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Density-matrix Chern insulators: Finite-temperature generalization of topological insulators
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Departamento de Fı́sica Teórica I, Universidad Complutense, 28040 Madrid, Spain

(Received 24 January 2013; revised manuscript received 7 June 2013; published 31 October 2013)

Thermal noise can destroy topological insulators (TI). However, we demonstrate how TIs can be made stable
in dissipative systems. To that aim, we introduce the notion of band Liouvillian as the dissipative counterpart
of band Hamiltonian, and show a method to evaluate the topological order of its steady state. This is based
on a generalization of the Chern number valid for general mixed states (referred to as density-matrix Chern
value), which witnesses topological order in a system coupled to external noise. Additionally, we study its
relation with the electrical conductivity at finite temperature, which is not a topological property. Nonetheless,
the density-matrix Chern value represents the part of the conductivity which is topological due to the presence
of quantum mixed edge states at finite temperature. To make our formalism concrete, we apply these concepts
to the two-dimensional Haldane model in the presence of thermal dissipation, but our results hold for arbitrary
dimensions and density matrices.
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I. INTRODUCTION

Topological insulators have emerged as a new kind of quan-
tum phase of matter,1–4 which was predicted theoretically to
exist and has been discovered experimentally.5–7 However, the
behavior of topological insulators (TIs) subjected to dissipative
dynamics has been barely explored. This is inescapable to
address questions such as their robustness to thermal noise,
which is crucial in assessing the feasibility of these proposals
in quantum computation, spintronics, etc.

In a recent work,8 we have shown that certain one-
dimensional topological insulators (TI) lose the topological
protection of their edge states when they are coupled to bosonic
thermal baths. This is so even when the bath interaction
preserves the symmetry that protects the existence of edge
states. As a consequence, these edge states decay in time into
bulk states of a normal insulator. Thus, a very fundamental
question arises: Is it possible to have stable topological
insulating states in the presence of a thermal bath? The purpose
of this work is to explore this possibility by extending the
concept of TI to dissipative systems. Since for dissipative
systems quantum states are generally mixed and characterized
by a density-matrix operator ρ, we shall refer to these as
density-matrix TIs.

For usual TIs, the Thouless-Kohmoto-Nightingale–den Nijs
(TKNN) invariant9 provides a characterization of fermionic
time-reversal-broken (TRB) topological order in two spatial
dimensions. This is done in such a way that the transverse
conductivity is written in terms of a topological invariant,
the Chern number, which may be related to an adiabatic
change of the Hamiltonian in momentum space.10 How-
ever, the extension of this invariant to density matrices is
not straightforward.11 Actually, the problem of generalizing
geometric concepts as distances or geometric phases to
generally mixed states is highly nontrivial.12–16 We address
this problem and construct an observable that detects the
symmetry-protected topological order of a TI even if it is not in
a pure but in a general quantum mixed state. Moreover, when
this general quantum state is of the form of a Gibbs state, we
study the relation between this topological observable and the
conductivity, and show that it reduces to the usual notion of
TI in the limit of low temperature. However, we stress that the

notion of a density-matrix TI is far more general, as we shall
see.

The paper is organized as follows. In Sec. II, we introduce
the concept of band Liouvillian, which is an appropriate struc-
ture for dissipative dynamics in order to preserve topological
order. Section III is devoted to construct a topological indicator
for density matrices, which plays the same role as the TKNN
invariant for pure states. In Sec. IV, we analyze an example
of band Liouvillian dynamics for the Haldane model of two-
dimensional (2D) TI and, subsequently, in Sec. V, we study
its topological properties by using the indicator introduced in
Sec. III. Section VI focuses on the behavior of this model
under open boundary conditions; this leads to the appearance
of mixed edge states in analogy to usual (pure) edge states of a
TI in the absence of dissipation. Finally, in Sec. VII, we explain
the relation between dissipative topological order and quantum
Hall conductivity. Section VIII is devoted to conclusions.
In addition, technical details concerning the diagonalization
of the Haldane model, derivation of master equations, and
its stationary properties are left to Appendixes B, C and D,
respectively.

II. BAND LIOUVILLIAN DYNAMICS

The physical problem is defined as follows. Let Hs be the
system Hamiltonian representing a certain TI. This could be
constructed in an arbitrary spatial dimension, but we shall
restrict in what follows to the class of TRB insulators in two
spatial dimensions. Furthermore, the TI will be subjected to the
action of dissipative effects due to a thermal bath represented
by a Hamiltonian Hb. This bath could be general enough so
as to comprise fermionic or bosonic degrees of freedom and
we assume it is initially in a thermal or Gibbs state at a certain
temperature T . The system-bath interaction is described by
the Hamiltonian Hs-b.

We consider that the state ρs of the TI undergoes a time
evolution satisfying some Lindblad dynamical equation17–20

(unless otherwise stated, natural units h̄ = kB = 1 are taken
throughout the paper)

dρs

dt
= L(ρs) = −i[Hs,ρs] + D(ρs), (1)
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FIG. 1. (Color online) Pictorial image of the action of a band
Liouvillian L = ∑

k Lk. The vertical lines denote the only possible
processes involving the (initially empty) conduction band and
(initially filled) valence bands, i.e., those where the momentum
k is preserved. The violet fog represents some bath at a certain
temperature T which mediates such a process [see Eq. (22)] and
the plane indicates the Fermi energy EF .

where L is the so-called Liouvillian operator, which is com-
posed by a first term representing the Hamiltonian evolution
in the absence of system-bath interaction and a second
term, the dissipator D, accounting for the effect of the bath
dissipation. Concretely, we shall assume thatL is of the Davies
type, obtained under the assumption of weak system-bath
coupling.21

We are interested in searching for sufficient conditions that
the Liouvillian dynamics (1) must satisfy in order to preserve
the TI phase. In the absence of dissipation, we know that a key
ingredient is that the TI Hamiltonian Hs is a band Hamiltonian
that satisfies the Bloch theorem and can be decomposed as
Hs = ∑

k∈B.Z. Hs(k) where k denotes a crystalline momentum.
Thus, it is natural to restrict our attention to Liouvillian evo-
lutions satisfying a similar condition L = ∑

k∈B.Z. Lk, where
each Lk only involves fermionic operators with crystalline
momentum k; we shall refer to these as band Liouvillians.
Basically, a Liouvillian of this kind describes processes in
such a way that the momenta of the fermions are not changed
(up to a vector G of the reciprocal lattice) (a pictorial image is
sketched in Fig. 1). As a consequence, they present invariance
under space translations and every Lk satisfies

T (a)Lk(ρ)T †(a) = Lk[T (a)ρT †(a)], (2)

where T (a) = e−ia·k̂ is the operator that translates a point with
coordinate r to the point r + a on the lattice.

An analogy to the Bloch theorem for this kind of Liovillians
characterizes its steady states.

Theorem 1. Consider a band Liouvillian L = ∑
k∈B.Z. Lk.

If each Lk has a unique stationary state, it has the form

ρss = λ0|0〉〈0| +
∑
k,α,β

λk
αβ |1α,k〉〈1β,k|. (3)

Here, α and β denote additional quantum numbers (band
indexes, spin indexes, lattice indexes, etc.), and |1α,k〉 ≡ |uα,k〉

denotes a particle in the Bloch state with momentum k and
additional quantum number α, T (r)|uα,k〉 = e−ir·k|uα,k〉.

Proof. Consider ρss to be the steady state of some Lk:

Lk(ρss) = 0. (4)

By applying the translation operator on both sides and using
(2), we obtain

Lk[T (a)ρssT
†(a)] = 0. (5)

Thus, ρ ′
ss := T (a)ρssT

†(a) is also a steady state of the
system. Since by assumption ρss is unique, ρ ′

ss = ρss, so
that [T (a),ρss] = 0 and T (a) and ρss share the same set of
eigenvectors. �

It is worth noticing that as a difference with the case of
pure states, the translational symmetry of a Liovillian does not
necessarily imply steady states with well-defined crystalline
momentum k. They can be a convex mixture of states
with different well-defined momenta (3). However, since the
subspace with well-defined momentum k is invariant under the
action of Lk, if the initial state has a well-defined momentum
k (for instance, a particle with well-defined momentum in one
of the bands of the Hamiltonian), then the steady state under
Lk will have well-defined momentum as well:

ρk
ss = λ0|0〉〈0| +

∑
α,β

λk
αβ |1α,k〉〈1β,k|. (6)

Thus, the steady state ρss of the total Liouvillian L =∑
k∈B.Z. Lk will be of the form

ρss =
⊗

k

ρk
ss, ρk

ss := λ0|0〉〈0| +
∑
α,β

λk
αβ |1α,k〉〈1β,k|. (7)

The coefficients λ0 and λk
αβ depend on the particular steady

state as a result of the dissipative dynamics (1). For instance, if
the steady state turns out to be a thermal state density matrix,
then they will be given by Gibbs weights (25).

III. CHERN CONNECTIONS FOR DENSITY MATRICES

In order to construct a topological indicator for the generally
mixed state ρss, we can not use the usual Berry connection as
in the formulation of the Chern number because it is defined
just for pure states. Regarding density matrices, there is not a
unique natural extension of the Berry connection and the Berry
phase.12–16 However, the band Liouvillian structure allows for
the construction of a Berry-type connection A

ρ

i for the density-
matrix steady states, in such a way that the integral of its
curvature form F

ρ

ij gives a topological indicator which we
refer to as density-matrix Chern value. To construct such an
indicator, we use purification, which is a method that allows
us to extend quantities defined for pure states to general mixed
states.

Generally speaking, for a density matrix ρ acting in a
Hilbert space H, a purification |�ρ〉 is a pure state in an
extended Hilbert space |�ρ〉 ∈ HA ⊗ H such that

ρ = TrA(|�ρ〉〈�ρ |). (8)

In other words, mixed states can always be seen as pure states
of a larger system such that we only have access to partial
information of it.
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Given some ρ there are infinitely many states |�ρ〉 which
fulfill (8). Without loss of mathematical generality, we take the
ancillary space HA to have the same dimension d as H for the
system,22 then any purification |�ρ〉 can be written as

|�ρ〉 = (UA ⊗ ρ̃)|�〉, (9)

where UA is a unitary operator, ρ̃ρ̃† = ρ, and

|�〉 :=
d∑

α=1

|vα〉 ⊗ |vα〉 (10)

is a (unnormalized) maximally entangled state, with {|vj 〉}
an orthonormal basis of H. From the Schmidt decomposition
of |�ρ〉 it follows that (9) is the most general form for a
purification of ρ.23

By using the spectral decomposition of ρ =∑
α pα|ψα〉〈ψα|, we may write ρ̃ as

ρ̃ =
∑

α

√
pα|ψα〉〈ϕα|, (11)

where {|ϕα〉} is also an orthonormal basis which is considered
to be arbitrary. Therefore, given some ρ there is a freedom for
the choice of UA and the basis {|ϕα〉} for its purification |�ρ〉.

The next theorem is particularly important in the construc-
tion of a Berry-type connection for density matrices.

Theorem 2. Consider the steady state of a band Liouvillian
(7): we define a Berry-type connection for ρk

ss through one of
its purifications |�ρ

k〉 as

A
ρ

i (k) := i
〈
�

ρ

k

∣∣∂i�
ρ

k

〉
for ρk

ss = TrA
(∣∣�ρ

k

〉〈
�

ρ

k

∣∣). (12)

Here, the notation is ∂i := ∂ki
. Under the assumption that UA

and {|ϕi〉} are independent of momentum k of the steady state,
the connection (12) is unique and does not depend on the
purification. Explicitly, it takes the following form in terms of
the spectral decomposition of ρk

ss = ∑
α pk

α|ψα,k〉〈ψα,k|:
A

ρ

i (k) = i
∑

α

pk
α〈ψα,k|∂iψα,k〉. (13)

Proof. Indeed, the general form (9) for a purification of ρk
ss

reads as

|�ρ

k〉 =
∑

α

√
pk

α(UA ⊗ |ψα,k〉〈ϕα|)|�〉, (14)

where we have used (11). Taking the derivative ∂i := ∂ki
in

(14) and computing the overlap〈
�

ρ

k

∣∣∂i�
ρ

k

〉
=

∑
α,β

√
pk

β〈�|[(∂i

√
pk

α

)
(1 ⊗ |ϕβ〉〈ψβ,k|ψα,k〉〈ϕα|)

+
√

pk
α(1 ⊗ |ϕβ〉〈ψβ,k|∂iψα,k〉〈ϕα|)]|�〉. (15)

Since 〈�|(1 ⊗ A)|�〉 = Tr(A), we obtain

A
ρ

i (k) = i
∑

α

√
pk

α

(
∂i

√
pk

α

) + pk
α〈ψα,k|∂iψα,k〉, (16)

which is independent of UA and {|ϕi〉}. Moreover, note that
in the pure state case ρk

ss = |ψk〉〈ψk| we recover the Berry
connection A

ρ

i (k) = Ai(k) = i〈ψk|∂iψk〉.24 In addition, the
first term on the right-hand side of (16) vanishes by taking into

account that
∑

α pk
α = 1. Hence, (16) can be simply written as

(13). �
Once this purified connection (13) is defined, we may obtain

the (Abelian) curvature form through

F
ρ

ij (k) := ∂iA
ρ

j (k) − ∂jA
ρ

i (k), (17)

and construct a density-matrix topological indicator nρ

Ch
associated with the steady state ρk

ss via the first Chern class25

of this connection:

nρ

Ch := 1

4π
Tr

[ ∫
T2

F
ρ

ij (k)dki ∧ dkj

]
. (18)

It is convenient to compute the different contributions that
appear in the explicit expression of (17) using (13):

F
ρ

ij (k) =
∑

α

[
pk

αF α
ij (k) + (

∂ip
k
α

)
Aα

j (k) − (
∂jp

k
α

)
Aα

i (k)
]
.

(19)

Note that from this equation is not manifestly clear the U(1)
gauge invariance of the curvature, but this can be proven by
performing a gauge transformation and making use of the
property

∑
α pk

α = 1. In addition, if N is the dimension of the
steady state ρk

ss, the curvature is not U(1)N gauge invariant,
however, that is not the case with the Chern value (18), which
is fully invariant. A proof of this fact is given in Appendix A.

Thus, one of the main results of this work is the construction
of this object nρ

Ch, which characterizes the topological structure
of insulators in the presence of dissipation. Furthermore, by
taking into account Eq. (19), nρ

Ch can be written as

nρ

Ch = 1

2π

∫
T2

F
ρ

12(k)d2k

= 1

2π

∑
α

∫
T2

pk
αF α

12(k)d2k

+ 1

2π

∑
α

∫
T2

[(
∂1p

k
α

)
Aα

2 (k) − (
∂2p

k
α

)
Aα

1 (k)
]
d2k.

(20)

A nonvanishing nρ

Ch witnesses a topological nontrivial order
present in ρk

ss. Since for the pure case the connection (13)
becomes the usual Berry connection, if the steady state is a
pure Bloch state ρk

ss = |uα,k〉〈uα,k|, we recover the standard
TKNN topological invariant (Chern number).

The density-matrix Chern value nρ

Ch [Eq. (20)] has two
different terms. The first one is a weighted integration of
curvatures for different bands. This term has no topological
meaning on its own and it does not distinguish between phases
with or without topological order. The second term represents
a correction to the value given by the first one that provides
the topological character to nρ

Ch. In addition, both terms have
a physical meaning which will be explained in Sec. VII.

The name Chern value responds to the fact that despite
its topological origin, it may not be an integer for a general
mixed state. The reason is very fundamental: the space of
density matrices ρ is a convex space, which means that
a convex combination of density matrices ρ1 and ρ2, ρ =
p1ρ1 + p2ρ2 is also a mixed state. Due to the Abelian character
of the curvature form F

ρ

ij [Eq. (17)], nρ

Ch = p1nρ1
Ch + p2nρ2

Ch.
Therefore, since the weights p1,p2 ∈ R with p1 + p2 = 1,
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then nρ

Ch ∈ R as well. Nevertheless, this will not be an obstacle
to use the Chern value to detect topological properties of
insulator states. Note that there are other quantities in the
literature which also reflect topological properties but are not
integer numbers, for example the Aharonov-Bohm phase (see
also Ref. 26). In forthcoming sections, we will apply this
formalism to the case of the Haldane model in 2D which
is a prototype of TRB topological insulator.27

IV. BAND LIOUVILLIAN FOR THE HALDANE MODEL

We can apply our previous formalism to the Haldane
model of 2D TI. This is a graphenelike model based on a
honeycomb lattice with nearest-neighbor and next-nearest-
neighbor couplings. For periodic boundary conditions, the
Haldane Hamiltonian in the reciprocal space is given by

Hs =
∑

k∈B.Z.

(a†
k,b

†
k)H (k)

(
ak

bk

)
=

∑
k∈B.Z.

Ek
1 c

†
kck + Ek

2 d
†
kdk.

(21)

Here, ak and bk correspond to the two species of fermions as-
sociated with the triangular sublattices of a honeycomb lattice,

and ck and dk are the fermionic modes which diagonalize the
Hamiltonian with eigenvalues Ek

1 and Ek
2 , respectively. For

more details, we refer to Appendix B.
We shall assume a local fermionic bath model, with

quadratic coupling of the form

Hs-b :=
∑
i,r

gi
(
a†

r ⊗ Ai
r + ar ⊗ Ai†

r + b†r ⊗ Bi
r + br ⊗ Bi†

r

)
,

(22)

where r denotes the point in the sublattices and Ai
r and

Bi
r denote the bath fermion operators coupled with the two

species ar and br , respectively. This model could effectively
describe situations such as (i) noncontrollable tunneling of
electrons between the TI and some surrounding material,
(ii) particle losses in simulated topological phases with cold
fermionic atoms in optical lattices, or electron transitions to
high-energy levels not well described under the tight-binding
approximation.

The detailed derivation of the Liouvillian equation (master
equation) in the weak coupling limit for this systems is
explained in Appendix C; the final result turns out to be

dρs(t)

dt
=

∑
k

Lk[ρs(t)]

=
∑

k

(
−i[Hk,ρs(t)] + γ

(
Ek

1

)
n̄F

(
Ek

1

)(
c
†
kρs(t)ck − 1

2
{ckc

†
k,ρs(t)}

)
+ γ

(
Ek

1

)[
1 − n̄F

(
Ek

1

)](
ckρs(t)c

†
k − 1

2
{c†kck,ρs(t)}

)

+ γ
(
Ek

2

)
n̄F

(
Ek

2

)(
d
†
kρs(t)dk − 1

2
{dkd

†
k,ρs(t)}

)
+ γ

(
Ek

2

)
[1 − n̄F

(
Ek

2

)](
dkρs(t)d

†
k − 1

2
{d†

kdk,ρs(t)}
))

. (23)

Here,

n̄F (E) := 1

eβE + 1
, γ (ω) := 2πJ (ω), (24)

where J (ω) is the bath spectral density.
It is important to emphasize that this Liouvillian (23)

fulfills the conditions of a band Liouvillian L = ∑
k∈B.Z. Lk.

Moreover, it is quadratic in fermionic operators and its unique
steady state is the Gibbs state (β = 1/T )

ρβ = e−βHs

Z
=

⊗
k

ρk
ss =

⊗
k

(
e−βEk

1 c
†
kck

1 + e−βEk
1

)(
e−βEk

2 d
†
kdk

1 + e−βEk
2

)
,

(25)

that has the form of (7) corresponding to a band Liouvillian.
Note that in the limit T → 0, ρβ approaches the Fermi sea
where the lower band (ck) is fully occupied and the upper band
(dk) is completely empty (see Appendix D for more details).

V. CHERN VALUE OF THE STEADY STATE

We have obtained that the steady state of the Liouvillian
(23) is a product of states ρk

ss with well-defined momentum.
Thus, the (parallel) transport along k-space of each of these

states is well defined and, hence, the state characterization by
a density-matrix Chern value (20) is possible.

For the sake of computation, note that ρk
ss is diagonal in the

occupation basis ρk
ss = ∑

n,m∈{0,1} pk
nm|m,n〉k〈m,n|, where

|00〉k = |0〉|0〉, |10〉k = |uc,k〉|0〉,
|01〉k = |0〉|ud,k〉, |11〉k = |uc,k〉|ud,k〉.

The vacuum |0〉 has no particles and does not depend on k.
If we define the geometric connections for the lower (c) and
upper (d) bands

Aα
i (k) := i〈uα,k|∂iuα,k〉, α = c,d (26)

then it is possible to express the connection A
ρ

i (k) in terms of
the previous ones (see Appendix D):

A
ρ

i (k) = n̄F

(
Ek

1

)
Ac

i (k) + n̄F

(
Ek

2

)
Ad

i (k). (27)

Note that in the T → 0 limit, we recover the standard
Berry connection A

ρ

i (k) → Ac
i (k), as the steady state (25)

approaches the Fermi sea with the fully occupied lower band.
The Chern value can be now computed by integrating the

curvature form of A
ρ

i (k) [or by using the simplified expression
(20)]. The color map in Fig. 2 represents the Chern value for
different values of M and φ and different bath temperatures.
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FIG. 2. (Color online) Color map depicting the Chern value in
the Haldane model with dissipation, for different values of φ, M , and
bath temperature T (in units of t2 = 1). As T increases, the Chern
value decreases (in absolute value), and for T = 0 we recover the
phase diagram obtained by Haldane (Ref. 27). The dashed black lines
enclose the region displaying topological order at T = 0, so that
all nonvanishing Chern values are inside of this region for any T .
Approximately T = 1 and 5 correspond to less than 10% and 50% of
the gap, respectively.

Note its nice properties: it is zero for any choice of M and
φ for all temperatures if it is zero at T = 0. This manifests
that the topological order can not be created by increasing
temperature. Moreover, as T increases, the absolute value of
the Chern value decreases, and in the limit of T → ∞ we
obtain nρ

Ch → 0 for all M and φ. This is in agreement with
the common intuition that at infinite temperature any kind of
order should be spoiled.

VI. MIXED EDGE STATES AND MASTER EQUATION

A physical signature of a TI phase is the existence of gapless
(metallic) edge states. Thus, once we have mathematically
characterized the phase diagram of the Haldane model under
dissipation by means of the density-matrix Chern value, we
wonder about the fate of the chiral edge states of the Haldane
model at finite temperature.

To that aim, we consider the Haldane model placed on
a cylindrical geometry, where we take periodic boundary
conditions just along one spatial dimension, say a2. In
such a case, the momentum k2 along the a2 direction is a
good quantum number and the Haldane Hamiltonian can be
diagonalized obtaining (see Appendix B for more details)

Hs =
∑

k2∈B.Z.

H (k2) =
∑
m

k2 ∈ B.Z.

Ek2
m f

†
m,k2

fm,k2 . (28)

Here, the diagonal modes fm,k2 mix both species of fermions
am,k2 and bm,k2 .

By imposing this geometry also in the interaction
Hamiltonian (22), we derive the following dynamical equation

for the system (see Appendix C):

dρs(t)

dt
=

∑
k2∈B.Z.

Lk2 [ρs(t)]

=
∑

k2∈B.Z.

(
− i[H (k2),ρs(t)]

+
∑
m

(
γ
(
Ek2

m

)
n̄F

(
Ek2

m

)
D

f
†
(m,k2)

[ρs(t)]

+ γ
(
Ek2

m

)[
1 − n̄F

(
Ek2

m

)]
Df(m,k2) [ρs(t)]

))
, (29)

where

DK [ρs(t)] := Kρs(t)K
† − 1

2 {K†K,ρs(t)}. (30)

Again, the Gibbs state at the same temperature as the bath
is the unique steady state of Eq. (29):

ρβ = e
−β

∑
k2

H (k2)

Z
=

⊗
k2

e−βH (k2)

Zk2

, (31)

with Zk2 = Tr
[
e−βH (k2)

]
. Therefore, as long as the values of

M , t2, and φ are such that the system exhibits symmetry-
protected topological order (see Fig. 2), two of the modes
which diagonalize each H (k2), say f(L,k2) and f(R,k2), corre-
spond to edge states and the Gibbs state is a tensor product in
k2 of states of the form

ρβ(k2) = e−βH (k2)

Zk2

= ρL
β (k2) ⊗ ρbulk

β (k2) ⊗ ρR
β (k2), (32)

where

ρ
L,R
β (k2) := e

−βEL,R (k2)f †
(L,R,k2)f(L,R,k2)

1 + e−βEL,R (k2)
(33)

are Gibbs states of the edge modes. However, as temperature
increases (see again Fig. 2), the edge modes in the steady
state of the Liouvillian (29) become delocalized along the
transverse direction to the edges. Then, the components
ρL,R(k2) approach to a maximally mixed state with vacuum
|0〉. In such a situation, there is not a way to distinguish the
edge from the bulk modes because for all k2 the occupation
along the direction a1 becomes the same and equal to 1

2 . We
illustrate this behavior in Fig. 3.

It is worth stressing that in order to study the dissipative
effects on the cylindrical Haldane system we must determine
how the boundary conditions of the system affect the dissipator
operator. To that aim, we need to specify how the dissipator
is generated (constructed). In our case, this is the result of
the weak interaction of the system with local baths. However,
there are also possible scenarios where the dissipator is the
effective result of other external interactions (see, for example,
Refs. 28–33). Since the process of “opening” or “closing” a
system has a physical meaning, we stress that we need to
know how the dissipator is physically generated to obtain
its “open” and/or “closed” counterpart. Note that a dissipator
with periodic boundary conditions may split in different and
nonequivalent dissipators once the system is opened along
some direction if it is generated in different ways.
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FIG. 3. (Color online) Occupation along the direction a1 for
all particles with momentum k2 = 4

5
π

|a2| , M = 0, and φ = π/2, for
different values of T (in units of t2 = 1). Note the presence of edge
states at finite temperature [Eq. (33)] in the positions 1 and 50
along the direction a1. However, as the temperature T significantly
increases, the population of the edge modes becomes similar to the
population of the bulk modes.

VII. QUANTUM HALL CONDUCTIVITY AND CHERN
VALUE AT FINITE TEMPERATURE

We can obtain further physical meaning and implications
for the density-matrix Chern value (20) by studying the
(quantum Hall) transverse conductivity σxy and its relation to
the thermal edge states obtained for the Haldane model. Using
the Kubo formula34 in linear response theory, it is possible
to derive an expression for the transverse Hall conductivity at
finite temperature35:

σρ
xy = e2

2πh

∑
α

∫
T2

n̄F

(
Ek

α

)
Fα

xy(k)d2k. (34)

Note that this expression36 is different from the one obtained
for the Chern value (20). Indeed, the conductivity is not
topological at finite temperature, as shown in Fig. 4 where
nonzero Hall conductivity appears in regions outside the
topological regime, in contrast with Fig. 2. Nonetheless, both
quantities can be related by means of the following equation:

σρ
xy = e2

h
nρ

Ch + e2

2πh

∑
α

∫
T2

{[
∂yn̄F

(
Ek

α

)]
Aα

x (k)

− [
∂xn̄F

(
Ek

α

)]
Aα

y (k)
}
d2k. (35)

The second term on the right-hand side of (35) is the same
one that appears for the transverse conductivity of a normal
insulator with an applied magnetic field (or a pseudomagnetic
field as for the Haldane model) at T �= 0. It corresponds to the
conduction by thermal activation of excited electrons in the
bulk. For instance, for parameters t1 = 4,t2 = 1,φ = π

2 , and

FIG. 4. (Color online) Color map depicting the conductivity
Eq. (34) for different values of φ, M , and the bath temperature
T (in units of t2 = 1). As T increases, the conductivity decreases
(in absolute value), and for T = 0 we recover the Chern number
result (Fig. 2). The dashed black lines enclose the region displaying
topological order at T = 0. Thus, contrarily to the Chern value, the
conductivity is not a topological property for finite T , as it does not
vanish for every point outside this region for any T .

M = 6 in the Haldane model, this term is the only nonzero
contribution to the conductivity, as the system is outside the
topological regime, and so nρ

Ch = 0.
Notwithstanding, the first term on the right-hand side of

(35), which is nothing but the Chern value previously defined,
represents a contribution due to the topological nature of
our system and the presence of conducting edge states. For
parameters t1 = 4,t2 = 1,φ = π

2 , and M = 0 in the Haldane
model, the system is within the topological regime and this new
term shows up. Note that at T = 0 we recover the well-known
TKNN expression for the conductivity:

σρ
xy −−−→

T −→0

e2

h
νCh, (36)

where νCh denotes the standard Chern number.

VIII. CONCLUSIONS

We have studied topological insulating phases in the
presence of dissipation. After introducing the notion of band
Liouvillian, we address the characterization of the topological
order of its steady states by resorting to the density-matrix
Chern value, a topological indicator that is an extension of
the Chern number for pure states. The Haldane model of a
2D TI in contact with a thermal bath offers a nice testbed to
study these phenomena. More concretely, we compute phase
diagrams at finite temperature based on the Chern value,
and corroborate that topological order decreases as the bath
temperature increases. Thus, from a topologically disordered
state it is not possible to induce a topologically ordered phase
just by warming the system. However, a topologically ordered
state may remain ordered at finite temperature T except at
the limit T → ∞. This has to be compared with the previous
study8 where symmetry-protected topological order turned out
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to be lost for a dissipative system in the presence of noise not
generated by a band Liouvillian. Our results may also have
direct application in recent studies regarding dissipation on
Majorana fermions in topological superconductors.29,30,37

Complementarily, we study the properties of the Haldane
model coupled to a thermal bath under cylindrical boundary
conditions. We find that the the steady state splits in three
different, generally mixed, substates [Eq. (32)]. Two of them
are associated with creation or annihilation of fermionic
gapless edge modes, and the other one accounts for the same
process just in the bulk modes. In the limit T → 0, we recover
the properties of the usual Haldane model.

Finally, we examine the relation between the density-matrix
Chern value and the conductivity at finite temperature. We
show that the latter is a topological property, in contrast to
the Chern value. This fact is due to the presence of an extra
term which accounts for the conductivity generated by thermal
activation of electrons in the bulk, which has not a particular
topological meaning and is present in normal insulators. In this
regard, provided that the gap between conduction and valence
bands is large enough, the Chern value may be approximately
estimated by measuring the conductivity, as the thermal
activation would be very small. However, recent results38

suggest that a direct measurement of the density-matrix Chern
value could be possible in optical lattice realizations.
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APPENDIX A: GAUGE INVARIANCE OF THE
DENSITY-MATRIX CHERN VALUE

In this appendix, we provide a proof that the density-matrix
Chern value (18) is fully gauge invariant with respect to U(1)N

transformations of the mixed state. To that aim, consider
a U(1)N gauge transformation on the eigenstates of ρk

ss =∑N
α=1 pk

α|ψα,k〉〈ψα,k|:
|ψα,k〉 −→ |ψ̃α,k〉 = eiφα

k |ψα,k〉. (A1)

The Berry-type connection (13) and the associated purified
curvature (17) transform as

Ã
ρ

i (k) = A
ρ

i (k) −
∑

α

pk
α∂iφ

α
k , (A2)

F̃
ρ

ij (k) = F
ρ

ij (k) +
∑

α

∂j

(
pk

α∂iφ
α
k

) − ∂i

(
pk

α∂jφ
α
k

)
. (A3)

On the other hand, the translational invariance of the lattice
imposes that ρk

ss = ρk+G
ss , where G is a vector in the reciprocal

lattice. Then, since the eigenbasis of ρk
ss is single valued, we

conclude that

|ψα,k〉 = |ψα,k+G〉 (A4)

independently of the gauge. This implies

|ψ̃α,k〉 = |ψ̃α,k+G〉 ⇒ eiφα
k |ψα,k〉 = eiφα

k+G |ψα,k+G〉. (A5)

Thus, we obtain that the gauge phase satisfies the relation

φα
k = φα

k+G (mod 2π ). (A6)

The Chern value (in 2D for simplicity) is given by

nρ

Ch = 1

2π

∫
T2

F
ρ

12d
2k. (A7)

Performing a U(1)N gauge transformation and using (A3),

ñρ

Ch = 1

2π

∫
T2

F̃
ρ

12d
2k = nρ

Ch + 1

2π

∑
α

∫ π

−π

dk1

[ ∫ π

−π

dk2∂k2

(
pk

α∂k1φ
α
k

)] − 1

2π

∫ π

−π

dk2

[ ∫ π

−π

dk1∂k1

(
pk

α∂k2φ
α
k

)]

= nρ

Ch + 1

2π

∑
α

∫ π

−π

dk1
[
pα(k1,k2 = π )∂k1φ

α(k1,k2 = π ) − pα(k1,k2 = −π )∂k1φ
α(k1,k2 = −π )

]

− 1

2π

∑
α

∫ π

−π

dk2
[
pα(k1 = π,k2)∂k2φ

α(k1 = π,k2) − pα(k1 = −π,k2)∂k2φ
α(k1 = −π,k2)

]
, (A8)

where k1 and k2 are the two periodic directions along the 2-torus. The weights pk
α are periodic in the B.Z. In particular, for the

Gibbs’ state, these are functions of the energies of the system. Thus, we have pk
α = pk+G

α and then it follows that

ñρ

Ch = nρ

Ch + 1

2π

∑
α

∫ π

−π

dk1
{
pα(k1,k2 = π )∂k1 [φα(k1,k2 = π ) − φα(k1,k2 = −π )]

}

− 1

2π

∑
α

∫ π

−π

dk2
{
pα(k1 = π,k2)∂k2 [φα(k1 = π,k2) − φα(k1 = −π,k2)]

}
. (A9)

At this point, we make use of Eq. (A6) and thus

∂kx,y

(
φα

k − φα
k+G

) = 0. (A10)

Hence, we can further simplify (A9) using (A10), arriving at the fundamental result

ñρ

Ch = nρ

Ch. (A11)
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FIG. 5. (Color online) System of coordinates {a1,a2} taken to
write the Haldane Hamiltonian in real space (B1). The solid white
and black circles denote fermions a and b, respectively, and the green
enclosures highlight the two-site unit cell.

To summarize, the purified Berry curvature is only U(1)
gauge invariant, however, the Chern value is U(1)N gauge
invariant and consequently it can represent a physical observ-
able.

APPENDIX B: HALDANE MODEL GEOMETRIES

In order to write explicitly the Haldane Hamiltonian27 in
real space, we will consider the system of coordinates {a1,a2}
represented in Fig. 5, with a1 = 1

2 (3,
√

3) and a2 = 1
2 (−3,

√
3)

for lattice spacing a = 1. We write a(m,n) (b(m,n)) for the
fermionic operator of kind a (b) in the position r (m,n) =
ma1 + na2. Then, the Haldane Hamiltonian in real space reads
as

Hs :=
∑
m,n

(
M

2
[a†

(m,n)a(m,n) − b
†
(m,n)b(m,n)]

+ t1[a†
(m,n)b(m,n) + a

†
(m+1,n)b(m,n) + a

†
(m,n)b(m,n+1)]

+ t2
[
eiφa

†
(m,n)a(m+1,n+1) + e−iφa

†
(m,n)a(m+1,n)

+ e−iφa
†
(m,n)a(m,n+1) + e−iφb

†
(m,n)b(m+1,n+1)

+ eiφb
†
(m,n)b(m+1,n) + eiφb

†
(m,n)b(m,n+1)

] + H.c.

)
. (B1)

1. Toroidal geometry

By taking periodic boundary conditions in both spatial
directions, we may write the Hamiltonian (B1) in the reciprocal
space using the Fourier-transformed operators

a(n,m) = 1√
N

∑
k∈B.Z.

eik·r (m,n)ak, (B2)

b(n,m) = 1√
N

∑
k∈B.Z.

eik·r (m,n)bk, (B3)

where B.Z. stands for Brillouin zone which is a hexagon with
vertices in the k = (k1,k2) points(

0,
4π

3
√

3

)
,

(
2π

3
,

2π

3
√

3

)
,

(
2π

3
, − 2π

3
√

3

)
, (B4)

(
0, − 4π

3
√

3

)
,

(
−2π

3
, − 2π

3
√

3

)
,

(
−2π

3
,

2π

3
√

3

)
, (B5)

and N is the total number of two-site unit cells. Thus, the
Haldane Hamiltonian is rewritten as

Hs =
∑

k

(a†
k,b

†
k)H (k)

(
ak

bk

)
. (B6)

Here,

H11(k) = M + 2t2
∑

i

cos[φ + (k · bi)],

H12(k) = H (k)∗21 = t1
∑

i

e−ik·ai , (B7)

H22(k) = −M + 2t2
∑

i

cos[φ − (k · bi)]

with

b1 = −(3,
√

3)/2, b2 = (3, −
√

3)/2, b3 = (0,
√

3).

(B8)

By diagonalizing the matrix H (k) we obtain

Hs =
∑

k

Ek
1 c

†
kck + Ek

2 d
†
kdk, (B9)

where the eigenvalues are given by

Ek
1,2 = 2t2(cos φ)ξ1(k) ∓

√
�(k) (B10)

with

�(k) := M2 + t2
1 [3 + 2ξ1(k)]

+ 4t2
2 (sin2 φ)[ξ2(k)]2 − 4Mt2(sin φ)ξ2(k), (B11)

and

ξ1(k) :=
∑

i

cos k · bi = 2 cos
3k1

2
cos

√
3k2

2
+ cos

√
3k2,

ξ2(k) :=
∑

i

sin k · bi = −2 cos
3k1

2
sin

√
3k2

2
+ sin

√
3k2.

(B12)

The operators ck and dk are related to ak and bk via the
canonical transformation(

ak

bk

)
= 1√

1 + |xk|2
(

xk 1
−1 x∗

k

)(
ck

dk

)
, (B13)

where

xk := t1
∑

i e
−ik·ai

M − 2t2(sin φ)ξ2(k) + √
�(k)

. (B14)
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FIG. 6. (Color online) Energy bands of the Hamiltonian (B17)
as a function of the momentum k2. The red lines correspond to the
edge-state modes. The rest of the parameters are M = 0, φ = π/2,
and t1 = 4 (in units of t2 = 1).

2. Cylindrical geometry

In this case, we take periodic boundary conditions along the
direction a2 and open boundaries along a1, so that we work
with a cylindrical configuration. The inverse Fourier transform
along the a2 direction of the fermionic operators is given by

a(m,n) = 1√
N2

∑
k2∈B.Z.

eik2n|a2|a(m,k2), (B15)

b(m,n) = 1√
N2

∑
k2∈B.Z.

eik2n|a2|b(m,k2), (B16)

where the Brillouin zone corresponds to the interval k2 ∈
(−π/|a2|,π/|a2|) = (−π/

√
3,π/

√
3), and N2 is the number

of two-site basic cells along the direction a2. By using these
equations in the Hamiltonian (B1) we obtain

Hs =
∑

k2∈B.Z.

∑
m

([
M

2
+ t2 cos

(√
3k2 − φ

)]
a
†
(m,k2)a(m,k2)

+
[
−M

2
+ t2 cos(

√
3k2 + φ)

]
b
†
(m,k2)b(m,k2)

+ t1

[
a
†
(m+1,k2)b(m,k2) +

(
1 + ei

√
3k2

)
a
†
(m,k2)b(m,k2)

]
+ t2

[ (
ei(

√
3k2+φ) + e−iφ

)
a
†
(m,k2)a(m+1,k2)

+
(
ei(

√
3k2−φ) + eiφ

)
b
†
(m,k2)b(m+1,k2)

]
+ H.c.

)
.

(B17)

This Hamiltonian has the structure Hs = ∑
k2∈B.Z. H (k2),

therefore we can diagonalize H by diagonalizing each H (k2).
In Fig. 6, we have depicted the behavior of the eigenvalues of
H (k2) as a function of k2. The red lines connecting the upper
and lower bands correspond to the edge-state modes, which
are localized on the edges of the direction a1.

APPENDIX C: DERIVATION OF THE MASTER EQUATION
FOR THE HALDANE MODEL

In this section, we derive the dynamical equation (master
equation) for the Haldane model coupled to a thermal bath.
We assume the usual condition of weak system-bath coupling,
which is a standard assumption for thermalization.

The total Hamiltonian of the problem considered reads as
follows:

H := Hs + Hb + Hs-b. (C1)

The first term Hs is the Haldane Hamiltonian (B1). The second
term in (C1), Hb, is the free Hamiltonian of the local baths,

Hb :=
∑
i,r

εi
(
Ai†

r Ai
r + Bi†

r Bi
r

)
, (C2)

where A and B stand for independent fermionic bath op-
erators that satisfy the canonical anticommutation relations
{Ai

n,A
j†
n′ } = δn,n′δi,j ,{Ai

n,A
j

n′ } = 0 and analogously for Bi
n.

The index r denotes the position of the local bath on the lattice
and i runs over the bath degrees of freedom. Also, εi represents
the energy of each mode i of the bath which is assumed to be
independent of the lattice site. Finally, the third term in (C1),
Hs-b, is given by

Hs-b :=
∑
i,r

gi
(
a†

r ⊗ Ai
r + ar ⊗ Ai†

r + b†r ⊗ Bi
r + br ⊗ Bi†

r

)
,

(C3)

and describes an exchange of fermions between system and
bath mediated by a coupling constant gi which may depend
on the specific mode i of the baths.

The total dynamics of system and bath is given by the
Liouville–Von Neumann equation

dρ

dt
= −i[H,ρ]. (C4)

After taking the interaction picture with respect to H0 = Hs +
Hb,

dρ̃

dt
= −i[H̃s-b,ρ̃] with

{
ρ̃ := eiH0t ρe−iH0t ,

H̃s-b := eiH0tHs-be
−iH0t .

(C5)

For small H̃s-b, the system dynamics is approximately given
(see Refs. 17–20) by the equation

dρ̃s

dt
= −

∫ ∞

0
ds Trb

[
H̃s-b(t),

[
H̃s-b(t − s),ρ̃s(t) ⊗ ρ

β

b

]]
,

(C6)

where Trb denotes the trace over the bath degrees of freedom
and ρ

β

b is the initial state of the bath, which we assumed to be
the Gibbs state

ρ
β

b := e−βHb

Z
. (C7)

1. Toroidal geometry

We consider periodic boundary conditions and take Fourier
transforms in the Hamiltonian (C1). For the first term we obtain
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(B6), for the second we have

Hb =
∑
i,k

εi
(
A

i†
k Ai

k + B
i†
k Bi

k

)
, (C8)

and finally for the interaction term

Hs-b =
∑
i,k

gi
(
a
†
k ⊗ Ai

k + ak ⊗ A
i†
k + b

†
k ⊗ Bi

k + bk ⊗ B
i†
k

)
.

(C9)

Let us stress again that the strength of the coupling to each
mode of the bath is represented by gi . This, analogously to
the energy of each mode εi , is taken to be independent of the
lattice site and of the type of bath A or B, which is rather
natural.

In terms of the operators ck and dk, the Hamiltonian (C9)
reads as

Hs-b =
∑
i,k

gi
(
c
†
k ⊗ Ci

k + ck ⊗ C
i†
k + d

†
k ⊗ Di

k + dk ⊗ D
i†
k

)
,

(C10)

where (
Ci

k
Di

k

)
= 1√

1 + |xk|2
(

x∗
k −1

1 xk

)(
Ai

k

Bi
k

)
(C11)

are new fermionic modes of the bath. Moreover, note that

Hb =
∑
i,k

εi
(
C

i†
k Ci

k + D
i†
k Di

k

)
. (C12)

Now, it is easy to write Hs-b in the interaction picture and apply
the formula (C6), which can be quite simplified by using that

Trb
(
C

j†
k′ C

i
kρβ

) = Trb
(
D

j†
k′ D

i
kρβ

) = n̄F (εi)δi,j δk,k′ ,

Trb
(
C

j

k′C
i†
k ρβ

) = Trb
(
D

j

k′D
i†
k ρβ

) = [1 − n̄F (εi)]δi,j δk,k′ ,

Trb
(
C

j†
k′ D

i
kρβ

) = Trb
(
D

j†
k′ C

i
kρβ

) = 0.

Here, n̄F (E) := 1
eβE+1 is the mean number of particles of the

Fermi-Dirac distribution, where we have taken the chemical
potential μ to be at the origin of the energy. In the continuous
limit for the bath degrees of freedom we have∑

i

(gi)2f (εi) −→
∫

dε J (ε)f (ε), (C13)

for any function f (ε), where J (ω) is the so-called spectral
density of the bath. Thus, the Sokhotsky’s identity∫ ∞

0
dτ eiωτ = πδ(ω) + iPV

(
1

ω

)
(C14)

allows us to simplify further the final expression, which after
a bit long but straightforward computation reads as

dρs(t)

dt
=

∑
k

Lk[ρs(t)] =
∑

k

(
− i[Hk,ρs(t)] + γ

(
Ek

1

)
n̄F

(
Ek

1

)(
c
†
kρs(t)ck − 1

2
{ckc

†
k,ρs(t)}

)

+ γ
(
Ek

1

)[
1 − n̄F

(
Ek

1

)](
ckρs(t)c

†
k − 1

2
{c†kck,ρs(t)}

)
+ γ

(
Ek

2

)
n̄F

(
Ek

2

)(
d
†
kρs(t)dk − 1

2
{dkd

†
k,ρs(t)}

)

+ γ
(
Ek

2

)[
1 − n̄F

(
Ek

2

)](
dkρs(t)d

†
k − 1

2
{d†

kdk,ρs(t)}
))

, (C15)

in the Schrödinger picture, where γ (ω) := 2πJ (ω). In addi-
tion, in this equation we have neglected the imaginary parts of
Eq. (C14) because they represent just a small shift of energies
which do not affect the dissipative process.39

2. Cylindrical geometry

In this case, we take Fourier transform along the direction
a2 in (C1). Thus, the Haldane Hamiltonian reads as (B17), the
bath Hamiltonian becomes

Hb =
∑
k2

∑
i,m

εi
(
A

i†
(m,k2)A

i
(m,k2) + B

i†
(m,k2)B

i
(m,k2)

)
, (C16)

and the interaction Hamiltonian

Hs-b =
∑

k2∈B.Z.

∑
i,m

gi
(
a
†
(m,k2) ⊗ Ai

(m,k2) + a(m,k2) ⊗ A
i†
(m,k2)

+ b
†
(m,k2) ⊗ Bi

(m,k2) + b(m,k2) ⊗ B
i†
(m,k2)

)
, (C17)

where m runs from 1 to the number of two-site basic cells
along the direction a1, N1.

We may collect the operators am and bm of each site in a
new operator cm where c1 := a1, c2 := b1, c3 := a2, c4 := b2,
and so on. The same can be done for the bath operators A and
B with the notation Cm. Then, the interaction Hamiltonian
(C17) is written as

Hs-b =
∑

k2∈B.Z.

∑
i,m

gi
(
c
†
(m,k2) ⊗ Ci

(m,k2) + c(m,k2) ⊗ C
i†
(m,k2)

)
,

(C18)

where now m runs from 1 to 2N1.
The diagonal modes f(m,k2) of H (k2) =∑
m Em(k2)f †

(m,k2)f(m,k2), where Em(k2) is depicted in
Fig. 6, are related to c(m,k2) by some unitary transformation

c(m,k2) =
∑

�

w
k2
m,�f(�,k2) with

∑
�

w
k2∗
�,mw

k2
�,m′ = δm,m′ .

(C19)
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By using this equation in (C18) and after a bit of algebra we
arrive at

Hs-b =
∑
i,m,k2

gi
(
f

†
(m,k2) ⊗ F i

(m,k2) + f(m,k2) ⊗ F
i†
(m,k2)

)
, (C20)

where

F i
(m,k2) :=

∑
�

w
k2∗
�,mCi

(�,k2) (C21)

are new fermionic bath modes.
Following the same steps as for the toroidal geometry, it

is not difficult to obtain the master equation of the cylindrical
array

dρs(t)

dt
=

∑
k2∈B.Z.

Lk2 [ρs(t)] =
∑

k2∈B.Z.

(
− i[H (k2),ρs(t)]

+
∑
m

(
γ
(
Ek2

m

)
n̄F

(
Ek2

m

)
D

f
†
(m,k2)

[ρs(t)]

+ γ
(
Ek2

m

)[
1 − n̄F

(
Ek2

m

)]
Df(m,k2) [ρs(t)]

))
, (C22)

where

DK [ρs(t)] := Kρs(t)K
† − 1

2 {K†K,ρs(t)}. (C23)

APPENDIX D: STEADY STATE FOR THE HALDANE
MODEL

1. Toroidal geometry

The steady state of the previous band Liouvillian (C15) is
the Gibbs state of the Hamiltonian Hs,

ρβ = e−βHs

Z
, (D1)

where β = 1/T , with T the temperature of the fermionic
bath, and Z = Tr(e−βHs ) the partition function. To prove this,
first note that [Hs,ρβ] = 0 so we just need to care about the
dissipator in (C15). In addition, since the number operators
c
†
kck and d

†
kdk commute with c

†
k′ , ck′ , d†

k′ , and dk′ if k �= k′, and
we are left only with the part where the crystalline momenta
in Lk and ρk

ss are the same, as the others trivially vanish. Since

eβEn̄F (E) = [1 − n̄F (E)] (D2)

and

ρk
ss =

(
e−βEk

1 c
†
kck

1 + e−βEk
1

)(
e−βEk

2 d
†
kdk

1 + e−βEk
2

)
, (D3)

it is easy to prove that

Lk(ρk
ss) = n̄F (Ek

1 )

(
c
†
kρ

k
ssck − 1

2
{ckc

†
k,ρ

k
ss}

)

+ [1 − n̄F (Ek
1 )]

(
ckρ

k
ssc

†
k − 1

2
{c†kck,ρ

k
ss}

)

+ n̄F (Ek
2 )

(
d
†
kρ

k
ssdk − 1

2
{dkd

†
k,ρ

k
ss}

)

+ [1 − n̄F (Ek
2 )]

(
dkρ

k
ssd

†
k − 1

2
{d†

kdk,ρ
k
ss}

)
= 0.

(D4)

Moreover, the state ρβ is the unique steady state of (C15)
as the interaction Hamiltonian (C3) satisfies the irreducibility
condition presented in Ref. 40.

In order to analyze some properties of ρβ , let us write the
density matrix ρk

ss in the occupation basis of the two bands for
a fixed momentum k. The basis reads as |ij 〉k, where i = 0,1
and j = 0,1 stand for the occupation of one-particle state in
the lower and upper bands, respectively. Thus, ρk

ss is a 4 × 4
diagonal matrix

ρk
ss = diag

(
pk

0000,p
k
1010,p

k
0101,p

k
1111

)
(D5)

with

pk
0000 := [

(1 + e−βEk
1 )(1 + e−βEk

2 )
]−1

,

pk
1010 := pk

0000e
−βEk

1 ,
(D6)

pk
0101 := pk

0000e
−βEk

2 ,

pk
1111 := pk

0000e
−βEk

1 e−βEk
2 .

Since we set the origin of energy at E0 = 0 and also took
the chemical potential μ = 0 in-between the two bands Ek

1 <

0,Ek
2 > 0. Thus, at the low-temperature limit, the state ρk

ss →
|10〉k as T → 0 K. This means that at T = 0 K the lower band
is fully occupied and the upper band is completely empty,
which is actually what one may expect. At the opposite limit,
for T → ∞, the system gets completely mixed, as the four
possible states can be equally populated by the environment.

For the sake of clarity, we write the members of the
occupation basis as

|00〉k = |0〉|0〉, |10〉k = |uc,k〉|0〉,
|01〉k = |0〉|ud,k〉, |11〉k = |uc,k〉|ud,k〉.

Then, by using Eqs. (26) and (13), we obtain (note that the
∂i |0〉 = 0 as by definition the vacuum has no particles and so
it does not depend on k)

A
ρ

i (k) = pk
1010A

c
i (k) + pk

0101A
d
i (k) + pk

1111

[
Ac

i (k) + Ad
i (k)

]
,

(D7)

where the Berry connections for the lower c and upper d bands
are provided by

Aα
i (k) = i〈uα,k|∂iuα,k〉, α = c,d. (D8)

Thus, the expressions for pk
ijkl given in Eq. (D6) lead to

A
ρ

i (k) = n̄F

(
Ek

1

)
Ac

i (k) + n̄F

(
Ek

2

)
Ad

i (k). (D9)

2. Cylindrical geometry

Because of the same reasons as with the toroidal geometry,
the master equation on a cylindrical geometry (C22) has a
unique steady state, which is the Gibbs state at the same
temperature as the bath:

ρβ = e
−β

∑
k2

H (k2)

Z
=

⊗
k2

e−βH (k2)

Zk2

, (D10)

155141-11



A. RIVAS, O. VIYUELA, AND M. A. MARTIN-DELGADO PHYSICAL REVIEW B 88, 155141 (2013)

with Zk2 = Tr[e−βH (k2)]. Provided the system exhibits topo-
logical order, this state can be split as

ρβ(k2) = e−βH (k2)

Zk2

= ρL
β (k2) ⊗ ρbulk

β (k2) ⊗ ρR
β (k2), (D11)

where

ρ
L,R
β (k2) := e

−βEL,R (k2)f †
(L,R,k2)f(L,R,k2)

1 + e−βEL,R (k2)
(D12)

are Gibbs states involving just the gapless edge modes depicted
in Fig. 6.
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