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Magnetic field induced nutation of exciton-polariton polarization in (Cd,Zn)Te crystals
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We study the polarization dynamics of exciton-polaritons propagating in sub-mm-thick (Cd,Zn)Te bulk crystals
using polarimetric time-of-flight techniques. The application of a magnetic field in Faraday geometry leads
to synchronous temporal oscillations of all Stokes parameters of an initially linearly or circularly polarized,
spectrally broad optical pulse of 150-fs duration propagating through the crystal. Strong dispersion for photon
energies close to the exciton resonance leads to stretching of the optical pulse to a duration of 200–300 ps and
enhancement of magneto-optical effects such as the Faraday rotation and the nonreciprocal birefringence. The
oscillation frequency of the exciton-polariton polarization increases with magnetic field B, reaching 10 GHz at
B ∼ 5 T. Surprisingly, the relative contributions of Faraday rotation and nonreciprocal birefringence undergo
strong changes with photon energy, which is attributed to a nontrivial spectral dependence of Faraday rotation in
the vicinity of the exciton resonance. This leads to polarization nutation of the transmitted optical pulse in the
time domain. The results are well explained by a model that accounts for Faraday rotation and magnetospatial
dispersion in zinc-blende crystals. We evaluate the exciton g factor |gexc| = 0.2 and the magnetospatial constant
|V | = 5 × 10−12 eV cm T−1.
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I. INTRODUCTION

The propagation of light in an anisotropic medium can
be characterized by the transformation of the polarization
state of the transmitted electromagnetic wave compared to
its initial polarization. This phenomenon has been widely
used for intensity and phase modulation of light. External
forces such as deformation or electric and magnetic fields can
be used to influence the optical anisotropy of the medium.1

Fast switching and full control of the polarization state of
light are essential for applications in rapidly developing fields
of photonics such as quantum cryptography.2 The evolution
of the polarization state in an actively controlled anisotropic
medium is also interesting from a fundamental point of view
because it is the equivalent to the evolution of an electron
spin in a magnetic field.3 Several spectacular effects such as
nutation or echo of the polarization have been demonstrated.4

These phenomena imply the coherence of the light. Therefore,
first it is essential that this coherence is maintained during
propagation. Second, in order to realize full control of the
polarization state, it is necessary to have tools for changing the
superposition of the two eigenmodes of the electromagnetic
waves. This means that, for example, if we use linear and
circular birefringence to control the polarization state, then
the relative strength of their contributions should be variable.
While the first issue regarding coherence is easy to fulfill in
the transparency region of a material, realization of the second
requirement needs more efforts.

This work is devoted to investigation of the magnetic
field induced transformation of the polarization of light, that
propagates through a (Cd,Zn)Te bulk semiconductor with
photon energy close to the exciton resonance. The choice of
material is specific for the following reasons. First, because
it has zinc-blende structure, it belongs to the symmetry class
Td and lacks a center of inversion. Hence, in addition to the

classical magneto-optical Faraday and Voigt effects, it exhibits
magnetospatial dispersion, a combined effect involving the
light wave vector k and the magnetic field B.5,6 Second,
we demonstrated recently that the propagation of light in
a (Cd,Zn)Te crystal with photon energy below the exciton
resonance can be well described in terms of exciton-polariton
propagation.7 The ballistic propagation of exciton-polaritons
from the lower branch with low absorption is more than 150
times slower than in vacuum, and the speed of light depends on
the photon energy. Therefore, long-distance (∼1 mm) coherent
propagation and sub-ns time delays of optical pulses were
obtained for the light propagation. The latter is quite important
because generally the strength of magneto-optical effects is
proportional to the time delay introduced by the medium. This
makes the arrival time of the pulse a representative scale for
these effects.

The effect of magnetospatial dispersion deserves special
attention. In the transparency region it manifests as nonrecip-
rocal birefringence, studied in several semiconductors such
as wurtzite CdSe,8 and cubic GaAs, CdTe, and ZnTe.9,10

Nonreciprocal birefringence was also demonstrated in the
diluted magnetic semiconductor (Cd,Mn)Te.11 Since it in-
volves both light wave vector and external magnetic field, the
magnetospatial dispersion is, as a rule, much weaker than the
Faraday rotation, and hence, to the best of our knowledge, all
previous studies of nonreciprocal birefringence were done in
Voigt geometry, where the Faraday effect is negligible, while
the Voigt effect is quadratic in magnetic field and must be
taken into account.

In this work, we apply a polarimetric time-of-flight tech-
nique, which allows one to resolve the polarization state of
the transmitted optical pulse in real time. This opens new
possibilities for investigation of magneto-optical phenomena
such as Faraday rotation and magnetospatial dispersion.
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We show that compared to commonly used spectroscopic
measurements, the time-of-flight technique has several advan-
tages. First, the oscillation frequency of the exciton-polariton
polarization corresponds directly to the splitting of exciton
Zeeman sublevels. Second, in time-resolved measurements,
the inhomogeneous broadening of exciton resonance does not
diminish the oscillatory signal. We demonstrate that when
approaching the exciton resonance in (Cd,Zn)Te crystals, the
Faraday effect disappears at a certain photon energy, making
it possible to observe the nonreciprocal birefringence. Such
behavior occurs because the Faraday effect is governed by
the superposition of two contributions with different signs.
These contributions result from the exciton resonance at the
fundamental band-gap edge in the center of the Brillouin
zone (� point) and from energetically higher-lying resonances
with much larger oscillator strengths, which correspond to
interband optical transitions at the X and L points of the
Brillouin zone with high densities of electronic states.12,13 The
nonreciprocal linear birefringence, on the other hand, is deter-
mined mainly by the single-exciton resonance and its strength
increases when the photon energy approaches the exciton
resonance. Such a combination of circular (Faraday effect) and
linear (magnetospatial dispersion effect) birefringence leads to
the extraordinary case in which the optical anisotropy depends
strongly on photon energy. We show that the complex interplay
between linear and circular birefringence and dichroism results
in a polarization nutation effect in (Cd,Zn)Te crystals in the
vicinity of the exciton resonance.

The paper is organized as follows. Section II describes
the theoretical basis of the exciton-polariton propagation
and the accompanying polarization transformation due to
magnetic field induced circular and linear birefringence. The
experimental details are given in Sec. III. Section IV describes
the magneto-optical properties of (Cd,Zn)Te crystals evaluated
from time-integrated reflection, transmission, and photolu-
minescence measurements. Here, we also evaluate the role
of the inhomogeneous broadening of the exciton resonance.
Section V describes the main time-resolved polarimetric mea-
surements. The spectral dependence of the relative strength
of linear and circular birefringence is presented in Sec. VI.
Here, we also present the complete picture of exciton-polariton
propagation and polarization nutation accounting for Faraday
rotation, nonreciprocal birefringence, as well as circular and
linear dichroism in a wide range of magnetic fields up
to 7 T.

II. THEORETICAL BACKGROUND

A. Phenomenological model

The optical properties of a crystal can be conveniently
described by the dielectric susceptibility tensor εij whose
Cartesian components (i,j = x,y,z) are functions of the
light frequency ω, the light wave vector k, and the external
magnetic field B. They satisfy the restrictions imposed by the
time-reversal symmetry (Onsager principle)

εij (ω,k,B) = εji(ω, − k, − B), (1)

as well as the restrictions imposed by the point symmetry of
the system, which in a (Cd,Zn)Te cubic crystal is described
by the Td point group. Far from the exciton resonance, the

dielectric susceptibility, Eq. (1), can be decomposed in powers
of k and B. By retaining only those linear in B and kiBj [note,
that k-linear terms in εij are forbidden for the Td point group
owing to Onsager principle, Eq. (1)] we obtain9

εij = κδij + iγ1δij lBl − γ2

2
δij (ki+1Bi+1 − ki+2Bi+2)

+ γ3(kiBj − kjBi). (2)

Here, a cubic axis frame is used (x ‖ [100], y ‖ [010], and
z ‖ [001]), the cyclic rule is applied (i + 3 = i), δij is the
Kronecker δ symbol, δij l is the Levi-Civita symbol, κ is the
dielectric susceptibility for k = 0, B = 0, γ1 is a constant
responsible for the Faraday effect, and γ2, γ3 are constants
responsible for the magnetospatial dispersion.

Our experiments are carried out in the Faraday geometry,
where B ‖ k ‖ z. Then, the relevant contributions to the
dielectric tensor are given by

εxy = −εyx = iγ1Bz, (3a)

εxx = κ + γ2

2
kzBz, εyy = κ − γ2

2
kzBz. (3b)

In this case, the effect of γ3 vanishes, however, both circular
birefringence/dichroism and linear birefringence/dichroism
are present. As a result, the eigenmodes of the electromagnetic
field in the crystal are, in general, neither linearly nor circularly
polarized, but they are elliptically polarized. To illustrate
this, we neglect absorption (i.e., assume that κ, γ1, and γ2

are real) and present the effective refractive indices of the
eigenwaves as

n2
± = κ ± Bz

√
γ 2

1 + q2. (4)

Here, q = γ2kz/(2γ1) characterizes the relative strengths of
linear and circular birefringence. The corresponding eigen-
modes have the following polarization vectors:

e± = 1

2
√

1 + q2(
√

1 + q2 ± q)
(iq ± i

√
1 + q2,1). (5)

As a result, the initially linearly polarized radiation after
transmission through such a medium becomes elliptically
polarized with the degree of circular polarization and the
orientation of the polarization ellipse determined by the optical
path. The phase difference between the orthogonally polarized
eigenwaves transmitted through the crystal is given by

φ = (n+ − n−)
ωL

c
≈ Bz

√
γ 2

1 + q2
ωL√
κc

, (6)

where the approximate equality holds for |n+ − n−| � n+,n−.

B. Magnetic field induced optical anisotropy
in the exciton region

In the vicinity of the exciton frequency, the components of
the dielectric susceptibility tensor contain resonant features,
so that the power-series decomposition in Eq. (3) is no longer
valid, in general.5 Therefore, it is instructive to relate the
components εij (ω,k,B) with the parameters of the exciton
in the bulk material. To that end, we present the Schrödinger
equation for the exciton wave function in the form14

[Hνν ′(k) − h̄ωδνν ′ − ih̄�δνν ′ ] Cν ′(k) = dν · E(k,ω). (7)
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Here, E is the electric field of the electromagnetic wave
propagating inside the crystal, ν = σ+ or σ− denotes exciton
states which are excited by correspondingly polarized photons,
Cν are the components of the exciton wave function, H(k) is
the exciton Hamiltonian, and dν is the exciton dipole moment
matrix element. We have also included a phenomenological
damping � into Eq. (7). Neglecting the exciton dispersion
(limit of infinite effective mass), we obtain the following 2 × 2
effective Hamiltonian for k ‖ B ‖ [001]:

H =
(

Eexc + 

2 V kzBz

V kzBz Eexc − 

2

)
, (8)

describing the doublet of optically active states. Here, Eexc is
the exciton resonance energy, 
 = gexcμBBz is the exciton
Zeeman splitting with gexc being its g factor and μB the
Bohr magneton, and the constant V is responsible for the
magnetospatial dispersion. Calculating the exciton resonance
contribution to the dielectric polarization Pexc = ∑

ν dνCν ,
we finally obtain for the components of the dielectric suscep-
tibility tensor

εxx = εb + 4π |d|2
D (Eexc − h̄ω − ih̄� − V kzBz), (9a)

εyy = εb + 4π |d|2
D (Eexc − h̄ω − ih̄� + V kzBz), (9b)

and

εxy = −εyx = −4π |d|2
D




2i
= i


2π |d|2
D . (9c)

Here, εb is the background dielectric constant

D =
(

Eexc − 


2
− h̄ω − ih̄�

) (
Eexc + 


2
− h̄ω − ih̄�

)
− (V kzBz)

2. (10)

We note that 4π |d|2 can be rewritten as εbh̄ωLT , where h̄ωLT is
the longitudinal-transverse splitting. In bulk CdTe, εb = 11.2
and h̄ωLT = 0.65 meV.15

The dielectric tensor in Eqs. (9) describes the main
magneto-optical effects resulting from the exciton resonance,
in particular, magnetic field induced circular birefringence
and dichroism, as well as linear birefringence and dichroism
caused by the magnetospatial dispersion. The parameters of
the decomposition (3) can be expressed as

κ = εb + 4π |d|2
D (Eexc − h̄ω − ih̄�), (11a)

γ1 = 2π |d|2
D




Bz

, γ2 = −8π |d|2
D Ṽ . (11b)

We stress that the components of the dielectric tensor
depend, in general, nonlinearly on the magnetic field and
the wave vector. However, away from the exciton resonance
|Eexc − h̄ω| � h̄�, or if |
| � h̄�, |V kzBz| � h̄�, the de-
pendence of the denominators D in Eqs. (11) on k and B can
be neglected. In this case, the parameters γ1 and γ2 do not
depend on kz and Bz and decomposition Eq. (2) holds.

For sake of illustration, we consider the transparency
region, where absorption effects can be disregarded. Then,
the phase difference between the two eigenwaves of the

exciton-polariton accumulated after propagating a distance L

is defined as

φ = ω

c
L(n+ − n−) ≈ ω

c
L

εbh̄ωLT

2n0D
h̄�eff, (12)

where n0 = √
κ is the frequency-dependent refractive index

at B = 0 (the latter includes the exciton contribution), and

h̄�eff =
√


2 + (2kzBzV )2

is the effective splitting of the exciton resonance, which is a
linear function of Bz. Equation (12) was obtained assuming
that the magnetic field induced contributions to the dielectric
tensor are small compared to κ, i.e., κ � Bz

√
γ 2

1 + (γ2kz/2)2 .
Moreover, for our experimental conditions, the Zeeman split-
ting is much smaller than the photon energy detuning with
respect to the exciton resonance (Eexc − h̄ω � 
), which is
also true for the contributions |kzBzV | � Eexc − h̄ω. Hence,
the magnetic field terms in Eq. (10) are neglected and
D = (Eexc − h̄ω − ih̄�)2. Then, in the transparency region the
phase difference can be written as [cf. Eq. (6)]

φ = ω
dn0

dω

L

c
�eff = (ng − n0)

L

c
�eff, (13)

where

ng = d

dω
Re[ω

√
κ(ω)] (14)

is the group refractive index, which defines the group velocity
of exciton-polariton propagation. The above expression shows
that the phase difference is determined mainly by the delay
of the light pulse due to exciton-polariton propagation τ =
(ng − n0)L/c. In our previous work (Ref. 7), we demonstrated
that exciton-polariton delays can be large due to the significant
increase of the group index (up to 100) when approaching the
exciton resonance.

To describe quantitatively the transformation of the polar-
ization, one has to take into account the absorption effects,
which become especially important when approaching the
exciton resonance. To that end, it is necessary also to take
into account the inhomogeneous broadening of the exciton
resonance. In this case, the dielectric function can be found by
convoluting Eqs. (9) with a Gaussian distribution, in particular,

κ(ω) = εb +
∫ +∞

−∞

εbωLT

ω′ − ω − i�

exp
[− (ω′−ω0)2

2�2
inh

]
√

2π�inh

dω′, (15)

where �inh is the inhomogeneous broadening and h̄ω0 corre-
sponds to the central energy of the exciton resonance. The
experimental results on the spectral dependence of transmis-
sion in Sec. IV indicate that the homogeneous linewidth of the
exciton resonance is much smaller than the inhomogeneous
width (� � �inh).

C. Possible microscopic origins of linear birefringence

The presence of magnetic field induced spatial dispersion
is related to the lack of an inversion center in the zinc-blende
lattice of the (Cd,Zn)Te crystal. In Ref. 9, it was assumed that
it is caused by the spin-dependent terms linear in the hole wave

155203-3



T. GODDE et al. PHYSICAL REVIEW B 88, 155203 (2013)

vector K , that are allowed in structures of Td point symmetry,16

H1 = 4√
3
k0(KxVx + KyVy + KzVz), (16)

where k0 is a constant, Vx = {Jx(J 2
y − J 2

z )}sym, etc., and Jx ,
Jy , Jz are the angular momentum 3

2 matrices relevant for the �8

valence band. In the presence of a magnetic field, these terms
together with the Luttinger Hamiltonian mix the center of
mass and relative motion of an exciton and ultimately result in
the mixing of σ+ and σ− polarized states. The corresponding
contribution to V can be estimated as9

V1 ∼ μB

R k0
m0

M
, (17)

where R is the exciton Rydberg, M is the translational mass
of the exciton, m0 is the free-electron mass, and numerical
coefficients of the order of unity are omitted. For GaAs
crystals, the comparison of V1 in Eq. (17) with experimental
data of magnetic field induced spatial dispersion gives |k0| ≈
30 meV Å, which is about an order of magnitude larger
than the microscopic estimate of k0 ≈ −1.7 . . . − 4.6 meV Å
(Refs. 16 and 17, see also Ref. 18). For II-VI compounds the
K -linear terms are on the order of 10 meV Å according to
both experimental data and microscopic calculations,15,19–21

which for CdTe parameters21 yield a rough estimate of |V1| ∼
1 × 10−12 eV cm T−1.

Aside from K-linear terms, the hole Hamiltonian contains
K3 contributions16 and, what is more important for our case,
contributions linear in K and B. A symmetry analysis shows
that the following terms are allowed for the �8 band

H2 = αKzBz

(
J 2

x − J 2
y

) + c.p., (18)

where α is a constant and c.p. denotes the cyclic permutations.
These contributions result in magnetic field induced mixing
of the light and heavy holes for K 
= 0 and, eventually,
mix the optically active exciton states. The latter are formed
from the electron (�6 band, spin components sz = ± 1

2 ) and
combinations of light and heavy holes (�8 band, momentum
components ± 1

2 or ± 3
2 , respectively):

| + 1〉 =
√

3

2
|�8,3/2; �6, − 1/2〉 − 1

2
|�8,1/2; �6,1/2〉,

(19a)

| − 1〉 = −
√

3

2
|�8,−3/2; �6,1/2〉

+ 1

2
|�8,−1/2; �6,−1/2〉. (19b)

In order to estimate the constant α and, correspondingly,
the magnetospatial dispersion, we resort to the extended
(eight-band) Kane model, where the lack of an inversion center
is taken into account as K2 off-diagonal terms in the k · p
Hamiltonian.22 The mixing term has the form

〈−1/2,�8|Hk p|3/2,�8〉
=

∑
c

H�8−1/2,cHc,�83/2

Ev − Ec

= − h̄2

m2
0Eg

∑
c

(κ∗ p�8−1/2,c)(κ pc,�83/2), (20)

where c enumerates the conduction band states, pcm (m =
�83/2, . . .) are the matrix elements of the momentum operator,
and

κi = Ki − iβKi+1Ki+2.

β is the constant which takes into account the k p admixture
of the remote conduction band. It is related to the parameter
mcv introduced in Refs. 16,23 and 24 by

β = m0

mcv

h̄

pcv
, (21)

where pcv is the interband momentum matrix element. Taking
into account the presence of a magnetic field and making use
of the fact that

K̂xK̂y − K̂yK̂x = ie

h̄c
Bz,

we obtain the linear-in-kzBz contribution in the form of
Eq. (18) with

α = eh̄|pcv|2
3cm2

0Eg

β. (22)

Correspondingly,

V2 = 3

4
α = eh̄|pcv|2

4cm2
0Eg

β. (23)

An estimate by Eq. (23) for the parameters of CdTe (Ref. 21)
gives |V2| = 1.3 × 10−12 eV cm T−1. Hence, two mech-
anisms, the K -linear terms induced mixing of excitonic
states and the K · B terms in the valence band Hamiltonian
may provide comparable contributions to the magnetospatial
dispersion.

III. EXPERIMENTAL DETAILS

The investigated Cd0.88Zn0.12Te crystal was grown by the
Bridgman technique at high temperature (1200 ◦C). The crystal
was cut along the (100) plane and divided into samples
that were chemically mechanically polished to different
thicknesses in the range from 208 to 745 μm. Further on,
we focused on the 655-μm-thick sample. The samples had
a very good quality (as evidenced by a rocking curve width
of less than 20 arcsec, etched pits density of 104 cm−2). The
samples were mounted in a He-bath magneto-optical split-coil
cryostat and maintained at a temperature of 1.8 K. Magnetic
fields up to 7 T in Faraday geometry with B‖[001] were
applied.

For time-of-flight measurements, we used a mode-locked
Ti:Sa laser as a source of Fourier transform limited optical
pulses with duration of about 150 fs. The laser beam was
focused on the sample at normal incidence along the z axis
(k‖[001]). Low-pulse fluences in the range of 1 ÷ 100 nJ/cm2

have been used in order to avoid nonlinear effects in the optical
response. The transmitted or reflected beam was dispersed by
a single 0.5-m spectrometer with 6-nm/mm linear dispersion
and detected by a streak camera, which was synchronized to the
Ti:Sa laser operating at a 75.75-MHz pulse repetition rate. The
overall temporal and spectral resolution of the experimental
setup for time-resolved measurements was about 20 ps and
0.5 nm, respectively. The time of arrival of the exciton polariton
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τ was measured with respect to the time of arrival of the
optical pulse propagating through the same apparatus without
the sample.

The polarization of the incident and transmitted (reflected)
beams was selected by means of Glan-Thompson prisms in
conjunction with half- or quarter-wave plates. This allows us
to determine all three Stokes parameters for the detected signal.
These parameters are defined as

S1 = Ix − Iy

Ix + Iy

, S2 = Ix ′ − Iy ′

Ix ′ + Iy ′
, S3 = Iσ+ − Iσ−

Iσ+ + Iσ−
, (24)

where Ix , Iy , Ix ′ , and Iy ′ are the intensities of the signal
detected for linear polarization along x ‖ [100], y ‖ [010],
x′‖[110], and y′‖[1̄10], respectively. The intensities Iσ+ and
Iσ− correspond to σ+ and σ− polarized detection, respec-
tively. The orientation of the sample with respect to the
laboratory coordinate system was confirmed by Laue x-ray
diffraction.

For time-integrated measurements, we used a single or
triple spectrometer equipped with a liquid-nitrogen-cooled
charge-coupled device camera or a single-channel photomul-
tiplier, respectively. Photoluminescence (PL) spectra were
measured in back-scattering geometry under laser excitation
with photon energy 2.33 eV and ≈10 W/cm2 power density.
Steady-state reflectivity and transmission measurements were
performed using a halogen lamp.

IV. DIAMAGNETIC SHIFT AND ZEEMAN SPLITTING OF
EXCITON STATES

Time-integrated reflectivity and PL spectra allow us to
determine the diamagnetic shift and the Zeeman splitting
of the exciton states.24–26 Figure 1 shows reflection (a),
transmission (b), and PL spectra (c) taken at B = 0 and 7 T.
The reflectivity spectrum contains a dip, which is attributed
to the exciton resonance. At zero magnetic field, the energy
of this resonance is h̄ω0 = 1.6644 eV. The spectral width of
about 1 meV is due to inhomogeneous broadening. In our case,
the origin of inhomogeneous broadening in (Cd,Zn)Te crystals
is attributed mainly to fluctuations of composition in ternary
alloys.27

The transmission spectra taken for a 655-μm-thick crystal
are shown in Fig. 1(b). For B = 0 T, the transmission intensity
drops from 70% at 1.65 eV to values below 1% above
1.66 eV. This allows transmission measurements in thick
sub-mm crystals without significant absorption for photon
energies up to 5 meV below the exciton resonance (detuning
energy δ = h̄ω0 − h̄ω � 5 meV). This is only possible due
to a low homogeneous linewidth of h̄� = 4 μeV, which was
determined by a fit of the transmission edge.28 The absorption
coefficients used in the fit were calculated using Eq. (15) with
h̄�inh = 1 meV, h̄ω0 = 1.664 eV, and h̄ωLT = 0.65 meV. Such
narrow homogeneous linewidth is not surprising for exciton
resonances, which are inherent to bulk material. Similar values
h̄� ∼ 10 μeV have been recently reported in ZnO and GaN
bulk crystals.29–31

The PL spectrum comprises several peaks, which can be
attributed to radiative emission of exciton-polaritons from the
upper (UP peak at 1.6643 eV) and lower (broad LP peak
at 1.657 eV) polariton branches and phonon replicas, related

FIG. 1. (Color online) (a) Reflection, (b) transmission, and (c)
PL spectra measured at T = 1.8 K of the (Cd,Zn)Te crystal taken at
B = 0 (solid lines) and 7 T (dotted lines). The PL spectrum is recorded
for nonresonant excitation with photon energy h̄ωex = 2.33 eV. In
addition, a calculated transmission spectrum for B = 0 is shown in (b)
assuming an inhomogeneously broadened system with h̄� = 4 μeV,
h̄�inh = 1 meV (open circles). The absorption coefficient is obtained
using Eq. (15) with h̄ωLT = 0.65 meV and εb = 11.2 from Ref. 15
and h̄ω0 = 1.6644 eV.

with radiation after emission of a longitudinal optical (LO)
phonon (UP-LO and LP-LO peaks), respectively. The detailed
assignments of these features and their kinetics are presented
in Ref. 7.

The magnetic field induces a diamagnetic shift of exci-
ton spectra towards higher energies. Figure 2(a) shows the
magnetic field dependence of the exciton resonance and the
UP-peak energies evaluated from reflection and PL spectra,
respectively. The energies of both features grow quadratically
with magnetic field. For the exciton we deduce a diamagnetic
shift of 28 μeV/T2, while for the UP peak the value is
somewhat smaller and equals to 15.8 μeV/T2. The latter is
close to the one of previously measured diamagnetic shifts
of 14.7 μeV/T2 for excitons bound to acceptors in CdTe
crystals.32

The diamagnetic shift influences the time-of-flight mea-
surements. The time of arrival τ increases with decreasing
detuning energy δ. An increase in the energy of the exciton
resonance increases the detuning and, consequently, reduces τ .
This shift is in accordance with the diamagnetic shift of Eexc =
h̄ω0 in the reflectivity spectra [see Fig. 2(b)]. We can not
resolve the Zeeman splitting of the exciton-polariton sublevels
due to significant inhomogeneous broadening. However, as
we show in the following, this information can be evaluated
through the polarimetric time-of-flight measurements.
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FIG. 2. (Color online) (a) Magnetic field dependence of the
energies of the exciton resonance h̄ω0 and the UP, evaluated from
reflectivity and PL spectra, respectively. Solid lines are fits with
parabolas. (b) Time of arrival τ measured using a time-of-flight
technique and plotted as a function of photon energy at B = 0 and 7 T.
Solid lines are calculated using Eqs. (14) and (15) with the average
energy of the exciton resonance h̄ω0 = 1.6644 eV at B = 0 and
h̄ω0 =1.6658 eV at B = 7 T. The inhomogeneous and homogeneous
linewidths are h̄�inh = 1 meV and h̄� = 4 μeV, respectively.

V. POLARIMETRIC TIME-OF-FLIGHT TECHNIQUE

Figure 3 summarizes the temporal and spectral variations of
the transmitted optical pulse intensity and its linear polariza-
tion in the axes frame x ′, y ′, S2, acquired using the polarimetric
time-of-flight technique. The use of 10-meV spectrally broad
pulses centered at 1.656 eV allows us to monitor the exciton-
polariton dispersion in a single measurement. The results of
two such measurements, where the transmitted intensity taken
for linear polarizations along the x ′ and y ′ axes at B = 5 T, are
shown by the contour plots in Figs. 3(a) and 3(b). The initial
polarization of the optical pulse is along the x ′ axis (S2 = 1).
The time t = 0 corresponds to the arrival time of the optical
pulse without the sample in the optical path.

Strong temporal distortion of the optical pulse takes place
after transmission through the 655-μm-thick sample [see
Fig. 3(c)]. The full width at half maximum is about 100 ps and
the pulse tail approaches delays as high as 200–300 ps. This
is a result of the strong exciton-polariton dispersion, which
manifests as a significant increase of the group index ng , when
h̄ω approaches the energy of the exciton resonance h̄ω0. The
group index ng and the resulting arrival time τ are independent
of the initial polarization within the accuracy of experiment. As
demonstrated in Fig. 2(b), they are well described using the

dielectric function κ(ω) in Eq. (15) with h̄ω0 = 1.6644 eV,
h̄�inh = 1 meV, and h̄� = 4 μeV as obtained from reflection
and transmission spectra discussed in the previous section.
In addition, for B > 0 the diamagnetic shift of the exciton
resonance should be taken into account in accordance with the
data in Fig. 2.

Application of a magnetic field leads to pronounced
oscillations in the temporal and spectral dependencies of
the linear polarization S2 as shown in Figs. 3(d) and 3(f),
respectively. To avoid confusion, we stress here that already
at the photon energies of about 1 eV a very strong Faraday
rotation (amounting to about 45◦ at B = 5 T) is observed.
Hence, even at the smallest delays, the polarization plane of
transmitted light is rotated with respect to the polarization
of the incident beam. This effect is discussed in detail in
Sec. VI. This is in contrast to the zero magnetic field data,
also shown in Fig. 3. In zero magnetic field, the polarization
state of the incoming pulse is fully conserved. One can see
that S2 is almost constant against the time delay and in the
spectral domain. First, this means that our system is isotropic
at B = 0. Second, nearly no depolarization takes place, so that
the exciton-polariton propagation is coherent.

The frequency of the oscillations induced by a magnetic
field of B = 5 T increases with an increase of h̄ω in the
spectral domain [see Fig. 3(f)]. In the time domain, shown
in Fig. 3(d), it is almost constant. This is in accord with our
expectations for a magnetic field induced anisotropy due to
splitting of exciton Zeeman sublevels. Indeed, as follows from
Eq. (13), the phase difference between the two eigenwaves
φ ≈ �effτ increases linearly with time of arrival and the
resulting polarization degree oscillates in the time domain
with frequency �eff . This allows us to determine the effective
Zeeman splitting, even when it is hidden by inhomogeneous
broadening in the spectral domain. Here, the polarimetric
time-of-flight experiment shows similarities to time-resolved
PL or pump-probe Faraday rotation techniques with which
the Larmor precession of the spin can be resolved directly in
time.33 We observe more than two periods of oscillations of
linear polarization in a time window of 200 ps at B = 5 T.
Such strong retardation results from the large delays of light in
the sample. This result is quite interesting from the application
point of view because it allows us to achieve optical modulation
at high frequencies of about 10 GHz.

The temporal [Fig. 3(d)] and spectral [Fig. 3(f)] depen-
dencies of Stokes parameters are mutually linked through
the exciton-polariton dispersion. The data at larger delays in
time domain directly correspond to the spectral components
of the optical pulse with smaller detuning δ and vice versa.
However, there are certain differences which make temporal
measurements more attractive. First, as already mentioned
above, the oscillation frequency in time directly corresponds to
the splitting of exciton Zeeman sublevels. Second, the spectral
dependence is influenced by inhomogeneous broadening of
the exciton resonance, while in temporal domain for large
detuning (δ � 
,h̄�) the inhomogeneity of the group index
cancels out.

The time evolutions of all three Stokes parameters are
shown in Fig. 4. The optical pulse is linearly polarized along x ′
(S2 = 1) before entering the sample. The Stokes parameters are
measured in two configurations: transmission and reflection.
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FIG. 3. (Color online) (a), (b) Contour plots of transmitted pulse intensities measured as a function of photon energy h̄ω and time delay t at
B = 5 T. Panels (a) and (b) correspond to the data measured in linear x ′ and y ′ polarizations, respectively. (c) gives temporal dependencies of
the intensities Ix′ (solid line) and Iy′ (dashed line) and (d) shows the temporal evolutions of linear polarization degree S2 measured at B = 5 T
(open circles) and B = 0 (solid squares). The spectral dependencies of Ix′ and Iy′ are displayed in (e) and of S2 in (f). The incoming pulse is
linearly polarized along x ′ (S2 = 1).

FIG. 4. (Color online) Time dependence of Stokes parameters
measured in transmission (solid squares) and reflection (open circles)
geometry. In reflection geometry, the light is reflected at the back side
and travels through the crystal twice. The data are taken at B = 5 T
and the incoming light polarization S2 = 1.

In the second case, we analyze the signal, which corresponds
to the reflection of light from the back side of the sample.
This means that the exciton-polaritons perform a round trip in
the crystal. Subsequently, the outgoing reflection is detected
with a streak camera as shown in the inset of Fig. 4. Note that
in a time-of-flight measurement the identification of beams
due to reflection of light from the front and back surface is
straightforward since each of the reflections has a characteristic
time of arrival.

There are two main results, which follow from Fig. 4.
First, in the transmission geometry, all three Stokes parameters
oscillate synchronously. It is obvious that the appearance
of circular polarization S3 and, even more important, its
oscillations can not be explained in terms of the Faraday effect
only. The latter provides only continuous conversion between
the linear polarizations described by the Stokes parameters
S1 and S2, i.e., a rotation of polarization plane. Second,
the data in transmission and reflection geometries differ
strongly. The transmitted light shows strong oscillations in all
three polarizations while the reflected light shows oscillations
only in the two linear polarizations (S1 and S2). In circular
polarization, we only see a monotonous drift towards positive
circular polarization.

Both these results evidence that in addition to Faraday
rotation there is significant contribution due to nonrecipro-
cal birefringence. First, this nonreciprocal birefringence is
responsible for conversion between the S2 and S3 polarizations.
Second, it also changes sign when the direction of propagation
is inverted [see Eq. (3b)]. For the light that makes a round
trip in the sample, the linear birefringence, therefore, tends
to compensate itself on the way back. This is consistent
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with the strong differences in time evolution of the circular
polarization S3 in different geometries and the disappearance
of its oscillatory behavior in reflection. In the next section, we
show that the ratio between Faraday rotation and nonreciprocal
birefringence exhibits a strong spectral dependence resulting
in nutation of exciton-polariton polarization.

VI. CIRCULAR VERSUS LINEAR BIREFRINGENCE

We have shown above that both Faraday rotation (circular
birefringence) as well as nonreciprocal birefringence (linear
birefringence) play important roles in the polarization evolu-
tion of exciton-polaritons. The Faraday rotation is responsible
for transformation between the S1 and S2 Stokes parameters,
while the nonreciprocal birefringence governs the transfer
between S2 and S3. Surprisingly, although nonreciprocal
birefringence involves both wave vector and magnetic field
effects [see Ref. 6 and our Eq. (3b)], it is strong enough in our
sample to be observed in the Faraday geometry.

In order to separate the different contributions, we first
analyze the spectral dependence of the Stokes parameters
after transmission of initially linearly polarized light (S2 = 1).
These data are shown in Fig. 5(b) and correspond to Fig. 4
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FIG. 5. (Color online) (a) Faraday rotation over a wide spectral
range below the exciton resonance obtained using time-integrated
measurements with a halogen lamp. Dashed line is the linear extrap-
olation of the experimental data for the region of 1.5–1.6 eV used
to estimate the contribution γ ′

1 from higher-energy resonances to the
Faraday rotation. (b) Spectral dependence of the Stokes parameters in
vicinity of the exciton resonance measured in transmission geometry.
The data are taken at B = 5 T and the initial polarization S2 = 1.
(c) Degree of circular polarization S3 as function of the polarization
angle � at B = 5 T and three different photon energies with δ = 15.2
(squares), 11.7 (circles), and 8.1 meV (triangles) marked in (a) by
dashed vertical lines. Solid lines are fits with Eq. (25).

in the time domain. From these data it follows that ellipticity
and, in particular, circular polarization S3 appear only when the
photon energy approaches the exciton resonances. Thus, for
large detunings δ > 25 meV, the nonreciprocal birefringence is
negligible, while the Faraday rotation is still large. Figure 5(a)
shows that Faraday rotation takes place in a much wider
spectral range even at photon energies below 1 eV. Moreover,
its spectral dependence is not monotonic. It grows up to
1.61 eV and then abruptly drops down when approaching the
exciton resonance. Such kind of dependence is a result of two
contributions. The first one is spectrally broad and originates
from energetically higher-lying interband optical transitions
(with 3–4 eV energy) in the X and L points of the Brillouin
zone.12 These transitions exhibit very large oscillator strength
due to high density of states.13 The second contribution is
spectrally narrow and originates from the exciton resonance as
discussed in Sec. II B. These two contributions have different
signs, which leads to the nonmonotonic dependence of Faraday
rotation in Fig. 5(a). As a result, the Faraday rotation cancels
at a certain photon energy. Close to that energy, the relative
strengths of the magneto-optical effects q, introduced in
Eq. (4), can change drastically.

As it follows from Fig. 5(b), which shows the transmitted
polarization as a function of detuning δ, at the detuning
energy δ = 15.2 meV Faraday rotation is absent. Indeed,
the exciting light was S2 = 1 polarized and since no S1

polarization was generated at this energy there is no Faraday
effect. Further insight into the strengths of Faraday rotation
and nonreciprocal birefringence can be obtained from the
rotational anisotropy. Figure 5(c) shows the dependence of
the circular polarization degree S3 as function of the angle
� between the polarization plane of the initially linearly
polarized light and the x axis. The data are shown for three
different detunings. At δ = 15.2 meV, there is no Faraday
rotation and we observe pure linear birefringence in the basis
related to the x and y axes. The conversion of polarization from
S2 to S3 is most efficient at � = π/4 + mπ/2 and it is zero
at � = mπ/2 (m = 0, ± 1, ± 2, . . .). If both nonreciprocal
birefringence and Faraday rotation are present, the degree
of circular polarization S3 in the transparency region can be
written as

S3 = q√
1 + q2

sin(2�) sin (φ) + 2q

1 + q2
cos (2�) sin2 (φ/2).

(25)

Without Faraday rotation, only the first term in Eq. (25) is
present (q → ∞) and S3 = sin (2�) sin (φ), which is the case
for δ = 15.2 meV. At this detuning energy, the conversion has a
maximum at � = π/4 and oscillates with the phase difference
of the eigenwaves φ. The combination of Faraday effect and
nonreciprocal birefringence leads to a shift of the angle for
maximum conversion due to the second term of Eq. (25).
This is in full accord with the experimental data presented in
Fig. 5(c), where the S3 dependence experiences a phase shift
for smaller detuning energies.

As expected, the strength of the nonreciprocal birefringence
increases with decreasing δ. At δ > 10 meV, the dependence
S3(�) is symmetric with respect to zero. However, for smaller
δ we observe an asymmetry along the direction of positive S3
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[see triangles in Fig. 5(c)]. This is due to circular dichroism
which is not accounted for in Eq. (25). Nevertheless, in the
case of pure nonreciprocal birefringence (δ = 15.2 meV),
the dichroism can be neglected. One can extract a phase
difference of φ = 0.32 using Eq. (25) from the data in
Fig. 5(c). Using Eq. (13) to calculate the effective splitting
�eff , which is h̄�eff = 2V kzB due to the absence of Faraday
rotation, we evaluate |V | = |φc/[2(ng − n0)kzLBz]| = 5 ×
10−12 eV cm T−1, using Eq. (13). We compare this quantity
with the theoretical estimates given in Sec. II C, which give
(for pure CdTe) |V1| = 1 × 10−12 eV cm T−1 and |V2| = 1.3 ×
10−12 eV cm T−1. The combination of these two mechanisms
provides a reasonable (with a factor of 2 difference) agreement
with the experimental data; the difference may result from the
variation of material parameters and the simplified form of the
eight-band model used here.34

A nonreciprocal birefringence for pure CdTe for detunings
between 63 and 440 meV was measured in Ref. 10. There
it is characterized, in accordance with Refs. 9 and 11, by
the parameter A. It is related to γ2 introduced in Eq. (11b) by
A = γ2/2. The detunings in our study are smaller than 25 meV,
but Eq. (11b) allows us to extrapolate γ2 for larger detunings.
We find that the extrapolated values for Cd0.88Zn0.12Te are
by a factor of 2 smaller than the measured values for CdTe.
This discrepancy can be due to the different experimental
techniques or the presence of Zn in our sample.

The spectral dependence of the relative strength of Faraday
rotation and nonreciprocal birefringence q results in nutation
of the light polarization in the time domain. As a result, the
Stokes parameters do not follow a pure time-periodic behavior,
as would be the case for constant q. In contrast, we observe
a continuous shift of the Stokes parameters, which manifests
strongest when the incoming light is circularly polarized (S3 =
1). The data are shown in Fig. 6(a).

In order to accomplish a quantitative description of the
magnetic field induced optical anisotropy in (Cd,Zn)Te, we
need to describe the Faraday rotation, which is sensitive to
the Zeeman splitting of the exciton and the higher-energy
transitions. The latter varies very slowly with photon energy in
the region of interest (δ < 25 meV). Therefore, it is sufficient
to account for the Faraday rotation due to higher-energy
optical transitions by a constant ϑ ′

F . Its value of ϑ ′
F =

158 deg/(cm T), which corresponds to γ ′
1 = 2.2 × 10−4 T−1,

is estimated by linear extrapolation [see the dashed line in
Fig. 5(a)].

The total Faraday rotation includes two contributions,
resulting both from high-energy transitions and the exciton
transition; the latter is given by Eq. (11b) convoluted with
a Gaussian distribution in analogy to Eq. (15). The same
convolution is performed for the nonlinear birefringence
contribution γ2 [see Eq. (11b)] to take the inhomogeneous
broadening into account. Finally, the phase difference φ =
ω
c
L(n+ − n−) can be calculated using Eq. (4). All quantities

except the Zeeman splitting of the exciton resonance 
 are
known. The consistent modeling of all three Stokes parameters
in the time domain using 
 as the only fitting parameter
gives a good agreement with experiment [dashed curves in
Fig. 6(a)]. Using this procedure for different B, we determine
the magnetic field dependence of the Zeeman splitting, which
is shown in Fig. 6(b). As expected, the Zeeman splitting grows

FIG. 6. (Color online) (a) Time evolution of Stokes parameters
at B = 7 T for initially circularly polarized light (S3 = 1). Dashed
lines are fits with Eq. (12) using the Zeeman splitting of the exciton
spin sublevels 
 as the only fitting parameter. (b) Magnetic field
dependence of 
 evaluated from the fits in (a). From a linear fit
(dashed line) of the data in the range up to B = 5 T we evaluate the
exciton g factor |gexc| = 0.2.

linearly with increasing magnetic field in the range B < 5 T.
From the linear dependence we evaluate the exciton g factor to
be |gexc| = 0.2. This value can be compared with the exciton g

factor in bulk CdTe estimated taking into account the complex
valence band effects.25,35,36 Calculation gives |gexc| ≈ 0.1 if
the electron-hole exchange interaction is disregarded36 or
|gexc| ≈ 0.35 with allowance for electron-hole exchange. In
these estimations, we used an electron g factor ge = −1.64
and included the renormalization of the magnetic Luttinger
parameter κ from 0.35 to 0.25 owing to magnetic field induced
mixing of exciton states. We stress that the strong sensitivity of
the g factors to the band-structure parameters and Zn content
makes a more precise comparison unwarranted. The deviation
of Zeeman splitting 
 from linear dependence at magnetic
fields B > 5 T is mainly due to complex structure of the
valence band.

VII. CONCLUSIONS

We have studied the polarization dynamics of exciton-
polaritons in sub-mm-thick (Cd,Zn)Te bulk crystals subject to
a longitudinal magnetic field (Faraday geometry). The strong
decrease of the group velocity close to the exciton resonance
leads to a sub-ns delay of light depending on the photon energy.
This results in a significant enhancement of magneto-optical
effects, which manifests in oscillations of the polarization
state in the time domain when a spectrally broad pulse is
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transmitted through the crystal. The characteristic frequency
depends on magnetic field and reaches 10 GHz at B ∼ 5 T.
Our data provide an approach for the determination of the
exciton Zeeman splitting between the exciton sublevels using
time-of-flight technique. It is especially useful if the energy
splitting is small and hidden by inhomogeneous broaden-
ing, so that it can not be resolved by linear spectroscopic
techniques.

In addition to the frequently observed Faraday rotation
(circular birefringence), we observe a significant contribution
of nonreciprocal birefringence (linear birefringence). This
observation occurs due to the nontrivial spectral dependence of
the Faraday rotation, which changes its sign at photon energies
close to the exciton resonance. As a result, each spectral com-
ponent of the optical pulse experiences a different anisotropy
due to the steep energy dependence of the relative strength of
Faraday rotation and nonreciprocal birefringence, leading to
polarization nutation of the exciton-polaritons. A microscopic
model which accounts for Faraday rotation and magnetospatial

dispersion provides a good quantitative description of the
experimental data. We evaluate the exciton g factor |gexc| =
0.2 and the magnetospatial dispersion term V kzBz with
|V | = 5 × 10−12 eV cm T−1. Nutation of the exciton-polariton
polarization is a quite interesting phenomenon because it can
be applied to manipulation of the polarization state of the
transmitted light. In this case, the relative strength of linear
and circular birefringence can be adjusted by active control of
the energy of the exciton resonance.
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