig. 1(a) through ~40 k<2 in Fig. 1(c) to ~50 k<2 in Fig. 1(b),
and this “critical resistance” is strongly temperature dependent
in each sample. In the literature, the experimentally observed
critical resistance varies by more than an order of magnitude®°
in different systems and samples, casting doubts on the early
claim of a universal p. characterizing 2D MIT. We must
emphasize, however, that our theory is simply inapplicable
to any experiment, such as those reported in Ref. 11, where
the 2D MIT is characterized by a sharp separatrix and an
associated precise critical resistance. Fortunately (for our
theory), many experimental observations are consistent with
2D MIT being a crossover phenomenon with no precise critical
density (and critical resistance) including the data shown
in Fig. 1 of this paper. It is, of course, possible (although
unlikely in our opinion) that some specific subsets of 2D MIT
experiments are indeed observing a quantum critical transition
and others (e.g., the three distinct experimental results depicted
in Fig. 1 of our paper) are observing crossover behaviors.
This could, in principle, arise from the underlying effective
disorder mechanism controlling 2D MIT transport behavior
being different in different systems and samples studied in
different experiments. For example, GaAs-based 2D systems
could be dominated by long-range Coulomb disorder, whereas
Si MOSFETs (studied in Ref. 11) could be dominated by
short-range disorder due to the fact that the GaAs 2D samples
are modulation doped with the ionized dopants being far from
the 2D carriers, whereas in Si MOSFETSs the main scattering
is by nearby impurities in the oxide layer and by interface
roughness.

In the unlikely scenario that such a dichotomy exists with
some 2D MIT phenomena being quantum critical and others
being semiclassical crossover, our theory would apply only to
the situation where the transport is dominated by long-range
Coulomb disorder (leading to the inhomogeneous potential
landscape) and not to the situation dominated by short-range
white-noise disorder.

Finally, we conclude with some brief remarks on the precise
quantitative comparison between our theoretical numerical
results and the experimental data of Ref. 8: (i) The most
important discrepancy is that we overestimate the resistivity
deep in the insulating phase where our theoretical resistivity is
~107 ohm, whereas the corresponding experimental resistivity
in Ref. 8 is around ~10° ohm. This order of magnitude
discrepancy most likely arises from our neglecting the variable
range hopping conduction in the insulating phase which
would strongly enhance the insulating conductivity. (ii) Our
transition density tends to be somewhat smaller (~10%) than
the experimental transition, which again could be due to
our neglect of the variable range hopping conduction in the
insulating phase. (iii) Typically, the calculated resistivity in
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our Figs. 7 and 13 is somewhat (by about 30% or so) smaller
than the experimental data at higher carrier density, which
may be due to our neglect of weak localization corrections.
(iv) On the other hand, our calculated resistivity in Figs. 4,
10, and 16 is somewhat larger (by about 50%) than the
experimental data. (v) The last two points together indicate
that a complete model of disorder, which includes all different
disorder mechanisms together (i.e., interface disorder, remote
disorder, bulk disorder) that we have treated separately in
our numerical results may very well be able to reproduce
the experimental results precisely quantitatively [except for
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the strongly insulating resistivity discussed in item (i) above].
But, such a theory would have at least 10 independent disorder
parameters, and getting quantitative agreement by adjusting
10 independent disorder parameters would essentially be a
meaningless data-fitting exercise. Without more quantitative
information about the underlying disorder, our current theory
and results are probably the best one can do.
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