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Quantifying exciton hopping in disordered media with quenching sites:
Application to arrays of quantum dots
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We present an analytical method for quantifying exciton hopping in an energetically disordered system with
quenching sites. The method is subsequently used to provide a quantitative understanding of exciton hopping
in a quantum dot (QD) array. Several statistical quantities that characterize the dynamics (survival probability,
average number of distinct sites visited, average hopping distance, and average hopping rate in the initial stage)
are obtained experimentally by measuring time-resolved fluorescence intensities at various temperatures. The
time evolution of these quantities suggests in a quantitative way that at low temperature an exciton tends to be
trapped at a local low-energy site, while at room temperature, exciton hopping occurs repeatedly, leading to a
large hopping distance. This method will serve to facilitate highly efficient optoelectronic devices using QDs such
as photovoltaic cells and light-emitting diodes, since exciton hopping is considered to strongly influence their
operational parameters. The presence of a dark QD (quenching site) that exhibits fast decay is also quantified.
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I. INTRODUCTION

The optical properties of semiconductor quantum dot
(QD) aggregates can be harnessed for optoelectronic devices
such as photovoltaic cells,1–3 light-emitting diodes,4–7 and
photodetectors.8–10 The excitation energy transfer in these
types of materials usually occurs between adjacent QDs
owing to electronic coupling, and this process is considered
to strongly influence their operational parameters. Several
experimental studies have shown that in spatially separated
QDs energy is transferred from small to large QDs, cor-
responding to a high-to-low excitonic energy state that is
reflected clearly in the fluorescence intensity in both the
temporal and spectral domains.11–18 In a mixture of two
different-sized QD ensembles, for example, the ratio of the
fluorescence intensity of the donor to that of the acceptor
decreases over time owing to the energy transfer.

In a monodispersed QD ensemble, a dynamic fluorescence
redshift appears because spectral broadening arises from
the size distribution of the individual QDs in the ensemble
(inhomogeneous broadening), and energy transfer occurs
repeatedly to a site of low energy (exciton hopping).11,13,17,18

We recently studied the dynamics of exciton hopping in an
array of inhomogeneously broadened CdSe/ZnS QDs by mea-
suring the time-resolved and spectrally resolved fluorescence
intensities.19,20 We found that excitons tend to be trapped
in a local low-energy site at low temperature, while the
hopping probability increases as the temperature increases.19

Furthermore, the exciton dynamics was found to depend on
the initial exciton energy.20 The findings also suggested that
there are dark QDs associated with the defect and/or off state
of blinking QDs in the ensemble, and the energy transfer to
such a site is followed mainly by quenching, which leads to a
decrease in the fluorescence intensity. These results may give
some general insight into realizing nanocrystal optoelectronic
devices; however, they provided only a qualitative understand-
ing and further quantitative evaluation is required.

Similar processes have been reported in inhomogeneously
broadened conjugated polymers.21–25 Exciton hopping and

the resulting quenching and/or dissociation in conjugated
polymers is of major concern for realizing highly efficient
organic electronic components such as photovoltaic cells and
light-emitting diodes. In a photovoltaic cell, the photoexcited
exciton is transported to an interface at which charge separation
takes place; a long transport length is usually desired to
improve the dissociation efficiency. For organic light-emitting
diodes, however, exciton quenching by impurities or other
quenching centers reduces the photoconversion efficiency.21

In a light-harvesting system, this process is utilized as a photo-
protection mechanism in which molecules such as carotenoids
dissipate excess energy as heat to avoid the generation of toxic
photo-oxidative intermediates.26–28

In systems with energetic disorder, exciton hopping accom-
panies energy relaxation (exciton transfer occurs preferentially
from a high- to low-energy state), and thus the hopping
probability decreases as it reaches a low-energy site. It is
therefore not possible to describe exciton hopping using a
constant diffusion coefficient, which makes the analysis more
complicated. In the case of charged carriers, emphasis has
been given to the relationship between the diffusion coefficient
and the mobility in a disordered system in the presence
of an external field,29–33 and it has been claimed that the
conventional Einstein relation is violated in the nonequilibrium
state. To date, there have been several numerical and analytical
studies dealing with hopping dynamics in disordered media
with quenching sites that used the Monte Carlo method or
solved a master equation,34–38 but little use has been made of
experimental observables.

Here, we develop an analytical method to experimentally
evaluate the dynamics of exciton hopping in a system with
energy disorder and quenching sites. The method provides
a direct quantitative understanding of exciton hopping in a
QD array. Several statistical quantities such as the survival
probability, the average number of distinct sites visited,
the average hopping distance, and the average hopping rate
are obtained by measuring the time-resolved fluorescence
intensity at various temperatures, which enables us to discuss
temperature-dependent exciton hopping in a quantitative way.
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II. THEORETICAL CONSIDERATIONS

We first consider a random walk on an array with energy
disorder in the presence of quenching sites as a model of
exciton hopping in a QD array [see schematic in Fig. 1(a)].
The energy disorder is considered to originate from the size
distribution in the QD ensemble, and we assume that the
quenching sites are a result of defects or excess charges
randomly distributed on the surface of the QD array with a
probability of γ . When an exciton reaches a quenching site,
it stops and is then annihilated. The quenching site plays the
same role as the deep trap in a semiconductor acting as a
recombination center for charge carriers.34,39–47

The time dependence of the survival probability ρ(t), which
is the average probability of an exciton not reaching the
quenching site by time t , is an important statistical quantity
for characterizing this random walk. The random walk is also
characterized by the number of distinct sites S(t) visited after
time t , which is related to ρ(t) by

ρ(t) = 〈(1 − γ )S(t)〉, (1)

where 〈· · · 〉 denotes the average over the subspace of excitons
that have survived at t for all possible quenching site and
disorder configurations.

When there is no energy disorder and the exciton hopping
rate is constant for all pairs of neighboring sites, Eq. (1) is
well approximated over a short time range and for small γ

by expanding and truncating the equation up to the first-order
cumulant;39,42

ρ(t) = (1 − γ )〈S(t)〉 . (2)

In dimensions higher than two, 〈S(t)〉 is proportional to t ,
and thus ρ(t) exhibits an exponential dependence on t . In
two dimensions (2D), a logarithmic correction appears in the
denominator, 〈S(t)〉 ∝ t/ln(t), while in one dimension (1D),
〈S(t)〉 ∝ √

t .
In the presence of energetic disorder, however, the exciton

is trapped at a local low-energy site, and thus the probability
distribution of S(t) is likely to be broad with respect to t .
Equation (2) is therefore valid only for small values of t or,
equivalently, a small S(t). Several analytical approaches have
been developed to deal with such cases,34–38 and quenching of
excitons in conjugated polymers have been explained in this
context.22,23

In the present study, to provide a quantitative understanding
of the exciton hopping dynamics in a disordered system, we
instead consider the quantity 〈S(t)〉∗; i.e., S(t) averaged over
all excitons (quenched and unquenched). Here we assume that
S(t) is constant after an exciton reaches a quenching site; if
an exciton has visited n − 1 sites before reaching a quenching
site at t ′, then S(t) = n for t > t ′. In this case, ρ(t) is related to
〈S(t)〉∗ through dρ(t)/dt = −γ d〈S(t)〉∗/dt , and consequently
we obtain

〈S(t)〉∗ = [1 − ρ(t)]/γ. (3)

This relation holds for any value of t provided that the
quenching sites are randomly distributed. In the experiment,
since ρ(t) can be extracted from time-resolved fluorescence
intensities, as detailed in the following section, 〈S(t)〉∗ is
obtained experimentally by using Eq. (3).

Monte Carlo simulations of the random walk on an array
with energetic disorder and quenching sites were conducted
to examine the time evolution of both ρ(t) and 〈S(t)〉∗.
The exciton hopping mechanism is attributed to interdot
dipole-dipole coupling, known as the Förster mechanism.15

For a energetically disordered medium, the hopping rate of an
exciton at site i with an energy εi jumping to a neighboring
site j is frequently calculated using22,34,48,49

wij = χP (εi,εj ), (4)

where

χ = (1/τR)(RF /d)6,

P (εi,εj ) =
{

1, εi > εj

exp[−(εj − εi)/kT ], εi < εj ,
(5)

where εj is the energy level of site j , τR is the radiative
lifetime, RF is the Förster radius, k is the Boltzmann constant,
and T is the temperature. We assume that the distance
between each neighboring site d is constant, and only nearest-
neighbor coupling is taken into account. Furthermore, for
simplicity, we do not consider the orientational factor between
dipoles and assume the same RF for adjacent QD pairs. The
inhomogeneous broadening of the energy level εn is given by
a Gaussian with a width of σ = 33 meV, which corresponds
to the experimental result.19 The energy levels of all sites
including the initial site are randomly assigned according to
a Gaussian probability. This situation corresponds to the case
in which all the QDs are equally excited irrespective of their
size. The initial site is assumed not to be a quenching site
since we consider the hopping dynamics of an exciton that is
photoexcited in a bright (nonquenching) site. For convenience,
we set χ = 1/N in the numerical calculation, with N being
the number of neighboring sites, so that for each Monte Carlo
step, the exciton either jumps from site i to a neighboring site
j with a probability of wij , or the exciton stays at site i with a
residual probability of 1 − ∑N

j wij . The Monte Carlo step is
repeated until an exciton reaches a quenching site.

Figure 1 shows ρ(t) as a function of the number of
Monte Carlo steps at different temperatures in a 2D array
with hexagonal order. To examine how ρ(t) depends on the
number of dark QDs, γ is set to 0.1 and 0.7 in Figs. 1(a)
and 1(b), respectively. We can see clearly that ρ(t) decreases
with increasing temperature. At T = 0 (K), after several steps,
the exciton is trapped at the local low-energy site, so that
ρ(t) remains constant over time. In contrast, for a nonzero
temperature, an exciton will eventually reach a dark site,
and ρ(t) then approaches zero in the long-time limit. In
the high-temperature limit (HTL), the hopping probability is
constant for all pairs of neighboring sites, which is equivalent
to the case in which there is no energy disorder. Figure 1(c)
shows that, after several steps, ρ(t) decreases significantly for
a large γ , since an exciton easily reaches a dark site.

Figure 2 shows that there is good agreement between 〈S(t)〉∗
and the right-hand side of Eq. (3). Although the energy level of
the initial site is randomly assigned, Eq. (3) holds irrespective
of the initial energy level. The probability distribution of S(t)
approaches an exponential with an average of 1/γ in the long-
time limit except for the case in which T = 0 (K). Note that,
for a large γ , S(t) nearly saturates at around 1/γ after several
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FIG. 1. (Color online) (a) Exciton hopping model on an hexagonal array with energy disorder in the presence of quenching sites. Filled
circles denote the quenching sites randomly distributed in the array with a probability of γ . (b), (c) Survival probability ρ(t) at various
temperatures for a 2D array with hexagonal order. The proportion of quenching sites γ was set to 0.1 and 0.7 in (b) and (c), respectively. The
survival probability is shown for temperatures of 0, 100, 200, and 300 K, as well as the high-temperature limit (HTL), i.e., infinite temperature.

steps. This indicates that, for a large γ , there is little hopping
after several steps as an exciton reaches a dark site.

The time dependence of the hopping distance L(t) of
an exciton relative to the initial position also gives some
insight into the dynamics. To obtain the average hopping
distance 〈L(t)〉∗ from experimental observables, we consider
the relationship between L and S. Suppose that an exciton has
just visited the sth distinct site. At this moment, the hopping
distance 〈L〉s averaged over all possible paths while holding s

constant is calculated in the 1D system as (see Appendix A)

〈L〉s = d[(2/3)s + 1/3], (6)

where we have assumed that every path with the same number
of hops has the same probability of occurring. This assumption
is valid even for a disordered system when averaging over
disordered configurations. The relationship between 〈L(t)〉∗
and 〈S(t)〉∗ is then obtained by replacing s in Eq. (6) with S(t)
and taking the average. However, since there is a probability
that the exciton returns to a previously visited site, 〈L(t)〉∗ is
usually smaller than 〈〈L〉s(t)〉∗. Consequently, we obtain the
relation

〈L(t)〉∗ � d[(2/3)〈S(t)〉∗ + 1/3]. (7)

(b)

HTL

(a)

(K)

(K)

HTL

FIG. 2. (Color online) Average number of distinct sites visited,
〈S(t)〉∗, for various temperatures in the case of a 2D array with
hexagonal order. The proportion of quenching sites γ was set to
0.1 and 0.7 in (a) and (b), respectively. Results shown in panel (b)
are for temperatures of 0, 100, 200, and 300 K, as well as the HTL.
The solid lines in panels (a) and (b) are obtained by substituting the
values of ρ(t) in Figs. 1(b) and 1(c) into to the right-hand side of
Eq. (3), respectively, while the open circles are the simulated values
of 〈S(t)〉∗.

For dimensions higher than or equal to two, numerical
simulations showed that 〈L〉s is well approximated by

〈L〉s ∼ dsα, (8)

as shown in Fig. 3(a). The exponent α is equal to 0.57 and 0.56
for 2D square and hexagonal lattices, respectively, and for the
three-dimensional (3D) primitive cubic lattice, α = 0.55. By
using the approximation 〈sα〉∗ ∼ 〈s〉∗α , we obtain

〈L(t)〉∗ � d〈S(t)〉∗α. (9)

Figures 3(b) and 3(c) present the results of the Monte
Carlo simulation, which show the relationship between the
average hopping distance normalized by the interdot distance,
i.e., 〈L(t)〉∗/d, and 〈S(t)〉∗α for various temperatures in the
case of a 2D array with hexagonal order. Although 〈S(t)〉∗α

overestimates 〈L(t)〉∗/d by about 10%, it gives a fairly good
approximation of 〈L(t)〉∗/d. For a large γ , 〈L(t)〉∗/d nearly
saturates after several steps because an exciton is quenched at
a dark site in the vicinity of the initial site.

In the experiment, since 〈S(t)〉∗ is given by Eq. (3),
approximate values of 〈L(t)〉∗ are obtained from Eqs. (7) or
(9) depending on the dimensions and lattice configuration.
However, α in Eq. (9) does not appear to be sensitive to the
lattice configuration in dimensions higher than or equal to two.

It is important to determine γ so that 〈S(t)〉∗ can be calcu-
lated from ρ(t) via Eq. (3). When there is a large proportion of
quenching sites in the ensemble, γ can be estimated directly
by measuring fast relaxation in time-resolved spectroscopy, as
described in the following section. However, to quantify small
γ , we consider the asymptotic (long-time limit) value of 〈S(t)〉
at low temperatures (kT 	 σ ) for which exciton hopping is
mainly from a high- to low-energy site before trapping occurs.
In this case, 〈S(t)〉 converges asymptotically to a finite value
Sinf in the long-time limit. For a 1D system at zero temperature,
the analytical solution is

Sinf =
∞∑

n=1

[erf(ε) + 1]n[2n + 1 − erf(ε)][3 − erf(ε)]n

2n+2(n + 1)!
,

(10)

where ε = ε0/σ , and ε0 is the energy level of the initial site.
The derivation of Eq. (10) is described in Appendix B. When
the initial energy level is sufficiently large, i.e., ε � 1, Sinf

approaches e − 1, but for ε 	 1, an exciton is trapped at the
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FIG. 3. (Color online) (a) Normalized hopping distance 〈L〉s/d averaged over all possible paths for a constant s for several dimensions and
lattice configurations; 1D: brown squares, 2D square (hexagonal) lattice: orange circles (green triangles), and 3D cubic lattice: blue inverted
triangles. The solid line denotes the theoretical curve for the 1D system (2/3)s + 1/3, and 〈L〉s/d for the 2D and 3D lattices is well fit by sα;
e.g., for the 2D array with hexagonal order, α = 0.56 (dashed line). (b), (c) Time courses of 〈L(t)〉∗/d (solid lines) and 〈S(t)〉∗α (dashed lines)
for various temperatures for a 2D array with hexagonal order, with γ set to 0.1 and 0.7 in panels (b) and (c), respectively.

initial site so that Sinf is zero. For dimensions higher than or
equal to two, we obtained Sinf from numerical calculations.
Figure 4 shows Sinf as a function of ε for several dimensions
and lattice configurations. In the 2D system, Sinf approaches
2.41 and 2.75 for large ε in the square and hexagonal lattices,
respectively, while Sinf approaches 2.82 in the 3D primitive
cubic lattice system. By assuming that Eq. (2) holds for small
values of 〈S(t)〉 and γ , we note that

γ ∼ 1 − ρ
1/Sinf
inf , (11)

where ρinf is the asymptotic value of ρ(t) in the limit
t → ∞. Therefore, γ can be determined by substituting the
experimentally measured ρinf value and the analytically or
numerical calculated Sinf value into Eq. (11).

In some experiments, all the QDs are equally excited
irrespective of the energy level,19 and in this case, Sinf should be
averaged over ε0 to give S̃inf . The numerical calculations give
S̃inf as 1.48 and 1.81 for the 2D square and hexagonal lattices,
respectively, and 1.91 for the 3D primitive cubic lattice.

0

.
square

FIG. 4. (Color online) Asymptotic values of the average number
of distinct sites visited, Sinf , in the long-time limit at zero temperature
as a function of the energy level of the initial site ε0. Sinf is
obtained from numerical calculations for several dimensions and
lattice configurations; 1D: brown squares, 2D square (hexagonal)
lattice: orange circles (green triangles), and 3D cubic lattice: blue
inverted triangles. The solid line is the theoretical curve for the 1D
system given by Eq. (10). The dashed line denotes the inhomogeneous
distribution of the energy levels, and the horizontal axis is normalized
by the width σ .

The procedure for quantifying exciton hopping from exper-
imental observables is summarized as follows:

(1) The survival probability ρ(t) can be extracted from time-
resolved fluorescence intensities, as detailed in the following
section.

(2) When there is a large proportion of quenching sites in
the ensemble, γ can be estimated directly by measuring fast
relaxation in time-resolved spectroscopy. In the case of small
γ , an estimation is obtained via Eq. (11) using ρinf and Sinf ,
where ρinf is obtained experimentally from the asymptotic
values of ρ(t) at low temperature. In contrast, Sinf is given
analytically by Eq. (10) for a 1D system and obtained from
numerical calculations for dimensions higher than or equal to
two. Since Sinf depends on the energy level of the initial site
as shown in Fig. 4, it is convenient to measure ρ(t) for various
initial energy levels to determine ρinf . In the experiment, the
initial energy level can be tuned by changing the excitation
photon energy at the absorption edge.19

(3) The average number of distinct sites visited, 〈S(t)〉∗,
is then calculated by substituting ρ(t) and γ into Eq. (3). The
approximate value of the hopping distance is given via Eqs. (7)
or (9) using 〈S(t)〉∗.

What is new in the present analysis is that we consider
〈S(t)〉∗ instead of 〈S(t)〉 to deal with the disordered system and
subsequently obtain a relation between 〈S(t)〉∗ and the average
hopping distance. We also present a method to quantify small
γ using ρinf and Sinf . This method is valid when the quenching
sites are randomly distributed and an exciton is inevitably
annihilated after it reaches the quenching site. However, this
method is independent of the detailed characteristics of the
hopping mechanism, even though we have employed the model
described by Eqs. (4) and (5) in the Monte Carlo simulation.

In the present study, we considered the hopping dynamics
of an exciton that is photoexcited in a bright site and
therefore the initial site is assumed not to be a quenching
site as described above. However, the present method is valid
even when all excitons (photoexcited in both the bright and
quenching site) are considered. In this case, ρ(t) and 〈S(t)〉∗
should be replaced with (1 − γ )ρ(t) and (1 − γ )〈S(t)〉∗,
respectively.

In the following sections, we apply this analytical method
to exciton hopping in QD arrays.
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III. METHODS AND MATERIALS

An optical parametric amplifier pumped by a 1 kHz
regenerative Ti:sapphire laser was employed as the light
source. The tunable range of the excitation photon energy was
1.9 to 3.5 eV. A grating pair and slit were employed to reduce
the bandwidth of the pulse to a full width at half maximum
(FWHM) of less than 2 nm. The power density of the excitation
pulse was sufficiently weak (20 nJ/cm2) to avoid multi-exciton
generation in a single QD.

A streak camera (Hamamatsu C4780) and monochromator
(Chromex 250is) were employed to obtain the time- and
spectrally resolved fluorescence intensities with a wavelength
resolution of 0.9 nm. The measuring time ranges were 50 ns,
and typical time resolutions were 0.6 ns. The absorption
spectra of the QD samples were measured using a spec-
trophotometer equipped with an integrating sphere (JASCO
V-670). The sample temperature was controlled either by a
transparent glass dewar or a liquid-nitrogen cryostat system
(Janis Research VNF-100) over a temperature range of 80–
294 K (room temperature).

The CdSe/ZnS core/shell nanocrystals capped with oc-
tadecylamine were purchased from NN Labs, Inc. and have
a fluorescence peak at 2.14 eV (580 nm) and a fluorescence
quantum yield of approximately 50%. The QD arrays were
prepared by dropping the fresh sample in toluene onto a quartz
plate under an argon atmosphere. The sample was then dried
under vacuum for several hours to evaporate the solvent. From
transmission electron microscopy (TEM) measurements, we
confirmed that the QD ensemble forms a 2D close-packed
network with hexagonal order. We also prepared a solid QD
dispersion consisting of the QDs embedded in octadecylamine
as a control sample.

Observation of the edge excitation redshift (EERS) by
varying the excitation photon energy at the absorption edge19,20

clarified the width of the inhomogeneous distribution in the QD
ensemble to be 33 meV.

In order to examine the dependence on nonradiative dot
density, another CdSe/ZnS sample degraded by exposure to
air in a refrigerator for several months was also prepared. The
fluorescence peak of this sample was 2.08 eV (597 nm) with
an inhomogeneous distribution of 24 meV.

IV. ANALYSIS AND DISCUSSION

We first measured the fresh QD sample. Figure 5(a) shows
the spectrally integrated fluorescence intensity for various
temperatures. The excitation photon energy is set to Eexc =
2.76 eV, which is much higher than the absorption edge,
so that all the QDs are assumed to be excited irrespective
of their size. The fluorescence lifetime of the QD array is
generally shorter than that of the QD dispersion and tends
to decrease as the temperature increases. In previous studies,
we showed that this lifetime shortening can be attributed to
excitons hopping to a quenching site (dark QD) that exhibits
fast nonradiative decay.19,20 To quantify the hopping dynamics,
we first extract ρ(t) from the experimental results. Since the
fluorescence intensity is proportional to the exciton population,
the measured fluorescence intensity at time t after a pulse
excitation I (t) is related to the survival probability ρ(t)

(a) (b)

50 nm

FIG. 5. (Color online) (a) Time-resolved fluorescence intensities
I (t) of the QD arrays of fresh QDs at 80, 150, 200, 250, and 300 K. The
fluorescence decay curve of the QD dispersion at 80 K is also shown
for comparison. The inset shows a TEM image of QDs forming a 2D
close-packed network with hexagonal order, where a carbon thin film
was used as a sample plate instead of quartz. The average diameter and
interdot distance of the QD array were 5.2 and 7.9 nm, respectively.
(b) Time courses of the survival probability ρ(t) = I (t)/Id (t) at 80,
150, 200, 250, and 300 K. The inset shows the fraction of excitons ρ̃

that decay in the bright QDs instead of reaching dark sites.

through

I (t) = I0

〈
exp

[
−

(
Nhops∑
i=0

kiτi

)]〉
ρ(t), (12)

where i denotes the sequence of the sites visited, τi is the time
spent at the ith site satisfying the relation

∑Nhops

i τi = t , Nhops

is the total number of hops that occur before t , and ki is the
exciton decay rate at the ith (bright) site, which is assumed to
be much smaller than that at the dark site. In the QD ensemble,
the exciton lifetime is considered to vary from QD to QD,
even for bright QDs, because of inhomogeneity or fluctuations
in the nonradiative relaxation pathways,50 and therefore the
fluorescence decay of the QD ensemble does not usually follow
a single exponential function. Since 〈exp[−(

∑Nhops

i=0 kiτi)]〉 =
〈exp[−(knt)]〉n, with 〈· · · 〉n being the ensemble average over
site n, Eq. (12) can be rewritten as

I (t) = Id(t)ρ(t), (13)

where Id (t) = I0〈exp[−(knt)]〉n denotes the fluorescence in-
tensity of the QD ensemble in the absence of exciton hopping.
Therefore, ρ(t) is obtained by dividing I (t) by Id (t), which
can be measured from the QD ensemble in the dispersed state.

Figure 5(b) shows how ρ(t) = I (t)/Id(t) decreases as the
temperature increases. We find that, at 80 K, ρ(t) remains
nearly constant after ∼10 ns. In contrast, at high temperatures,
ρ(t) continues to decrease even after 40 ns. These trends
agree with the results of the numerical simulations shown in
Fig. 1(b). The inset in Fig. 5(b) shows the fraction of excitons ρ̃

that decay radiatively or nonradiatively in bright QDs instead
of reaching dark sites. This fraction is given by

ρ̃ =
∫ ∞

0
I (t)dt

/∫ ∞

0
Id(t)dt, (14)

from which it is clear that ρ̃ decreases as the temperature
increases.

We can estimate γ via Eq. (11) using Sinf and ρinf .
Figure 6(a) shows time courses of ρ(t) at low temperature
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FIG. 6. (Color online) (a) Time courses of the survival probability
ρ(t) for various excitation photon energies Eexc. The temperature is
80 K. (b) Asymptotic values of ρ(t) (at t = 40 ns) as a function
of Eexc. The absorption spectrum of the QD dispersion measured at
110 K is also shown as the solid line.

(80 K) for various values of Eexc. Although the temperature
is not zero and ρ(t) is still decreasing slightly at 40 ns, the
rate of change is small. Therefore, we approximate ρinf by
ρ(t) at t = 40 ns. Figure 6(b) shows the corresponding ρinf

as a function of Eexc, and the absorption spectrum measured
at 110 K is also shown. We find that ρinf has a minimum
when Eexc is around 2.34 eV. In this case, high-energy QDs
are considered to be selectively excited since Eexc is slightly
higher than the first absorption peak at 2.25 eV. By setting
ρinf = 0.65 and Sinf = 2.75 on the assumption that the QDs
form a 2D array with hexagonal order, γ is estimated to be 0.14.

We note that when Eexc is much higher than the absorption
edge at 3.26 eV, all the QDs are considered to be excited
equally, irrespective of their energy level. In this case, ρinf is
found to be 0.76. From this value and assuming the numerical
result Sinf = 1.81, γ can be estimated as 0.14, which agrees
with the value obtained when high-energy QDs are selectively
excited. It should also be noted that when Eexc is set to the
energy of the absorption edge, 2.18 eV, then ρ(t) remains
close to unity. In this case, low-energy QDs are selectively
excited, and excitons tend to be trapped at the initial site.

We then calculated 〈S(t)〉∗ by substituting ρ(t) and γ into
Eq. (3) [Fig. 7(a)]. Approximate values of the normalized

(a) (b)

~~

FIG. 7. (Color online) (a) Average number of distinct sites visited,
〈S(t)〉∗, and (b) approximate values of the average hopping distance
normalized by the interdot distance, 〈S(t)〉∗α , for various temperatures
(T = 80, 150, 200, 250, and 300 K). We set γ = 0.14 and α = 0.56.
The inset in panel (a) shows the average number of distinct sites
visited before exciton decay at any site S̃, and the inset in panel (b)
is the approximate value of the normalized hopping distance before
exciton decay S̃α .

average hopping distances 〈S(t)〉∗α obtained at various temper-
atures are shown in Fig. 7(b). Here, we set γ = 0.14 and α =
0.56. At 80 K, 〈S(t)〉∗ and 〈S(t)〉∗α are almost saturated after
10 ns. In contrast, at 300 K, 〈S(t)〉∗ and 〈S(t)〉∗α take values
of 4.8 and 2.4, respectively, and continue to increase after
40 ns. These results indicate that an exciton is preferentially
trapped in a local low-energy site at low temperature, while
at room temperature, hopping repeatedly occurs and leads to
a long hopping distance. This is consistent with our previous
experimental findings, in which the initial fluorescence rise
appears in the low-energy region only at low temperatures
and the magnitude of the redshift markedly increases with
decreasing temperature.19 It should be noted that 〈S(t)〉∗ and
〈S(t)〉∗α in Fig. 7 correspond to the case when radiative or
nonradiative decay at a bright site is not considered; an exciton
eventually reaches a dark site at a finite temperature, and the
asymptotic values of 〈S(t)〉∗ and 〈S(t)〉∗α in the long-time limit
are expected to be 1/γ = 7.1 and 1/γ α = 2.9, respectively.
However, an exciton can also decay at a bright site before
it reaches a dark site. The average number of distinct sites
visited before an exciton decays at either a bright or dark site is
given by

S̃ =
∫ ∞

0
〈S(t)〉∗Id(t)dt

/∫ ∞

0
Id(t)dt. (15)

From Eqs. (3), (13), and (14), Eq. (15) can be rewritten as
S̃ = (1 − ρ̃)/γ . The insets in Figs. 7(a) and 7(b) show S̃ and
S̃α as a function of temperature, where the latter is given
by replacing 〈S(t)〉∗ in Eq. (15) with 〈S(t)〉∗α and denotes an
approximate hopping distance before exciton decay at any site.

We also measured the time-resolved fluorescence intensity
of a degraded QD sample that contained a large number of
dark QDs. Figure 8 shows that, in the initial stage, there
is a fast decay component that originates from the dark
QDs. The curves, fit with an exponential and offset I (t) =
a1exp(−t/τ ) + a2, suggest that the decay time of the fast
component is τ = 0.22 ns, which is comparable to that of
the off state CdSe/CdZnS QD, 0.25 ns, measured by means of
single-molecule spectroscopy.51 The amplitudes (a1 and a2)
are related to the relative proportions of dark and bright QDs,
and γ is obtained as γ = a1/(a1 + a2) = 0.64. However, for
a fresh sample, this method is considered to be unreliable,

FIG. 8. (Color online) Time-resolved fluorescence intensities of
a (A) fresh and (B) degraded sample in the initial stages. The
samples are dissolved in toluene, and the measurement was performed
under room-temperature conditions. The excitation photon energy
was 3.26 eV.
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(a) (b)

~

FIG. 9. (Color online) (a) Time-resolved fluorescence intensities
I (t) of a QD array of degraded QDs at 80, 150, 220, and 290 K. The
fluorescence decay curve of the QD dispersion at room temperature
is also shown for comparison. (b) Time courses of the survival
probability ρ(t) = I (t)/Id (t) at 80, 150, 220, and 290 K. The inset
shows the fraction of excitons, ρ̃, that decay at bright QDs instead of
reaching dark sites.

since the fluorescence intensity is nearly flat in the initial
stage. In the case of small γ , we can estimate γ by measuring
the time-resolved fluorescence intensities at low temperature,
as described above. We confirmed that the decay profiles in
the initial stage are nearly independent of temperature, thus
indicating that γ is independent of temperature.

Figures 9(a) and 9(b) show the time-resolved fluorescence
intensities of a QD array that consists of degraded QDs and
the calculated survival probability for various temperatures,
respectively. The fluorescence intensities and survival proba-
bility decrease with increasing temperature, and it should be
noted that the survival probability significantly decreases after
about 10 ns. This trends agrees with the results of the numerical
simulation shown in Fig. 1(c) and suggests that a large number
of excitons reach a dark QD followed by quenching.

Figure 10(a) shows 〈S(t)〉∗ and 〈S(t)〉∗α as calculated using
the ρ(t) data in Fig. 9(b). Here, we set γ = 0.64 and α =
0.56. Even though these quantities increase with increasing
temperature, they are more-or-less saturated after about 10 ns.
This indicates that a large number of the excitons are quenched
at a dark QD in the vicinity of the initial site.

80 K

290 K
(a)

80 K

290 K
(b)

~ ~

FIG. 10. (Color online) (a) Average number of distinct sites
visited, 〈S(t)〉∗, and (b) approximate values of the average hopping
distance normalized by the interdot distance, 〈S(t)〉∗α , for various
temperatures (T = 80, 150, 220, and 290 K). The sample is a QD
array consisting of degraded QDs, and we set γ = 0.64 and α = 0.56.
The inset in panel (a) shows the average number of distinct sites
visited before the exciton decays at any site S̃, and the inset in panel
(b) is the approximate value of the normalized hopping distance
before exciton decay S̃α .

FIG. 11. (Color online) Average hopping rates in the initial stage
as a function of temperature. Filled and open circles are the rates of
the QD array consisting of fresh and degraded QDs, respectively.

To further quantify the exciton dynamics, we estimated the
average hopping rate wint in the initial stage, which is related
to the rate of change of S(t) and N by

wint = 1

N

dS(t)

dt

∣∣∣∣
t=0

. (16)

Figure 11 shows wint obtained using the linear fit of S(t) from
0 to 1.5 ns in Figs. 7(a) and 10(a). We set N = 6, assuming that
the QDs form a 2D hexagonal lattice. We can see clearly that
wint increases with increasing in temperature. The wint of the
QD array consisting of degraded QDs is larger than that of
the fresh QD array. This is presumably attributed to the
difference in the width of the inhomogeneous distribution (33
meV for the fresh sample and 24 meV for the degraded sample
employed in this study), since the average hopping rate is
considered to increase as the inhomogeneous width decreases.

A few issues should be discussed to further understand
the experimental results. Here and in previous studies, we
considered a dark QD in view of the fact that an individual
QD usually exhibits intermittent switching between the dark
(off) and bright (on) states due to defects or excess charges on
the QD surface.50–54 The fluorescence intensity of a blinking
QD is generally correlated with its decay time;50,51,54 for
example, Rosen et al.51 have observed that the fluorescence
decay time of an off-state CdSe/CdZnS QD is 250 ps,51 which
is much faster than that of an on-state QD (around tens of
nanoseconds) and the exciton hopping rate (around several
nanoseconds, when exciton hopping occurs from a high- to
low-energy site19). In this study, we estimated γ to be 0.14
for the fresh sample by means of site-selective excitation at
low temperature, and this value is consistent with our previous
studies in which the numerical simulation using the master
equations agreed with the experimental results when γ was
around 0.2.19,20 In contrast, we estimated γ to be 0.64 for
the degraded sample from the fast decay component of the
time-resolved fluorescence intensity. To gain further insight
into the origin and mechanism of a dark QD, it is worthwhile
examining the relationship between γ and the ratio of the time
interval between on and off states. Measurements of individual
QDs will be one promising approach for this purpose.

In analyzing the experimental data, some parameters (Sinf

and α) were obtained from the numerical simulation with
the assumption that the QD array forms a 2D lattice with
hexagonal order; the configuration of a QD array can be
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identified by means of electron microscopy or x-ray analysis.
To apply the present method to QD arrays with different lattice
configurations,55 it is necessary to obtain parameter values
specific to each configuration, but these parameter values
do not seem to be sensitive to the lattice configuration in
dimensions higher than or equal to two. In this regard, the
TEM image in the inset of Fig. 5(a) may not be representative
of the sample that is measured optically, since a carbon thin
film was used as the sample plate for the TEM observation
as opposed to quartz. However, we believe that this does not
make much difference to the analytical results presented in
this study as long as the dimensions of the QD array are
higher than or equal to two. We verified this by preparing
QDs in an ethyl acetate solution in which the QDs aggregate
and yield a turbid solution. In this case, the QDs are considered
to form a 3D structure, which is different to that formed on
the quartz plate. We also prepared a QD film on quartz by
means of dip coating in addition to the drop-casting technique.
We confirmed that fluorescence decay profile of these samples
does not show a large difference in comparison with the results
related to the drop-cast structure on quartz. For example, the
fluorescence lifetimes of the QD aggregate in ethyl acetate,
dip-coated QD film, and drop-cast QD film are 10.9, 11.7, and
11.4 ns, respectively.

Finally, we discuss the potential applicability of this
analytical method to other systems. For example, for doped,
disordered organic semiconductors such an alkoxy-substituted
poly phenylenevinylene (PhPPV) doped with trinitrofluorene
(TNF), the doped molecule serves as a electron acceptor at
which an exciton dissociates.56 Since the doped molecules
are located next to the host molecules, the probability of
an exciton encountering the electron acceptor is determined
by the number of host sites visited. In a similar manner
to the present study, the survival probability is given by
Eq. (13) by substituting in the time-resolved fluorescence
intensities detected from the sample with and without the
doping molecules. Furthermore, Eq. (3) is considered to be
valid for such a system provided that the doped molecules
are randomly distributed and the exciton dissociation rate
is much larger than the hopping rate. However, it would
be necessary to reexamine the relationship between the average
number of distinct sites visited and the hopping distance, since
the distance between neighboring sites is not constant but
randomly distributed. Thus, further study is needed to extend
our analytical method to provide a better understanding of
relevant systems in addition to nanocrystals.

V. CONCLUSION

We have described an analytical method that quantifies
exciton hopping in disordered media with quenching sites.
On the basis of Monte Carlo simulations, we showed that the
relationship among several statistical quantities characterizes
the dynamics (survival probability, average number of distinct
sites visited, and average hopping distance). This method was
subsequently used to describe the exciton hopping dynamics
in a QD array in a qualitative way. The survival probability
was extracted from the time-resolved fluorescence intensities.
To calculate the average number of sites visited from the
survival probability, it is necessary to determine the proportion

of quenching sites (dark QD) that exhibit fast decay. We
showed that, when the proportion of quenching sites is small,
it can be quantified by means of site-selective excitation at low
temperature. The average number of distinct sites visited was
then obtained through Eq. (3), while an approximate value of
the hopping distance was given by Eqs. (7) or (9), depending
on the dimensions and lattice configuration. We also estimated
the average hopping rate in the initial stage. The temperature
dependence of these statistical quantities showed clearly that
at low temperature the exciton tends to be trapped at a local
low-energy site, while at room temperature, exciton hopping
occurs repeatedly leading to a large hopping distance.
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APPENDIX A

We consider the probability distribution θs(l) of a random
walker that visits the sth distinct site that is located at a
distance l relative to the initial site. Here, l is normalized
by the interdot distance d. For a 1D system, θs(l) satisfies the
following recurrence relation:

θs(l) = ω
l,l−1
s−1 θs−1(l − 1) + ω

l,s−l
s−1 θs−1(s − l), (A1)

where ω
l,l−1(s−l)
s−1 is the transition probability that a random

walker that has visited the (s − 1)st distinct site at l − 1 (s − l)
will next visit the sth distinct site at l. In other words, Eq. (A1)
means that random walkers at the (s − 1)st step at l − 1 (the
neighboring site) and s − l (the opposite end site) contribute to
the next sth step at l. When the hopping probability is constant
for all pairs of neighboring sites, the transition probabilities
are written as

ω
l,l−1
s−1 = s/(s + 1),

(A2)
ω

l,s−l
s−1 = 1/(s + 1),

and the solution for Eq. (A1) is given by

θs(l) = l

/ s∑
n=1

n. (A3)

The hopping distance of random walkers averaged over l while
holding s constant is then calculated to be

〈L〉s = d

s∑
l=1

lθs(l)

= d[(2/3)s + 1/3]. (A4)

APPENDIX B

The number of distinct sites visited in the long-time limit
at zero temperature is related to the energy levels among the
sites. The probability distribution φs of a random walker that
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has visited the sth distinct site in the long-time limit is written
in the 1D system as

φs = φ̃s

[
2
∫ ∞

ε

P (ε′)dε′ +
∫ ε

−∞
P (ε′)dε′

]
, (B1)

with

φ̃s =
∫ ε

−∞
P (ε1)dε1

∫ ε1

−∞
P (ε2)dε2

× · · ·
∫ εs−1

−∞
P (εs)dεs

∫ ∞

εs

P (εs+1)dεs+1, (B2)

where ε is the energy level of the initial site, and P (ζ ) is the
inhomogeneous distribution of the site energy ζ , for which we

have assumed a Gaussian distribution with a width of σ and
an average of zero:

P (ζ ) = 1√
2πσ

exp

[
− ζ 2

2σ 2

]
. (B3)

The long-time limit of 〈S(t)〉 at zero temperate Sinf is
written as

Sinf =
∞∑

s=1

sφs. (B4)

Equation (10) is obtained by substituting Eqs. (B1), (B2), and
(B3) into Eq. (B4).
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