
PHYSICAL REVIEW B 88, 155306 (2013)

Two-dimensional semimetal in a wide HgTe quantum well: Magnetotransport and energy spectrum
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The results of an experimental study of the magnetoresistivity and the Hall and Shubnikov-de Haas effects for
a heterostructure with a HgTe quantum well of 20.2 nm width are reported. The measurements were performed
on gated samples over a wide range of electron and hole densities including the vicinity of a charge neutrality
point. Analyzing the data, we conclude that the electron and hole energy spectra are in qualitative agreement
with those calculated within the framework of kP model. The electron and hole subbands are overlapped due to
the nonmonotonic dispersion of the hole subband resulting in a semimetallic state. The main result of the paper,
however, is the drastic quantitative difference in the experimental and calculated spectra of the hole subband. So,
the hole effective mass found from the analysis of the Shubnikov-de Haas oscillations is positive and equal to
approximately 0.2m0 and practically independent of the quasimomentum (k) starting from k2 � 0.7 × 1012 cm−2,
while the theory predicts negative (electronlike) effective mass up to k2 � 6 × 1012 cm−2. The experimental
effective mass near k = 0, where the hole energy spectrum is electronlike, is close to −0.005m0, whereas the
theoretical value is about −0.1m0.
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I. INTRODUCTION

Two-dimensional (2D) systems based on gapless semicon-
ductors such as HgTe represent unique objects. A great variety
of two-dimensional electron and hole systems based on these
materials can be realized depending on the quantum well width
(d) and content of cadmium in the Hg1−xCdxTe well and
Hg1−yCdyTe barriers. It is now well established that the energy
spectrum in CdTe/HgTe/CdTe quantum well at d = dc �
6.5 nm is gapless1 and is close to the linear Dirac-like spectrum
at small quasimomentum k.2 When the thickness d < dc (i.e.,
when the HgTe quantum well is narrow), the ordering of
energy subbands of spatial quantization is analogous to that in
conventional narrow-gap semiconductors; the highest valence
subband at k = 0 is formed from the heavy-hole �8 states,
while the lowest electron subband is formed both from the �6

states and light-hole �8 states. For a thick HgTe layer, d > dc,
the quantum well is in the inverted regime; the main electron
subband is formed from the heavy-hole �8 states,3 whereas
the subband formed from the �6 states and light-hole �8 states
sinks into the valence band.

The energy spectrum and transport phenomena of 2D
carriers in HgTe-based structures were studied intensively
last decade both experimentally4–10 and theoretically.2,11–13

The experimental data on the energy difference between
the different 2D subbands at zero quasimomentum are in
satisfactory agreement with the theory. The electron energy
spectrum, electron effective mass, and their dependence on
the quantum well width are in agreement with the calculation
results also. As regards to the experimental data on the
valence band energy spectrum, namely, the value of bands
overlapping, role of strain, effective masses at k = 0 and at
large quasimomentum, these are mutually contradictory and
call for further investigation.

In this paper, we present the results of an experimental
study of the transport properties of a heterostructure with a
HgTe quantum well with an inverted energy spectrum. The

measurements were performed over a wide range of electron
and hole densities including the vicinity of the charge neutral-
ity point (CNP) with nearly equal electron and hole densities.
Analysis of experimental data allows us to reconstruct the
energy spectrum, which is in qualitative agreement with that
calculated theoretically within the framework of standard kP

model. The experimental and calculated effective masses of the
electron subband are close to each other. The dispersion law
E(k) for the valence band is nonmonotonic, which results in the
overlap with the conduction band. However, the experimental
and calculated spectra being in qualitative agreement are
strongly different quantitatively. We show in particular that the
maxima in the dispersion are located at k � 0.5 × 106 cm−1,
while the theory predicts a value of about 2.5 × 106 cm−1.
Moreover, our estimate for the effective mass of the electron-
like part of the valence band spectrum at k = 0 gives the value
of about 0.005m0, whereas the calculated value is larger than
0.1m0.

The paper is organized as follows. The next section is
devoted to the experimental details and sample description.
The experimental results and discussion are given in Sec. III.
After the short data overview in the beginning, we thoroughly
analyze the magnetoresistivity oscillations and the classical
magnetoresistivity and Hall effects. In Sec. IV, the reconstruc-
tion of the energy spectrum is made, the detailed comparison
between the experimental and calculated spectra is carried
out. Additional experimental arguments based on the specific
features of the Landau quantization in the systems under study,
which supports the reconstructed spectrum, are given there as
well. Finally, conclusions are presented in Sec. V.

II. EXPERIMENTAL

Our HgTe quantum wells were realized on the basis
of HgTe/Hg1−xCdxTe (x = 0.58) heterostructure grown by
molecular beam epitaxy on GaAs substrate with the (013)
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FIG. 1. (Color online) Architecture (a) and energy diagram (b) of the structure under investigation. (c) The energy spectrum calculated
within the framework of isotropic six-band kP model.

surface orientation.14 The nominal width of the quantum well
was d = 20.2 nm. The samples were mesa etched into standard
Hall bars of 0.5 mm or 0.1 mm width with the distance
between the potential probes of 0.5 mm. To change and control
the electron and hole densities (n and p, respectively) in the
quantum well, the field-effect transistors were fabricated with
parylene as an insulator and aluminium as a gate electrode. The
measurements were performed at temperature of 1.3–4.2 K
in magnetic field up to 8 T. All the data will be presented for
T = 1.35 K, unless otherwise specified. The architecture and
the energy diagram of the structure investigated are shown
in Figs. 1(a) and 1(b), respectively. The energy spectrum
calculated within the framework of the six-band kP model
with taking into account the lattice mismatch between the
Hg1−xCdxTe layers forming the quantum well and CdTe buffer
layer is presented in Fig. 1(c). The calculations have been
performed within the framework of isotropic approximation
using the direct integration technique as described in Ref. 15.
We used the parameters from Refs. 16 and 17. It is seen that
although the h1 and h2 subbands are separated by a gap of
about 5 meV at k = 0, there is an overlap between them
of about 1.5 meV due to the nonmonotonic dispersion E(k)
of the h2 subband.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Data overview

An overview of the magnetic field dependencies of the
transverse (ρxy) and longitudinal (ρxx) resistivities for different
gate voltages (Vg) is presented in Fig. 2. It is seen that the well
defined quantum Hall plateaus of ρxy and minimum of ρxx

are observed at electron (Vg > 2 V) and hole (Vg < −1 V)
conductivity regimes. Two important features of these depen-
dencies should be pointed out.

First, some extremum on the ρxy versus B and ρxx versus B

dependencies at B = 4–6 T [marked by arrows in Fig. 2(a) and
in the inset in Fig. 2(b)] is observed. Its position only slightly
depends on Vg within the gate voltage range from 0.8 to 3.0 V.

Second, the Hall resistivity ρxy changes its sign with
increasing field at −3 V< Vg < 1.8 V [this is better evident

in Fig. 3(a)]. Such behavior of ρxy accompanied by strong
positive magnetoresistivity [Fig. 3(b)] is analogous to that
observed in the case of two types of carriers that give the
electron and holelike contributions.

It is important for further consideration to know the gate
voltage dependence of the carrier densities. The first estimates
can be already obtained from simplified analysis of the Hall
effect data. Notwithstanding the fact that the B dependence
of the Hall coefficient RH = ρxy/B is rather complicated at
intermediate gate voltages, there are ranges of the magnetic
fields where RH is practically independent of B (see the
inset in Fig. 4). For Vg < 1 V, this range is B � 1.5–2.5 T,
where RH is positive. For Vg > 2 V, RH being negative is
nearly constant at B � 0.05 T. So, the densities of electrons
and holes could be estimated as 1/e|RH (B)| at B = 0.05 and
2 T, respectively. As seen from Fig. 4, n and p found in such
a manner demonstrate reasonable behavior with the changing

FIG. 2. (Color online) The magnetic field dependencies of ρxy (a)
and ρxx (b,c), measured for the different gate voltages. The minimum
resulting from the crossing between the Landau level with n = 0 of
the conduction subband h1 and Landau level with n = 2 of the valence
subband h2 is marked by an arrow (for more details, see Sec. IV).
The inset in (b) illustrates a weak sensitivity of the minimum position
to the gate voltage near the charge neutrality point, Vg � 1.8 V.
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FIG. 3. (Color online) The low-magnetic-field dependencies of
ρxy (a) and ρxx (b) for different gate voltages illustrating the
participation of two types of carriers in the transport.

gate voltage over the whole Vg range except for Vg = 0–2 V
for electrons and for Vg = 1.0–1.5 V for holes; the hole
density linearly decreases, while the electron density linearly
increases with the increasing Vg value. An important point
is that the data points fall on a common straight line with
the slope −5.5 × 1010 cm−2V−1, which is close to −1/eC,
where C = 9.1 nF/cm2 is the capacitance between the 2D
gas and gate electrode measured on the same structure.18

Thus −1/eRH (0.05 T) and 1/eRH (2 T) give approximate
electron and hole densities, respectively, beyond the range of
intermediate voltages, Vg � 0–2 V. The carrier densities not

FIG. 4. (Color online) The gate voltage dependence of
1/eRH (0.05 T) and 1/eRH (2 T) (circles), of electron and hole
densities obtained from analysis of magnetoresistivity oscillations
(squares) and from the fit of the RH and ρxx vs B data within the
classical magnetic field range as described in Sec. III C (triangles).
Open symbols relate to electrons and filled symbols to holes. For
convenience sake, the electron density is negative here. The line is the
charge density in the quantum well calculated as C(1.8 V − Vg)/e,
where C is the capacitance between the gate electrode and quantum
well measured experimentally, C = 9.1 nF/cm2. The inset shows the
B dependencies of the Hall coefficient for several gate voltages.

excepting this intermediate range are obtained more precisely
by using an analysis of the B dependencies of RH and ρxx as
will be described in Sec. III C. The data presented in Fig. 4
allows one to obtain the Vg value, corresponding to charge
neutrality point. It is the gate voltage, at which the straight line
crosses zero, Vg � 1.8 V.

It is clear that both the additional extremum evident in
ρxx(B), ρxy(B) at B = 4–6 T and the alternative sign Hall
effect may result from specific features of the energy spectrum
of 2D carries in the structures under study. There are several
papers4–6,10,16,19 devoted to the study of energy spectrum
of the HgTe quantum wells with approximately the same
width of the well, d � 20 nm. However, the energy spectrum,
especially of the valence band, is not understood up to now. In
what follows, we show that the data obtained from analysis
of resistivity oscillations, classical magnetoresistivity and
Hall effects demonstrating qualitatively agreement with the
spectrum presented in Fig. 1(c) differ from that in quantitative
details significantly. We now turn to a close examination of the
resistivity oscillations.

B. Resistivity oscillations

The positions of the oscillation minima in the (B,Vg) plane
are plotted in Fig. 5. It is clearly seen that the oscillations
resulting from quantization of both electron and hole energy
spectra are observed. The oscillations, which minima move
to the higher magnetic field with the increasing gate voltage,
correspond to electrons. They are evident at Vg � 1.5 V. The
oscillations of the hole type are observed at Vg � 1.5 V.
They shift to the higher magnetic field when the gate voltage
becomes more negative. Figure 5 resembles a fan-chart show-
ing the energies of Landau levels as a function of magnetic
field. However, it should be noted that the gate voltage, rather
than the energy is plotted in the vertical axis. Only in the

FIG. 5. (Color online) The fan-chart diagram showing the po-
sitions of the minima in ρxx vs B dependence. Symbols are
the experimental results. The dashed line is the B dependence
of the gate voltage corresponding to a crossing of the Landau level of
the h2 subband with n = 2 with the Fermi level. Solid lines show the
expected minima positions. The squares correspond to the minima
labeled in Fig. 2(a) by arrows. The inset is schematic dispersion of
Landau levels relating to the conduction and valence bands, h1 and
h2, respectively.
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case when the carrier effective mass does not depend on the
energy, the Fermi energy varies in direct proportion with Vg ,
EF ∝ CVg/eν, where ν is density of states. But even in this
case, the vertical scales in the hole and electron parts of the
fan-chart will be different due to the different hole and electron
effective masses. It is clearly seen that most of the points lying
above the dashed line fall on the straight lines,20 which are
extrapolated at B → 0 to Vg = (1.8 ± 0.1) V corresponding to
CNP. Just such behavior should be observed when the variation
of density of carriers with Vg is determined by the geometrical
capacitance only. The behavior of ρxx minima near and below
the dashed line will be discussed below.

The hole and electron densities found from the period of
the Shubnikov-de Haas (SdH) oscillations in the reciprocal
magnetic field for the different gate voltages are depicted in
Fig. 4 by squares. As clearly seen, they are close to that found
from the Hall effect. It would imply that the Fermi contour in
our samples is a single contour centered at k = 0 both for the
electrons and for the holes. For the electrons, this conclusion is
natural and commonly accepted. As for the holes, the situation
is more delicate and, therefore, we discuss it in more detail.

It is supposed in the number of papers that the valence band
is sufficiently warped due to cubic symmetry of the parent
materials HgTe and CdTe so that the Fermi contour near the
top of the h2 subband comprises four closed contours. Each
contour takes the approximate shape of a circle located at
k �= 0.6,10,21,22 In this case, however, the hole density found
from the Hall effect should be four times as large as the
density obtained from the SdH oscillations. Thus, closeness
of these values under our conditions means that the warping of
the valence band is negligibly small and, hence, the isotropic
approximation for the description of the energy spectrum is
more adequate for analysis of the data.

As evident from Fig. 1(c), the calculated dispersion of the
h2 subband is nonmonotonic and, therefore, the Fermi contour
near the top of the h2 valence subband takes the shape of
two circles centered at k = 0 within isotropic approximation;
the inner circle of radius k

(2)
F corresponds to the ascending

electronlike part of the dispersion E(k) of the h2 subband,
while the outer circle of radius k

(1)
F corresponds to the

descending holelike part. Experimentally, the relation between
k

(2)
F and k

(1)
F can be obtained from correlation of the Hall effect

data with the results obtained from SdH oscillations. The Hall
coefficient for such a dispersion is equal to 1/e(p − n) in the
classically high magnetic fields, where p = (k(1)

F )2/2π and
n = (k(2)

F )2/2π .23 The period of the hole-type oscillations is
determined by the area enclosed by the outer Fermi contour, but
not by the inner one. It follows from the fact that the oscillations
shift to the higher magnetic field when gate voltages becomes
more negative (see Fig. 5). Thus the closeness of the Hall and
SdH hole densities leads us to the conclusion that the radius
of the inner Fermi contour is significantly less than that of the
outer one, k

(2)
F � k

(1)
F . Some further arguments in support of

this conclusion will be presented in Sec. III C.
The measurements of the SdH oscillations performed for

different temperatures give additional information on the
energy spectrum. At hole density higher than 1011 cm−2

that corresponds to Vg < 0 V, one can find the range of
low magnetic field, where the spin-unsplit SdH oscillations

FIG. 6. (Color online) (a) The hole effective mass plotted against
the k2 value as obtained experimentally (symbols) and calculated
theoretically from six-band kP model with and without taking into
account the lattice mismatch between HgTe and CdTe (the sold and
dashed curves, respectively). (b) An example of the SdH oscillations
measured for Vg = 0.25 V (p = 1.05 × 1011 cm−2) at different
temperatures. (c) The dispersion for the hole subband h2 calculated
with and without taking into account the strain due to the lattice
mismatch (the solid and dashed curves, respectively).

are observed [for example, see Fig. 6(b)]. Therefore fitting
the temperature dependence of oscillation amplitude to the
Lifshitz-Kosevich formula,24 we have found the hole effective
mass. We succeeded in such analysis within the density range
p = (1–4) × 1011 cm−2. The results are plotted in Fig. 6(a).
One can see that the hole effective mass is equal to mh =
(0.2 ± 0.05)m0 at lowest density and only slightly increases
with kF � √

2πp.
Let us compare this result with the result of isotropic

six-band kP model. Because the valence band spectrum
noticeably depends on the strain, we present in Fig. 6 the
dependencies E(k) and mh(k) = h̄2k (∂E/∂k)−1 calculated
for two cases: with and without taking into account the HgTe
and CdTe lattice mismatch. It is seen that the theory predicts
nonmonotonic hole energy spectrum characterized by the
electronlike dispersion E(k) with the positive curvature near
k = 0 for both cases. It is significant that the hole effective
mass calculated theoretically is negative up to k2 � 2 × 1012

or �6 × 1012 cm−2 depending on the strain. Experimentally,
mh is positive when k2 � 0.25 × 1012 cm−2. Note that the
values of mh found in our experiments are close to those
found from cyclotron resonance.25 Thus, the experimental
value of the hole effective mass differs drastically from the
calculated one to the extent that they are different in sign.

The electron effective mass me measured by the same
way for density range n = (0.6–1.5) × 1011 cm−2 is equal
to (0.02 ± 0.005)m0 that also agrees with the result obtained
in the cyclotron resonance experiments.25 This value of me

is somewhat smaller than the calculated one, which is equal
to 0.028m0 and practically independent of the density up to
n = 3 × 1011 cm−2.

Thus the parameters of the electron spectrum obtained
experimentally from the analysis of the SdH oscillations are
in satisfactory agreement with the calculated ones. As for the
energy spectrum of holes, there is discrepancy between the
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data and calculation results. Experimentally, the dispersion
of the h2 subband is holelike starting at least from k �
0.5 × 106 cm−1, while the theory predicts the electronlike
dispersion up to sufficiently larger quasimomentum values,
k � 2.5 × 106 cm−1.

The results obtained from the analysis of magnetoresistivity
oscillations do not give an information on the energy spectrum
at small k values k � 0.5 × 106 cm−1, and on the overlap of
the conduction and valence bands. It can be obtained from the
consideration of the classical low-field magnetoresistivity and
Hall effect.

C. Classical transport

The detailed measurements at low magnetic field show
that the Hall resistivity ρxy is strongly nonlinear at B < 0.1–
0.5 T insofar that it changes the sign [see Fig. 3(a)]. The large
positive magnetoresistivity is observed within this magnetic
field range [see Fig. 3(b)]. Both these facts strongly suggest
that at least two types of carriers, electrons and holes, take part
in the transport.

The are several physical reasons that can manifest them-
selves as a second type of carriers in transport. They are the
following: existence of edge states2,8,26–28 or inversion “layers”
like those existing on the surface of the bulk Hg1−xCgxTe
samples,29 which can give the electron contribution to the
conductivity, while the 2D gas is of hole type; existence
of 2D electron and hole drops due to fluctuations of elec-
trostatic potential, quantum well width, composition of the
barriers, etc; existence of conductivity channels of techno-
logical nature located outside the quantum well, e.g., near
the Hg0.42Cd0.58Te/CdTe interfaces; finally, the overlapping
between the conduction and valence bands predicted by the
standard kP model. In Ref. 30, we consider this issue in great
detail. We show that the first three mechanisms are ineffective
in our case and several types of carriers are due to the overlap
between the subbands.

It is natural in this case to use the classical handbook
formulas for the conductivity by two types of carriers (see, e.g.,
Ref. 31) to fit the magnetic field dependencies of ρxx and RH .
Such fitting procedure has been performed at a low magnetic
field, B < 0.3 T, with the use of densities and mobilities of
electrons and holes as fitting parameters. As an example we
show the results of the best fit for Vg = 1.1 and −2 V in
Fig. 7. It is seen that this simple model quite well describes
both dependencies, ρxx(B) and RH (B). Some inconsistency
between experimental and fitting curves evident in the high
magnetic field domain may result from the change of the
carrier densities or/and mobilities with a growing magnetic
field, which is ignored under our analysis.

First, we consider the gate voltage dependencies of the
hole and electron densities found by this manner. They are
shown in Fig. 4 by triangles. One can see that the hole
density agrees well with that obtained from the analysis of
the resistivity oscillations and practically coincides with the
1/eRH (2 T) value. As for the electron density, it is much
less than the hole one. In the larger scale, the n versus Vg

dependence is plotted in Fig. 8(a). As seen in this figure, it
is rather complicated. Three Vg intervals corresponding to the
different positions of the Fermi level can be distinguished: (1)

FIG. 7. (Color online) The magnetic field dependencies of ρxx

(a) and RH (b) in the regime when both the holes and the electrons take
part in the transport. The solid curves are measured experimentally,
the dashed lines are the results of the best fit to the classical formula.

at Vg > 1.8 V, the electron density decreases with decreasing
Vg with the rate K (1) = �n/�Vg of about 5.5 × 1010 cm−2

V−1. The Fermi level over this Vg range lies in the conduction
h1 subband, and the Hall effect and the conductivity are
solely determined by the electrons of this subband. (2) At
Vg = 1.0–1.7 V, �n/�Vg = K (2) is about ten times less
than that at Vg > 1.8 V, K (2) � 6.0 × 109 cm−2 V−1 [see
inset in Fig. 8(a)]. Quite apparently this feature results from
the fact that the Fermi level is lowered into the valence
band, and electrons and holes coexist within this region.
In this case, the rate of decrease of the Fermi energy is
mainly determined by the hole density of states, which is
larger than the electron one. If so, the relation between the
slopes within the intervals (1) and (2) should be determined
by the relation between the hole and electron densities of

FIG. 8. (Color online) The gate voltage dependencies of (a)
electron density, (b) electron mobility, and (c) partial electron and
hole conductivities. The parameters of carriers shown by triangles are
obtained within the framework of standard two type carrier model as
described in the text, the parameters shown by circles are obtained as
follows: n = 1/e|RH (0.05 T)|, μe = |RH (0.05 T)|σ . The solid line
in (c) is the σ vs Vg dependence measured experimentally.
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states: K (1)/K (2) = dEF /dVg|Vg>1.8 V/dEF /dVg|Vg<1.8 V =
1 + νh/νe � 1 + mh/me, where approximate equality is writ-
ten under assumption that the hole density of states is not
markedly affected by the electronlike states. If one uses the
experimental values of hole and electron effective masses
mh � 0.2m0 and me � 0.02m0 (see Sec. III B), we obtain
K (1)/K (2) � 11 that practically coincides with the experimen-
tal value. Thus it is safe to assume that the electron contribution
to the transport comes mainly from the conduction band
electrons in this region. If one extrapolates the n versus Vg

plot to n = 0 as shown in Fig. 8(a) by the solid line, one can
obtain the gate voltage where the electrons of the conduction
band are expected to disappear. As seen it should occur at
Vg ≈ 0 V. (3) Within the Vg range from 0 V down to −6 V,
the electron contribution to the conductivity remains essential.
The data points in this range fall on the straight line with the
slope K (3) � 1.5 × 109 cm−2 V−1. Because the conduction
band electrons have to disappear at Vg ≈ 0 V, it remains to
assume that the electron contribution at these gate voltages
comes from the holes with electronlike energy spectrum in the
vicinity of k = 0.

We switch now attention to the gate voltage dependence
of the electron mobility [see Fig. 8(b)]. As clearly seen in
Fig. 8(b), it is nonmonotonic; a sharp minimum is evident
near Vg � 1.8 V. At Vg > 1.8 V, when the conductivity is
determined by the conduction band electrons, while the holes
in the valence band are absent, the mobility decreases with the
decreasing gate voltage. This is natural because the decrease of
the electron density and, hence, of the electron energy leads to
the increase of scattering probability independently of whether
a short- or a long-range scattering potential determines the
mobility. The increase of electron mobility with decreasing Vg

at Vg < 1.8 V, where the electron density carries on decreasing,
seems strange at first sight. However, it can be explained
by holes appearing at these gate voltages, which screen the
potential of scatterers effectively due to the large effective
mass. The authors of Ref. 32 who observed analogous behavior
of the electron mobility come to the same conclusion.

Let us summarize the results of this section. First, the
electron and hole subbands, h1 and h2, respectively, are
overlapped. Second, the dispersion E(k) of the h2 subband is
really nonmonotonic, being holelike at large quasimomentum
values it demonstrates electronlike behavior near k = 0.
Schematically, such a spectrum is displayed in Fig. 9. The
transport properties are strongly dependent on the position of
the Fermi level. At high gate voltage, Vg � 1.8 V, the Fermi
level lies within the h1 conduction subband (region A in Fig. 9).
The transport is fully determined by electrons occupying
this subband. As the gate voltage decreases, the Fermi level
moving down crosses the top of the valence h2 subband at
Vg � 1.8 V and enters the area B where the conduction and
valence band are overlapped. The transport in this regime
should be determined by three types of carriers. They are
electrons of the h1 subband, and two types of positively
charged carriers of h2 subband characterized by the hole- and
electronlike dispersion. The carriers of the first and third types
give the negative contribution to the Hall effect, while the
contribution of the second type carriers is positive. We believe
that the contribution of the holes with electronlike dispersion

FIG. 9. (Color online) The dispersion E(k) reconstructed from
the data analysis as described in the text (solid lines) and calculated
within the framework of isotropic six-band kP model (dashed lines).
The dotted parts of dispersion curves show an assumed run of the
dispersion curves not supported experimentally.

to the magnetotransport is small at Vg = (1.8 − 1.0) V
in our concrete case and becomes significant at Vg � 1 V.
Finally at Vg < 0 V, when the Fermi level is below the h1
subband bottom (region C in Fig. 9), only the carriers of the
h2 subband take part in the transport.

IV. THE SPECTRUM: COMPARISON BETWEEN THEORY
AND EXPERIMENT

Let us reconstruct the energy spectrum of the electron and
hole subbands using the experimental results presented in
Secs. III B and III C (see Fig. 9). As shown in the previous
section, the conduction and valence bands are overlapped. The
value of overlapping (�Eovrl) can be estimated from the value
of the electron density at the gate voltage corresponding to
the appearance of the hole contribution to the conductivity.
Inspection of Fig. 8(c) shows that this happens at Vg � 1.8 V.
As seen from Fig. 8(c), the electron density n at this gate
voltage is about 1 × 1010 cm−2, which gives �Eovrl � n/νe ∼
1 meV if one uses the experimental value of electron effective
mass me = 0.02m0 to calculate the electron density of states
νe. This overlap value is five time as small as that obtained
experimentally in Refs. 21 and 22. It should be noted that
the observable overlap consists of two contributions. The first
contribution is the band overlap due to specifics of the energy
spectrum of the ideal heterostructure without disorder. The
second one is the overlap caused by disorder. It can be disorder
of different origin, e.g., caused by fluctuations of the electro-
static potential, the quantum well width, or cadmium content in
the barriers. We believe that the smallest experimental value
�Eovrl � 1 meV corresponds to the subband overlap in the
ideal heterostructure more adequately.

Experimentally, the dispersion E(k) of the valence h2
subband is monotonic and holelike at p � 5 × 1010 cm−2,
which corresponds to k = (2πp)1/2 � 0.5 × 106 cm−1 (see
Sec. III B). The effective mass obtained from the analysis of
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SdH oscillations is independent of k and close to 0.2m0. For
lower k values, k � 0.5 × 105 cm−1, the energy spectrum is
electronlike, i.e., there is a narrow minimum in the dispersion
E(k) (see Sec. III C). The energy of this minimum with
reference to the top of valence band (�) can be easily estimated
from the hole density at the gate voltage Vg � −6 V, which
corresponds to disappearance of the electron contribution [see
Fig. 8(a)]: � = p(−6 V)/νh. With the use of the experimental
value of the hole effective mass, mh = 0.2m0, and p(−6 V) �
(4–5) × 1011 cm−2 (see Fig. 4), one obtains � � 5 meV. The
effective mass of electronlike states of the valence band is
about me-l � −0.005m0. This estimate is obtained from the �

and �Eovrl values and from the amount of electronlike states
at the gate voltage Vg � 0 V, at which the Fermi level escapes
the conduction band, n(0 V) � 8 × 109 cm−2 [see the inset in
Fig. 8(a)]: |me-l| � πh̄2n(0 V)/(� − �Eovrl).

The energy spectrum reconstructed with the use of the
parameters me, mh, me-l , �, and �Eovrl estimated above is
shown by the solid lines in Fig. 9. The parts of dispersion E(k)
not supported experimentally are drawn by the dotted lines.
In the same figure, the spectrum calculated in the framework
of the kP model is depicted. One can see that the E versus k

dependence of the conduction band is close to the theoretical
one. The difference between the dispersion curves E(k) for the
valence band is crucial.

Additional arguments in favor of the energy spectrum
shown in Fig. 9 are obtained from analysis of the data in high
magnetic field. As noted in Sec. III A, an additional extremum
marked by the arrows in Figs. 2(a) and 2(b) is observed on
the experimental dependencies ρxy(B) and ρxx(B) at the gate
voltages near CNP. Its position in the (B,Vg) coordinates is
shown in Fig. 5 by squares. The origin of the extremum relates
directly to specific features of the magnetic field quantization
of the energy spectrum in the HgTe quantum well with inverted
spectrum.33 There are two singular Landau levels responsible
for that [see Fig. 1 in Ref. 33 and sketch in the inset in Fig. 5].
They are the lowest level of the conduction band with n = 0
and the level of valence h2 subband with the number n = 2.
Unusual behavior of these two levels leads to a crossing of
the conduction- and valence-band states at some value of the
magnetic field, B = Bc. Thus, for the case when n is slightly
larger than p, the Fermi level lies in the Landau level n = 0 of
the h1 subband at B � Bc, while at the higher magnetic field,
B � Bc, the Fermi level occurs in the Landau level n = 2 of the
h2 subband resulting, thus, in switching of the electron ground
state and in the peculiar behavior of ρxx and ρxy with the
growing magnetic field. Analogous switching happens when p

is slightly larger than n. Such an effect in HgTe quantum wells
of different widths has been earlier investigated in Refs. 8,33,
and 34. If one extrapolates the calculation results8,33 to d = 20
nm, we obtain Bc � 4–5 T, which is close to the position of the
peculiarities evident in the ρxx and ρxy versus B dependencies
in our experiments.

Unusual behavior of the Landau level n = 2 reveals itself in
unusual behavior of the oscillation maxima with the increasing
hole density. As seen from Fig. 5, the data points lying above
the dashed line in the hole part of the fan chart fall on the
straight lines drawn in accordance with the usual condition
p = eB/h × N , where h is the Plank constant, N = 1,2, . . . ,

and p = −5.5 × 1010(Vg − 1.8 V) cm−2 (see Fig. 4). The

points lying below the dashed line deviate or tend to deviate
from these lines. This is more pronounced for the minimum
whose position follows the line with N = 1 at B � 4 T, and it
jumps to the line with N = 2 at B � 4.5 T. Only the singular
Landau level n = 2 is responsible for such an anomaly because
it moves in the opposite direction as compared with the other
hole Landau levels in the high magnetic field (see inset in
Fig. 5). If one traces the concrete ρxx minimum, corresponding
to the location of the Fermi level between the given normal
Landau levels, we obviously obtain that its position being
determined by the filling factor N in the low magnetic field
will be determined by the filling factor N + 1 in the higher
magnetic field when the singular Landau level becomes above
the Fermi level. Therefore the oscillation minima should in fact
follow the solid curves as shown schematically in the lower
part of the fan chart in Fig. 5. Thus this model describes
the behavior of the oscillation minima rather well. Some
discrepancy is not surprising because this simple consideration
is valid when the overlapping between the Landau levels is
small, while the experimental data were obtained within a wide
magnetic field range involving both the SdH and quantum Hall
regimes.

Because the energy of the Landau level n = 2 tends to the
energy of the h2 subband at k = 0 when B tends to zero, we
are able to estimate the position of the valence h2 subband at
k = 0 independently. As follows from the above analysis, the
dashed line in Fig. 5 is the Vg dependence of the magnetic field,
in which the Landau level n = 2 crosses the Fermi level. With
B tending to zero, this line is extrapolated to Vg � −(5–6) V. It
means that the Fermi level passes through the minimum of the
h2 subband when Vg � −(5–6) V. Then, the energy of the h2
subband at k = 0 measured from the top of the h2 subband is
approximately equal to the Fermi energy found from the hole
density at this gate voltage: � = p/νh � 4.5–5.5 meV. This
value is consistent with that estimated above from the hole
density at the gate voltage corresponding to the disappearance
of the electron contribution to the conductivity.

V. CONCLUSION

We have studied the transport phenomena in a HgTe
single quantum well with the inverted energy spectrum.
Consistent analysis of the magnetic field dependencies of the
magnetoresistivity, the Hall coefficient, and the SdH effect in
gated samples carried out over a wide range of the electron
and hole densities including the vicinity of charge neutrality
point allows us to reconstruct the structures of the electron and
hole subbands of spatial quantization, h1 and h2, respectively.
It has been shown that the reconstructed energy spectrum is
in qualitative agreement with the spectrum calculated in the
framework of standard kP approach. The h1 and h2 subbands
are overlapped resulting in a two-dimensional semimetal. The
calculated and experimental effective masses of the electron
h1 subband are close to each other.

The key result of the paper, however, is that the quantitative
difference between the experimental and calculated dispersion
of the hole h2 subband is drastic. We have experimentally
shown that the curvature of the h2 subband is holelike starting
from k � 0.5 × 106 cm−1. This result is in conflict with
the theory, which predicts the electronlike dispersion with
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the negative effective mass up to significantly larger quasi-
momentum value, k � 2.5 × 106 cm−1. The hole effective
mass measured experimentally at k � (0.8–1.6) × 106 cm−1

is equal to approximately 0.2m0, which is far less than that
calculated theoretically for any quasimomentum value. The
experimentally obtained effective mass near k = 0, where
the spectrum is electronlike, is close to −0.005m0, whereas
the theory predicts the absolute value larger than 0.1m0.

Noteworthy is that we have ignored the interaction between
electrons and holes when interpreting the data and recon-
structing the energy spectrum. The applicability of the single-
particle approximation for the description of the low density

electron gas (n ∼ 109 cm−2) existing on the background of
a hole gas of much higher density (p ∼ 1011 cm−2) is not
so apparent. All this indicates that further experimental and
theoretical investigations are needed to find the answer to
the question of whether the standard kP model adequately
describes the energy spectrum of wide HgTe-based single
quantum wells.
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